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Abstract

Over the last years, robotics emerged as an important research field and an increasing re-

search effort has been put on novel multi-robot cooperative tasks for heterogeneous mobile

robotics applications. This ongoing development is driven by a significant number of potential end-

user applications where it is necessary to reduce human intervention, which include large-scale

sensing operations, cooperative search and rescue, surveillance, recognition and border control

tasks. This effort is being accomplished with the assumption that mobile robots are equipped with

state-of-the-art sensing equipment, which allows them to navigate and perceive their surrounding

environment and perform cooperative perception. One of the most common and versatile means

of perception in mobile robot applications is visual sensing with one or more cameras which are

capable of acquiring visual information based on cooperative approaches. However, there has

been a tendency to decrease the vehicles’ scale factor and payload, and consequently to provide

the vision community with a natural transition to monocular vision setup or to a smaller stereo rigid

baseline. Therefore, and in the context of an application scenario where the goal is to estimate a

dynamic 3D target position, the main problem is to produce 3D information based on monocular

vision information using a team of robot observers taking into account the inherent uncertainty in

measurements and robot localization.

This thesis addresses this problem, by a novel multi-robot heterogeneous framework, to esti-

mate 3D dynamic target position based on bearing-only measurements from monocular cameras

available at each robot. Therefore, we developed a novel method, denoted by Uncertainty-based

Multi-Robot Cooperative Triangulation (UCoT), able to handle the uncertainty of the observation

model provided by each robot by weighing the contribution of each monocular vision system to the

estimation of the target position in a probabilistic manner. As a result of the geometric informa-

tion emerging from the cooperative triangulation at each involved robot, a multi-robot probabilistic

epipolar line with a dynamic narrow search space based on the uncertainty associated with the

bearing-only measurement is formulated and integrated as part of the proposed cooperative tri-

angulation architecture framework.

The envisioned framework is evaluated in a simulation environment and also in an outdoor

scenario with a team of heterogeneous robots composed of one Unmanned Ground and one

Aerial Vehicle.
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Based on the results obtained in both environments, and the inherent advantages provided by

the cooperative triangulation as a novel multi-robot 3D sensor, the framework has been integrated

and evaluated with a decentralized data fusion method, called Decentralized Delayed-State Infor-

mation Filter.

Keywords

Robotics, Multi-Robot Systems, Stereo Vision, Uncertainty, Cooperative Perception, 3D Target

Estimation, Decentralized Data Fusion, Outdoor Scenarios
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Resumo

Nos últimos anos, a robótica tem emergido como uma importante área de investigação da qual

se destaca, entre outras, a área das aplicações de tarefas cooperativas com equipas de robôs

móveis heterogéneos. Esse desenvolvimento é impulsionado por um conjunto de potenciais apli-

cações, onde se pretende reduzir a intervenção humana em tarefas de monitorização, busca e

salvamento, vigilância, reconhecimento e ainda patrulhamento de fronteiras. Este esforço tem

sido levado a cabo com a introdução de sensores capazes de proporcionar aos robôs móveis a

capacidade de navegar e percecionar todo o seu ambiente envolvente e permitir assim partilhar

essa perceção de uma forma cooperativa com outros robôs. Um dos meios mais versáteis e co-

muns de perceção em aplicações de robôs móveis passa pela utilização de um ou mais sensores

de imagem, como é o caso das câmaras. Esta abordagem permite assim a aquisição de infor-

mação visual, informação essa que poderá ser partilhada com outros robôs. Contudo, e alinhado

com o natural processo de desenvolvimento da robótica, temos assistido a uma diminuição do

tamanho dos robôs e, por conseguinte, da sua capacidade de carga. Em termos de impacto para

os sensores visuais, este processo traduziu-se numa natural transição para sistemas de visão

monocular ou para soluções de visão stereo com uma menor distância entre câmaras. Con-

siderando o objetivo de estimar a posição 3D de um objeto, o problema que se coloca é como

poderemos produzir informação 3D com base em medidas de um sistema de visão monocular

utilizando uma equipa de robôs observadores tendo em consideração a incerteza proveniente da

medidas e da localização do robô.

A tese aborda essa questão começando por identificar os métodos existentes no atual es-

tado da arte e apresentando uma nova abordagem para o problema através do desenvolvimento

de uma nova arquitetura multi-robô, definida como Uncertainty-based Multi-Robot Cooperative

Triangulation (UCoT), capaz de calcular a posição 3D de um objeto com base em medidas

provenientes de um sistema de visão monocular. O modelo de incerteza associado às medi-

das, proveniente de cada robô, é abordado de modo a incorporar, de uma forma probabilística,

a contribuição de cada sistema de visão monocular para o processo de triangulação coopera-

tiva. Como parte integrante da arquitetura cooperativa de triangulação multi-robô, formalizou-se

um método de associação de dados entre robôs com base em informação geométrica chamada

linha multi-robô probabilística epipolar, com uma janela de pesquisa proveniente da incerteza de
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cada robô. Assumindo que todas as fontes de incerteza do modelo de observação podem ser

representadas como distribuições Gaussianas, e assim modelizadas através da aproximação da

propagação da incerteza, efetuou-se a validação da aproximaccão com recurso a Monte Carlo

Simulation. A arquitetura proposta é avaliada através de um ambiente de simulação e também

num ambiente real com uma equipa de robôs heterogéneos composta por um veículo terrestre e

um veículo aéreo. Com base nos resultados obtidos em ambos os ambientes, e na identificação

das vantagens inerentes proporcionadas pela arquitetura cooperativa de triangulação multi-robô,

efetuou-se a sua integração e validação, como sensor 3D, numa infraestrutura de fusão sensorial

distribuída, denominada Decentralized Delayed-State Information Filter.

Palavras Chave

Robótica, Sistemas Multi-Robô, Visão Stereo, Incerteza, Percepção Cooperativa, Estimação

da posição 3D, Fusão sensorial, Cenário Outdoor
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Notation

Along the thesis, there will be different coordinate systems and during the formulation it will

be necessary to establish the transformation matrix from one coordinate (designated by from) to

another coordinate system ( designated by to), using the following notation: tofromFn. To represent

the coordinate transformation, {C} is labelled for the camera frame, {B} for the body frame,

{N} for the navigation expressed in ENUENUENU and {W} for the global frame expressed in the ECEFECEFECEF

coordinate. The upper case notation in bold represents the matrix variables, while the lower case

in bold represents the vectors, and finally the lower case represents the scalar variables.
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1
Introduction

This thesis addresses the problem of multi-robot cooperative perception, more precisely, co-

operative perception with a team of heterogeneous robots. The goal is to estimate 3D information

based on bearing-only measurements contextualized for outdoor search and rescue as well as

border control tasks. This chapter firstly presents the motivation and research framework, includ-

ing a preliminary discussion of the associated issues. Finally, the contributions and organization

of the thesis are presented.

1.1 Motivation and Research Framework

Robotics emerged as a research field and has known important developments over the last

years. Recent advances in sensing, communication and actuation have made it possible to envi-

sion large numbers of autonomous vehicles (air, ground, and water) working cooperatively to ac-

complish an objective. The potential impact of cooperative perception with a group of autonomous

vehicles is unquestionable in many application domains, such as civilian and military applications.

Potential civilian applications include rescue missions[MSM+12][OSG+13], forest fires[Mer07]

monitoring and wildlife tracking. Military applications include border control[MCPA09],[XDMV12],

surveillance[KKM12],[XDMV12] and reconnaissance[ZL10], and battle damage assessment.

Currently, mobile robots employed on these high-end user applications are equipped with

state-of-the-art sensing equipment, which allows them to navigate and perceive their surrounding

environment.

One of the most common and versatile means of perception in mobile robotics applications is
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1. Introduction

Figure 1.1: Motivation application scenarios. Left: Cooperative perception target tracking for the
PCMMC FCT project[LAD+14]. Right: Cooperative search and rescue task for the
FP7 project ICARUS[CO13] at La Spezia, Italy

visual sensing with one or more cameras capable of acquiring visual information[ZR11] based on

cooperative approaches. Taking this a step further, the thesis addresses an outdoor multi-robot

scenario in order to detect and estimate the 3D position of a dynamic target in a cooperative

vision framework. Two suitable motivation mobile robot outdoor scenarios that will be envisioned

are cooperative search and rescue, and border control, as depicted in figure 1.1.

The first phase of the research included a thorough review of the state-of-the-art about co-

operative tasks based on single or cooperative perception. In a single perception approach,

each robot is capable of detecting and locating targets, sharing that information over a com-

munication middleware[RLG13],[SAPL09] that can afterwards be used by cooperative mecha-

nisms to allocate tasks[SJAR11]. Considering the proposed scenarios, see figure 1.1, those

approaches present several limitations in any possible vision setup, whether monocular or stereo

rig baseline. In a monocular vision setting, it is intrinsically difficult to estimate depth and abso-

lute scale[AWC+11]; therefore, estimating 3D targets without a known target size is a research

challenge[ANC+13]. Moreover, techniques such as (SFM)[DSTT00] or (VSLAM)[DRMS07] are

able to estimate depth using a monocular camera, although the visual sensor must have a large

field of view and motion cannot occur along the optical axis, and preferably with parallax motion,

to allow for a fast map uncertainty convergence[AWC+11]. (VSLAM)[DRMS07] methods have

managed to achieve good results in depth estimation in indoor and even in outdoor map building
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scenarios[Wei12]. However, they also present some constraints, such as high computational re-

quirements (not available in most of the robots), low camera dynamics, preferably with features

available between frame for batch recursive process, loop closing and large field of view. Both ap-

proaches use static maps, which means they are not suitable for tracking targets with a dynamic

behavior.

Methods for 3D target estimation with a bearing-only vision configuration based on the Flat

Earth assumption[BRM+06] were developed for a particular application scenario of aerial vehi-

cles. The goal was to estimate the 3D target position, with the depth information being provided

by the vehicle’s altitude, without taking terrain morphology into consideration. The results of esti-

mating the target position using this assumption are: less accurate 3D information and the inability

to estimate the position of the targets that are not moving on the ground.

In terms of the stereo rig baseline, 3D target estimation is a well-known solution due to its

relatively simple image scale and depth estimation. However, its application is limited when the

goal is to track targets whose depth distance greatly exceeds the available stereo rig baseline,

therefore reducing the stereo setup to a bearing-only sensor[GFMP08]. The estimation error in-

creases quadratically with depth [GFMP08],[DLLP10],[DLLP11], and therefore this limitation be-

comes even more relevant when most robots tend to decrease their scale factor[KKM12], and

consequently their rig baseline.

Focusing now on cooperative perception approaches, characterized by each robot available

in the multi-robot formation, it is possible for the robot to build its own local partial representation

of the world, described by the belief state and shared in order to improve their knowledge. Some

of these methods are: (DDF)[SRDW02] by incorporating 2D measurements, which can be repre-

sented by a (GMM)[OBDWU08][OUB+06b][URO+08], Cooperative SLAM[ZT13][FKS13], which

can estimate the pose between cameras with overlapped views by combining the conventional

(SFM) method, Sukkarieh[SNK+03], in the ANSER project, where the depth problem is solved

with artificial landmarks of known size, the Zhu[ZKRH04] method, where two robots with an om-

nidirectional camera estimated the flexible baseline based on an object of known size and, for the

special case of indoor scenarios, a decentralized (EKF) monocular camera inertial sensor fusion

method[AWC+11] to recover the relative configuration between monocular cameras.

Common to all cooperative perception methods outlined is the mandatory translation of the

information received from other robot teammates into the same representation of a target location.

Most information has been produced locally by each vehicle, for instance, from vision sensors.

This leads us again to the previously outlined limitations from each vision sensor configuration. In

fact, problems can increase due to the sharing of outliers or even less accurate information, which

could lead to rumor propagation[Net03], and consequently to overoptimistic estimations.

Another important view from the present cooperative perception methods, and assuming

bearing-only 2D observations, is that the 3D target estimation will require several measurements
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with a sufficiently different baseline in a batch recursive process to perform triangulation[BS07].

This approach required a data association[SS06] robustness technique from the cooperative per-

ception method in order to evaluate the 2D information, and establish a correlation between ob-

servations.

The limitations outlined in the research framework strengthen the thesis and the motivation for

the development of a cooperative perception framework capable of estimating the 3D information

based on monocular measurements. At the same time, because it is a geometric approach, the

framework will also provide an important contribution to the robustness of the information shared

between teammates due to the requirement of having an intersection of the monocular views in

3D.

1.2 Objectives

The aim of this thesis is to contribute to the field of cooperative perception by developing a

novel multi-robot heterogeneous framework to estimate 3D dynamic target position and associ-

ated uncertainty based on bearing-only measurements. Therefore, with this main objective it was

possible to establish the following goals:

• Defining an architecture and a common semantic data structure for multi-robot 3D target

estimation capable of supporting heterogeneous robot systems;

• Relating all sources of uncertainty, position, attitude, and image plane target detection in a

probabilistic manner to the estimation of the 3D target position;

• Ensuring real time and low computational requirements that are scalable to different types

of robot systems;

• Providing tools to ensure multi-robot data association in the matching feature procedure,

even in situations of different field of view perspectives, based on geometric constraints;

• Evaluating the contribution of the proposed framework when integrated with a Decentralized

Data Fusion algorithm to perform cooperative target tracking;

• Envisioning future research lines in active perception and formation control based on uncer-

tainty minimization.

1.3 Contributions

Considering the context related to cooperative perception with teams of heterogeneous and

homogeneous robots, the contributions of the thesis include:
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• Multi-Robot Cooperative Triangulation: The stereo rig baseline to estimate the 3D tar-

get position is a well-known solution due to its relatively simple image scale and depth

estimation. However, its application is limited when the goal is to track targets whose

depth distance greatly exceeds the available stereo rig baseline, therefore reducing the

stereo setup to a bearing-only sensor with an estimation error growing quadratically with

depth[GFMP08],[DLLP11]. This limitation is even more relevant when most robots tend

to decrease their scale factor and payload[KKM12], and consequently, rig baselines are

smaller or there may even be a transition to a monocular vision setup[AWS11],[LAF+10].

Therefore the main thesis question is:

How is it possible to produce 3D information based on monocular vision information

using a team of robot observers?

This work proposes an innovative method to estimate the 3D target localization, based on

bearing-only measurements from multi-robot vision systems. The relative position and orien-

tation between monocular cameras can change over time and provide a flexible and dynamic

stereo baseline with the established geometric overlapped views.

The envisioned multi-robot cooperative triangulation framework can combine monocular vi-

sion information from heterogeneous vision sensors, including, but not limited to, installed

fixed cameras, infrared thermographic camera, visible camera and multi-spectral cameras.

This means that it is possible to have multiple robots cooperating in the same environment

and to combine information provided by each heterogeneous vision sensor based on a com-

mon communication infrastructure.

• Uncertainty-based Multi-Robot Cooperative Triangulation: The problem of finding the

position of a point in 3D based on an overlapped view of two images is commonly known

as stereo triangulation. Theoretically, if the intrinsic and extrinsic parameters between the

stereo pair are known, the intersection of the corresponding ray will result in their 3D po-

sition. However, in practice, correspondence detection and camera parameter estimation

entail uncertainty that will cause the rays not to intersect. The most common procedure to

solve this issue is selecting the mid-point of the common perpendicular with the shortest

segment for both rays (the mid-point method). Several authors[Har13][KSN08][HZ04] have

introduced optimal triangulation methods to ensure reliability in 3D estimation by modeling

the uncertainty in the calibration procedure and in the feature detection method. These

methods are able to improve accuracy if the visual setup is a well-known stereo rig baseline.

Therefore the question is:

How is it possible to handle all sources of uncertainty in the 3D Multi-Robot

Triangulation?
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Considering the motivation of the thesis and the application scenario, the uncertainty will

be not only in the outlined sources of noise, but also in sensors related to the camera’s

position and attitude. This work proposes a new method for cooperative triangulation, called

Uncertainty based Multi-Robot Cooperative Triangulation (UCoT), where the uncertainty

of each sensor is considered. The covariance of both intersection rays is used in the 3D

estimation by weighting the uncertainty of each ray in a probabilistic manner.

• Distributed framework architecture model : One of the key points of a framework in a

context of multi-robot cooperative perception is the altruistic commitment to share useful

measurements with the teammates. As previously described, one of the contributions will

be the ability to combine monocular vision information from heterogeneous vision sensors.

Therefore, the question is:

Which common semantic data must be provided to support the proposed framework?

The proposed framework will provide a common semantic data structure described by a tu-

ple with the detected target measurement, the information required to composed the multi-

robot epipolar geometry and the corresponding uncertainty over a communication middle-

ware.

• Multi-Robot Uncertainty Epipolar Constraint : The epipolar constraint is usually moti-

vated by considering the search for correspondence points between views in stereo match-

ing, (VSLAM) and (VO). Several authors rely on a robust algorithm such as the (RANSAC)

[KGL10] to search for a set of mutually coherent matches. In a probabilistic framework, Del-

laert et al.[DSTT00] iteratively compute probabilities over both correspondence and motion

using the Expectation-Maximization method, while Domke et al.[DA06] estimate the epipolar

geometry by describing the motion of a camera using a dense probabilistic method. More

recently, Danping et al.[ZT13] proposed correspondence points for the cooperative (VSLAM)

method, which searched only for the epipolar line in a narrow band within a predefined sigma

distance. Therefore the question is:

Is it possible to incorporate the associated uncertainty in the epipolar line narrow band

search space?

Based on the methods previously outlined, this thesis proposes to estimate the epipolar

constraint related to the global frame based on the rotation matrix and the camera’s optical

center position shared by each robot. The associated uncertainty (position and attitude) is

incorporated in the narrow band search space for the epipolar line. This means that the

narrow band will not be a predefined sigma distance but a dynamic narrow band correlated

to the sensors’ uncertainty. The method is contextualized for the outdoor scenario, but
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the formulation is admissible and extensible to other application scenarios, such as indoor

(VSLAM) with other sensors, including laser and encoder (odometry errors).

• Multi-Robot Cooperative Triangulation as a novel sensor which improves the Decen-

tralized Data Fusion methods: Decentralized information fusion raises the problem of data

association, filter initialization and also rumor propagation, which can lead to non-consistent

(due to loss of independence in the sources) and overoptimistic estimations. This has been

pointed out mainly by Durrant-Whyte[DW01] and Sukkarieh et al.[Net03][SNK+03]. There-

fore, the question is:

How can the Multi-Robot Cooperative Triangulation help overcome the data association

and filter initialization issues in a DDF Multi-target Tracking?

The geometric constraints emerging from the multi-robot cooperative triangulation formula-

tion, plus the integration of all sources of uncertainty in the target 3D measurements, bring

substantial benefits to the DDF layers, not only in the initialization process of new targets,

but also in the robustness of data association, especially in environments where the intent

is to perform multi-target tracking.

The thesis also contributed with the results to the following projects (see figure 1.1):

• PCMMC - Perception-Driven Coordinated Multi-Robot Motion Control[ANC+13]

• ICARUS - Urban Search and Rescue (USAR) and Maritime Search and Rescue (MSAR)[CO13]

1.4 Organization of the Thesis

The thesis is organized in six chapters. Subsequently to the introductory chapter, which

presents the motivation, the research framework, the objectives and the contribution of the re-

search herein reported, Chapter 2 thoroughly reviews the most relevant state-of-the-art related to

cooperative multi-robot perception and more focused methods to estimate 3D information based

on monocular visual systems. The purpose is to go deeply into the motivation, taxonomies and

main issues related to cooperative perception in order to support and contextualize the contribu-

tions of the thesis, which are presented in the following chapters.

Chapter 3 provides the reader with the basics basic theoretical information and mathematical

support to understand the following chapters on the reference frame and coordinate systems, un-

certainty estimation, pinhole camera model, stereo vision and epipolar geometry. The monocular

3D estimation based on flat Earth model and the Bayesian probabilistic approach for decentralized

data fusion are also presented.

Chapter 4 introduces the multi-robot cooperative triangulation framework to estimate the 3D

target position based on bearing-only measurements. The envisioned architecture framework is
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outlined and validated by presenting the results obtained in an outdoor scenario based on coop-

erative perception with a Micro Aerial Vehicle (MAV) and an Unmanned Ground Vehicle (UGV)

tracking a target. As part of the architecture framework, the Uncertainty-based Multi-Robot Epipo-

lar line for data association is formulated and evaluated in an outdoor simulation environment. The

simulation environment was used to assess not only the impact of introducing more robots to the

environment, but also evaluate which pair of monocular vision systems provide the 3D target esti-

mation with the lowest uncertainty and robustness to different levels of Gaussian noise associated

with the attitude and position sensors. Based on the fact that all sources of uncertainty, depicted

in the multi-robot cooperative triangulation framework, have been approximated by a Gaussian

distribution, and therefore modeled through the first order uncertainty propagation, this chapter

has dedicated special attention to the subject by providing comparative analysis with Monte Carlo

simulation.

Chapter 5 presents the integration of the multi-robot 3D sensor with a decentralized data fusion

method called Decentralized Delayed-State Information Filter (DDSIF), developed by Merino and

Capitan[CMCO11]. The integration is validated by evaluating, in an outdoor simulation environ-

ment, the robustness of the (DDSIF) to outliers and filter initialization using the novel multi-robot

3D sensor UCoT.

Chapter 6 concludes the thesis by summarizing the contributions and underlining the main

conclusions obtained in the course of the research herein reported. Furthermore, this chapter

discusses the advantages and limitations of the contributions presented, and potential topics for

research in the future.
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2
Related Work

This chapter covers the state-of-the-art associated with tasks based on single and cooperative

perception in multi-robot systems. The purpose of this chapter is to provide the reader with

the background and motivation for cooperative perception and contextualize the research in the

following chapters. The keywords capable of supporting the research are summarized in the tag

cloud in figure 2.1 .

Figure 2.1: Related Work Tag Cloud

A brief analysis will be performed in order to define, in the related work, the limitations and

gaps to which this work can contribute.
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2.1 Single Robot Perception

In an application task composed of a single-robot system, a scenario is assumed that contains

a single robot capable of performing data gathering and actions, and inferring on the state of the

environment. Normally, robots are designed to deal with a task on their own and they are usually

equipped with multiple sensors, which require a complex mechanism and an advanced intelligent

control system.

Two possible vision configurations can be outlined by addressing the perception problem con-

text with a single robot vision system: monocular or stereo rig baseline. The following related work

could be seen as unnatural to other perception mechanisms; however, it is important to maintain

the focus on the constraints and issues associated with a single robot system.

A monocular vision system is a sensor that can be used to estimate bearing information by

obtaining relative measurements to keypoints in the enviroment. However, due to the lack of

parallax it is intrinsically difficult to obtain depth information and estimate the scale[AWC+11].

Therefore, the estimation of a 3D target position using only monocular vision approaches or stereo

vision approaches with small rig baselines, and without knowing the target size has become a

research challenge still addressed today in computer vision and robotics applications. Based on

a priori knowledge on target dimension, Greggio et al. [FBGM11] present a monocular vision

system approach for the iCub robotic platform to estimate the 3D sphere ball position, Birbach

et al. [BF09] propose a real-time (UKF) algorithm for tracking a 3D soccer ball, and Aamir et

al. [AL13] present an optimized model-fitting approach to estimate the 3D ball position using a

dioptric vision system.

Techniques such as (SLAM) require observations of features using sensors such as laser,

radar or cameras. Using radar or laser, particularly in small robotic platforms, can be disadvanta-

geous due to their significative weight, cost and power consumption. That is one of the reasons

for the widespread use of monocular vision systems in small size low cost mobile robotic plat-

forms. Visual (SLAM) techniques, such as those proposed by Murray et al. [KM07], Davison

et al.[DRMS07], Roussillon et al.[RGS+11], and more recently by Weiss et al. [WAL+13] with

(PTAM) an improved version of Murray et al. [KM07] monocular SLAM framework, are capable of

obtaining good results in depth estimation in indoor and even in outdoor map building scenarios.

However, to allow a fast map uncertainty convergence[CDM08] they present some constraints

such as the fact that computational requirements are high, which imposes hard restrictions in the

energy consumption for robots with small payload. It only works when the camera dynamics is

low and keypoints are easily tracked between frames, and also when the motion does not occur

along the optical axis, more specifically parallax motion. In an mapping application and in the

context of an outdoor scenario, Bryson et al. [BJRS09] present a framework for integrating IMU,

GPS and monocular vision information in a batch smoothing approach to create dense terrain
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maps. The batch sequence is performed to estimate the initial feature triangulation, based on

2D SIFT[Low04] camera pixel observations and on the initial poses estimated by the IMU-GPS

Kalman filter. Another relevant approach with monocular vision configuration was proposed by

Gibbins et al. [GRS04] and Beard et al. [BRM+06] for a particularly case of aerial vehicles, with

depth information being estimated based on the Flat Earth Assumption. Although it is a smooth

problem, its application is limited to tracking objects on the ground without considering the ter-

rain morphology, and consequently the accuracy is low and it cannot be applied to the scenario

proposed in this thesis, where the terrain morphology is an important issue.

Related to a stereo rig baseline configuration, a 3D target position can be easily obtained by

methods such as stereo triangulation[HZ04]. However, its application is limited when the goal

is to estimate the target position whose depth distance greatly exceeds the available stereo rig

baseline, therefore reducing the stereo setup to a bearing-only sensor[GFMP08]. The baseline

impact for a stereo rig configuration was evaluated by Gallup et al. [GFMP08] and more recently

by Leo et al. [DLLP11]. Both have concluded that the estimation error increases quadratically with

depth, and therefore this limitation becomes even more relevant when robots, such as MAVs, tend

to decrease their scale factor[KKM12], and their rig baseline as a consequence. This issue has

led to the development of methods, such as wide-baseline stereo vision and dynamic baseline.

Some examples of this are found in Olson et al. [OAR10] where the proposed method uses a wide-

baseline stereo vision with consecutive frames taken by a monocular vision system and a visual

odometry algorithm along with stereo-matching methods, for accurate distant terrain mapping

on sandy and rocky soil. Broggi et al. [BCC+10], propose a trinocular camera featuring three

baselines, with the largest one being 1.5 m long, to perform long range robust obstacle and lane

detection on urban roads. The method improves the accuracy in the far range, a large baseline

moves farther the point of view of the stereo pair, thus determining a loss of information in the

near range. To provide an answer to this limitation, Broggi[BCC+10] include two stereo systems

in conjunction with the trinocular camera to improve the accuracy in the detection of obstacles

and lane markings in the vicinity of the vehicle. The multi-view stereo approach, applied to the

3D reconstruction as been addressed by Seitz et al. [SCD+06] and more recent by Rumpler et

al. [RIB11], by evaluating the impact of having multiple view matching in the depth accuracy. The

overall result was an improvement of the depth accuracy in the multi-view triangulation approach

went compared with a two view stereo method due to the ability to have higher baseline between

views and more triangulation angles.

Solutions based on variable baseline stereo, whereby the baseline can change dynamically

according to the operation conditions, have also been proposed. One of the first and most re-

markable pieces of work with variable baseline, especially if we considered its year, is the slider

stereo by Moravec et al. [Mor81].The system is composed of a monocular vision system that

slides along a track to acquire multiple snapshots of the scenario. Then, each possible image pair
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is considered a stereo baseline, and used for estimating feature depth. Kanade et al. [OK93],

propose a stereo-matching approach using multiple baselines obtained by a lateral displacement

of camera. The goal was to improve the accuracy of the 3D estimation and to remove ambi-

guities using the SSSD-in-inverse-distance function. Gallup et al. [GFMP08] not only evaluate

the impact of the stereo baseline, as previously mentioned, but also propose a variable stereo

baseline/resolution. This work uses multiple images to make the baseline and the resolution vary

proportionally to depth and to obtain a reconstruction with a constant depth error. Nakabo et

al. [NMH+05] propose a high-speed linear slider to make the stereo baseline of two cameras

vary in an independent way. The position of the cameras on the slider changes proportionally to

the distance of the object to track. Active camera positioning is able to overcome the previously

mentioned accuracy problem associated with a stereo rigid baseline, without having to use mul-

tiple stereo devices. However, active stereo requires linear and rotating actuators that must be

precisely controlled via a real-time visual servoing algorithm, which introduces questions related

to camera synchronism and data association. More recently, Milella et al. [MR14], proposed a

multi-baseline stereo frame to perform an accurate 3D reconstruction of a scene from near range

up to several meters away from the vehicle. That was achieved by integrating a short-baseline

system in the vehicle and a long-baseline system, and then deciding on which system to use at

each instance.

2.1.1 Discussion

In a brief analysis of this section and without overlooking the motivation scenario described in

section 1.1, it is possible to conclude that monocular vision systems are not able to estimate 3D

information without a priori knowledge on target dimension. Moreover, monocular visual (SLAM)

methods have proven that they are able to obtain good results in depth estimation in indoor and

even in outdoor map building scenarios, although the available techniques assume static maps.

Therefore, it is not suitable for an application scenario where the goal is to estimate the target

position with dynamic behavior.

The abovementioned depth estimation problem can be overcome with a stereo rig baseline

configuration. However, and considering the small available stereo baseline in most of the robots

and the fact that in some of them, such as the MAVs, there is a clearly robot decreased scale factor

and the consequently reduced rig baseline, the error in the target estimation will grow quadratically

with depth, thus causing a significant impact in scenarios where the goal is to estimate the target

position whose depth distance greatly exceeds the available stereo rig baseline[Wei12].
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2.2 Multi-Robot Cooperative Perception

Over the last years, multi-robot systems have received a great deal of attention from the

robotics community due to their unquestionable impact on society. This impact is even more no-

torious when the robotic tasks are intrinsically distributed and complex. Comparatively to a single

robot mission, the multi-robot systems are capable of providing space and time distribution[SJR09]

[SJAR11], robustness, and of simplifying complex problems [XFUS13][FS12][LWT+13]. The ad-

vantages outlined bring new challenges that cannot be simply regarded as a generalization of

the single robot system because it requires an internal organization to achieve cooperation and

coordination. Once again, following the same methodology from the previous section, the focus

will be on issues associated with the perception problem in a multi-robot application scenario.

2.2.1 Cooperative Perception

This section contains the state-of-the-art associated with cooperative perception issues. The

concept of cooperative perception comes from the problem of understanding the world by com-

bining uncertainty observations from multiple robots to build a world model. The resulting shared

information is viewed as useful to the team’s overall task in order to ensure a global accurate and

comprehensive knowledge of the application scenario.

One important reference is the ANSER project by Sukkarieh et al. [SNK+03], which provides

with an architecture for multi-vehicle data fusion and a context for application in visual multi-UAV

SLAM. The state estimation from this work is performed distributedly through an information form

from the EKF. The map information, represented as the location of a discrete set of landmarks

estimated for each vehicle, is propagated to the rest of the fleet. In this work, the detected objects

are artificial landmarks with known sizes in order to ensure range and bearing measurements.

Zhu et al. [ZKRH04] propose a cooperative perception method to estimate the flexible baseline

between two omnidirectional cameras, based on an object of known size. Campbell et al. [CW07]

proposed a square root, sigma point information filter to fuse delayed data from a cooperative dis-

tributed tracking approach with camera-based sensors which track stationary and moving ground

targets in a multi-robot UAV scenario.

More recently, Capitan et al. [CMCO11] presented a DDF approach to perform cooperative

perception to track targets with a Decentralized Delayed-State Information filter (DDSIF) capable

of supporting a wide variety of sensors, such as cameras and laser range-finders. The experi-

mental results have been developed within the European Project AWARE, where the UAVs coop-

eratively track a target with the 3D estimated position being provided by the UAVs with flat earth

assumption. The strategy of estimating the 3D from monocular vision systems has been also

applied by Merino et al. [Mer07] in a DDF approach with UAVs to detect, locate and monitor forest

fires.
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Related to multi-robot localization and mapping, Forster et al. [CF13] present a framework

for collaborative localization and mapping with multiple MAV . Each vehicle estimates its motion

individually based on a monocular visual odometry algorithm and streams selected key frame

features and relative-pose estimations to a centralized ground station. More recently and without

the context of a multi-robot scenario Zou et al. [ZT13] proposed an offline collaborative visual

SLAM method capable of retrieving the position and orientation between cameras with overlapped

view by combining the conventional sequential structure-from-motion method with the Kanade-

Lucas-Tomasi tracker for feature detection and tracking.

Considering constraints associated with monocular depth perception, Achtelik et al. [AWC+11]

[Wei12] proposed a method to recover the relative configuration of two MAVs in absolute scale and

in real-time without prior knowledge on their initial configuration. The feature correspondences

with an overlapped field of view and the IMU are combined with an EKF formulation in order to

estimate the 6 DoF transformation between both vehicles.

2.2.2 Active Cooperative Perception

Active perception is currently one of most dynamic research topics in multi-robot systems.

A strong emphasis has been put on scenarios with heterogeneous teams of robots with com-

mon objectives. If the team heterogeneity is related to robots equipped with different sensors,

it will be possible to improve global perception by controlling the team’s behavior and the cor-

responding sensor allocation. Active perception means selecting sensory actions, for instance

pointing a pan-tilt camera[Spa08] or choosing to detect a target with a different vision system

(e.g. thermographic camera) available in one of the robots of the team. It can also mean

influencing a robot’s path planning based on strategies such as coverage, communication re-

lay or entropy maximization. A wide variety of decision-making and control algorithms able to

cope with active distributed perception has been applied in a range of fields, including static

target localization[CSG06], search[MCMdD+06], dynamic target tracking[CW07][FS12], environ-

ment monitoring[ZL10], coverage planning[SJR09][SJAR11], and surveillance[BMN+06]. Based

on this wide variety, this section describes the most relevant methods and algorithms. Defined

as a maximization problem, Parker et al. [Par02] present a Cooperative Multi-Robot Observation

of Multiple Targets (CMOMMT) where a fleet of robots maximize the number of targets being ob-

served in a time horizon. In a more recent work with CMOMMT, Kunhn et al. [KRvS11] have

demonstrated that simultaneous optimization of discrete target assignments and robot motion im-

prove the team’s performance by using an exact MILP solver. However, the method is not scalable

when new robots and targets are assigned (growing exponentially)[XFUS13].

Zlot et al. [ZtSDT02] propose a decisional architecture for exploration tasks based on market-

like negotiations. Each robot proposes a bid based on a distance cost to accomplish a task and

the expected information gain. The information gain will be estimated based on the number of
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new cells explored, which considers a representation of a grid-based environment.

Assuming a centralized approach, Furukawa et al. [Fur03] describe a time-optimal problem

where the performance time is the variable to be minimized. The optimal controller for each robot

is obtained by a control parametrization and time discretization technique to obtain a numerical

solution.

Techniques for decision-theoretic planning under uncertainty are also applied, which is demon-

strated by Porta et al. [PVSP06] who present an approach to optimize Partially Observable

Markov Decision Processes (POMDPs) defined in continuous spaces. The POMDPs are usu-

ally employed for planning and control, although with a convenient payoff function, and they can

also be used for developing perception actions. Based on a POMDP approach, Matthijs et al.

[SVL10] tackled the problem of how a robot should act in order to track and classify a particular

target, considering both its local sensors and the available sensors present in the environment,

by modeling not only the robot’s movement but also classification actions. More recently, and in

a fully decentralized solution, Capitan et al. [CSMO13] proposed a DDF filter for sharing informa-

tion between robots and a POMDP auction to generate cooperative behavior in a decentralized

manner. Stroupe et al. [SRB04] introduce the Most Value Estimation for Robot Teams (MVERT)

for multi-robot action selected by computing the usefulness of a robot for a full set of tasks. Some

of the exploration tasks are related to cooperative perception and the covariance matrix is used to

measure the information. Despite being a decentralized method, the algorithm requires the team

members to share sensor models, target estimations and the relative location between them.

Burgard et al. [BMSS05] proposed a semi-decentralized algorithm to coordinate a team of

robots to explore an unknown environment. The robots are spread on an area where distance and

utility are optimized. The utility of each area, represented by a probabilistic grid map, is reduced

as long as other robots visit the area or are close to it. The algorithm is partially distributed and

the areas explored are distributed hierarchically by a central node based on the communication

range between sub-teams of robots.

Due to the complexity associated with the multi-robot systems, especially in outdoor scenarios

where the weather conditions and the logistic requirements can impose constraints, some of the

existing work has been demonstrated in a simulation environment. Some examples are Bourgault

et al. [BFDW04], who describe a decentralized Bayesian approach for multi-target optimal search

with the utility function related to the target position being maximized; Hollinger and Singh[HS10],

who present a search and rescue method with a heterogeneous team of robots for the competition

MAGIC; Mathews et al. [MDWP09], who present an asynchronous gradient-based optimization

algorithm to solve the team decision problem context in a reconnaissance scenario where the

uncertainty of the target position is described by a Gaussian distribution; and Roumeliotis et al.

[ZR11] who describe an optimal trajectory generation for a team of heterogeneous robots moving

in a plane and tracking moving targets based on relative bearing only observations. Based on
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empirical data, Stachura et al. [SWF11] present a fleet of UAV where the positions depend on

the sensing and communication capability of the network. By post-processing logged data, Ryan

et al. [RH07] present a receding horizon control formulation for a team of sensors cooperatively

performing search and rescue target tracking by incorporating a sensor and target motion model

in a probabilistic manner.

Contextualized for cooperative aerial surveillance with fixed-wing miniature UAVs, Beard et al.,

2006[BMN+06] present a design methodology for decentralized cooperative control composed of

four steps: defining a cooperative constraint and cooperation objective; defining a minimal amount

of information to achieve cooperation; developing a centralized cooperation strategy and applying

consensus schemes to transform the centralized strategy into a decentralized algorithm.

Another relevant work was proposed by Aamir et al. [ANC+13], who integrated a controller and

an estimator module in a formation control loop. The controller module is a distributed non-linear

model predictive controller and the estimator module is based on a particle filter cooperative target

tracking. The results are contextualized for a Middle Size League (MSL) homogeneous team of

robots and the objective function is related to the uncertainty minimization of cooperative target

tracking.

In 2012[FS12] and 2013[XFUS13], Xu et al. addressed the problem of dynamically positioning

a team of mobile robots for target tracking. Coordination in target tracking is viewed as a joint

team optimization method to minimize uncertainty in target state estimates over a fixed horizon.

The proposed optimization is a function of both the positioning of the robots in a continuous space

and of assigning robots in discrete spaces.

2.2.3 Discussion

In a brief discussion of the work associated with multi-robot systems, it is possible again to

highlight the issues of estimating 3D target position with a monocular vision system, even in sce-

narios with a team of vehicles. The depth problem is solved with artificial landmarks of known

size in Sukkarieh[SNK+03] or with the assumption of flat earth proposed by Beard[BMN+06],

Capitan[CMCO11] and Merino[Mer07]. The same issues are observed in indoor scenarios, such

as the Middle Size League Robocup in Aamir[ANC+13], which is based on a multi-robot co-

operative perception implementation where the 3D ball target estimation position uses a priori

knowledge on the dimension of the ball.

Both situations outlined do not take the advantage of having a team of distributed monocular

vision systems with overlapped view, capable of ensuring the information required to estimate

the 3D position of objects with highly dynamic behavior in real-time. These issues have been

addressed by Achtelik[AWC+11], and are aligned with the motivation presented in this thesis.

However, the method proposed is not robust to a scenario where vehicles have to support a

highly dynamic behavior, which could lead to the inability to estimate the translation and rotation
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based on the 5-point algorithm up to a scale, as proposed by Achtelik.

Another issue that will pose a new challenge will be in a scenario with heterogeneous vehicles,

such as MAV and UGV, where visual features provided by the (PTAM) toolbox, as proposed by

Weiss[Wei12] and Achtelik, look quite different from aerial and ground perspectives. This issue is

an open problem and at the same time a challenging research field.
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3
Fundamentals

This chapter introduces the basic theoretical information and mathematical fundamentals to

support the following chapters. The geometric principles associated with the pinhole camera

model and the stereo mid-point triangulation are described in detail, as well as the uncertainty

estimation based on probabilistic and deterministic approaches. Furthermore, the uncertainty is

formulated based on a deterministic approach, known as first order Taylor series expansion and

applied to a stereo rigid baseline system. The monocular 3D target estimation based on flat earth

model and the Bayesian probabilistic for decentralized data fusion are also presented. Another

important point, also described in this chapter, is the transformation between frames and the

coordinate systems to describe the system’s local and global position.

3.1 Reference Frame and Coordinate Systems

The following section discusses the definition and properties required to process the trans-

formation between frames of reference. Some properties of reference frames and coordinate

systems will be summarized in order to support the subsequent sections. Figure 3.1 presents a

complex 3-dimensional example in a graphical form where the 3D coordinate system are attached

to the various sensors, as well as some relative poses.

The position and orientation of a coordinate system is known as its pose and is shown graphi-

cally as a set of coordinate axes. The relative pose of a frame with regard to a reference coordinate

system is denoted by the symbol F . Consider figure 3.1 and two frames {B} and {W} and the

relative pose W
B F , which describe {W} with regard to {B}.
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Figure 3.1: Multiple 3-dimensional coordinate frames and relative poses

The ray vector Bddd, formulated in section 3.4 and presented in figure 3.1, can be described with

regard to either coordinate frame. Formally this is expressed as

Bddd =B
C F Cddd (3.1)

where the right hand side expresses the transformation from {C} into {B}, and then into Bddd. The

equation (3.1) transforms the vector, resulting in a new vector that describes the same point, but

with regard to a different coordinate frame.

An important characteristic of relative poses is that they can be composed. Considering the

case depicted in figure 3.1, if one frame can be described in terms of another by a relative pose,

then they can be applied sequentially

W
B F =W

N F N
BF (3.2)

which means that the pose of {W} relatively to {B} can be obtained by compounding the relative

poses from {N} and {W}, and from {B} and {N}. Considering the ray vector expressed in the

body frame {B} detailed in equation (3.1) , a new vector is achieved relatively to the world frame

{W} by applying the composed equation (3.2) :

Wddd =W
N F N

BF Bddd (3.3)

3.1.1 Body Frame

In navigation applications, the objective is to determine the vehicle’s position and velocity

based on measurements provided by different sensors attached to the robot’s platform. This

section describes in detail the definition of the robot and the instrument’s frames of reference,

as well as their associated coordinate systems. The body frame, defined as {B}, is normally
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represented by a fixed point rigidly attached to the robot as the center of gravity and, for the sake of

simplification, it is also assumed that the navigation frame {N} coincides with the body frame, but

it has a different angular orientation. The angular orientation has several well-known descriptions,

including the Euler angles and the Euler parameters (quaternions). The former method involves

successive rotations about the principal axes, and has an intuitive notion of roll, pitch and yaw.

The Euler angles originate a problem for certain specific values, and the transformation exhibits

discontinuities. On the other hand, the quaternions present a more robust method, but it is less

intuitive.

The following formulation expresses the equations for representing the relative frame orienta-

tion, with the Euler angles denoted by uuu def.
=
[
φ θ ψ

]T where (φ, θ, ψ) are respectively the roll,

pitch and yaw angle1. Therefore, the resulting unit vectors related to roll, pitch and yaw axes in

East-North-Up (ENU) coordinates, as shown in figure 3.1, will be

RRRφ =


S(ψ)C(θ)

S(ψ)C(θ)

S(θ)

 RRRθ =


C(φ)C(ψ) + S(φ)S(ψ)S(θ)

−C(φ)S(ψ) + S(φ)C(ψ)S(θ)

−S(φ)C(θ)

 RRRψ =


−S(φ)C(ψ) + C(φ)S(ψ)S(θ)

S(φ)S(ψ) + C(φ)C(ψ)S(θ)

−C(φ)C(θ)


(3.4)

with S() and C() representing sin() and cos() respectively, and the coordinate transformation

matrix from body frame to ENU coordinates as

RRRE =


S(ψ)C(θ)

C(φ)C(ψ) + S(φ)S(ψ)S(θ)

−S(φ)C(ψ) + C(φ)S(ψ)S(θ)

 RRRN =


C(ψ)C(θ)

−C(φ)S(ψ) + S(φ)C(ψ)S(θ)

S(φ)S(ψ) + C(φ)C(ψ)S(θ)

 RRRU =


S(θ)

−S(φ)C(θ)

−C(φ)C(θ)


(3.5)

N
BRRR = [RRRφ,RRRθ,RRRψ] =


RRRTE

RRRTN

RRRTU



=


S(ψ)C(θ) C(φ)C(ψ) + S(φ)S(ψ)S(θ) −S(φ)C(ψ) + C(φ)S(ψ)S(θ)

C(ψ)C(θ) −C(φ)S(ψ) + S(φ)C(ψ)S(θ) S(φ)S(ψ) + C(φ)C(ψ)S(θ)

S(θ) −S(φ)C(θ) −C(φ)C(θ)



(3.6)

Based on the equation ( 3.6 ) and on the fact that the transformation will only be affected by a

rotation matrix, it is possible to obtain the following matrixNBF =
[
N
BRRR 0

]
.

1Several notational conventions for the angles are used commonly, Goldstein (1980, pp. 145-148) and Landau and
Lifschitz (1976) use(φ, θ, ψ), Bate et al. (1971) propose the following notation (Ω, i, ω), and Varshalovich (1988, pp.
21-23) uses the notation (α, β, γ).
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3.1.2 ECEF Coordinate Systems

A point defined in the Earth-Centered, Earth-Fixed (ECEF) frame can be described by two

different coordinate systems: rectangular and geodetic coordinate systems. The rectangular co-

ordinate system [xe, ye, ze] has its origin in the Earth’s center of mass, with its x-axis extended

through the intersection of the prime meridian (longitude) and the equator (latitude). The z-axis

coincides with the Earth’s spin axis and the y-axis completes the right-handed coordinate system

by passing through the equator and 90◦ longitude. In terms of the geodetic coordinate system,

in order to support the subsequent mathematical formulation it is important to briefly discuss the

need for and the definition of the Earth’s geoid and the gravity model related to this geoid. The

gravity vector is the vector sum of the gravitational force of the Earth’s mass and the centrifugal

force caused by the Earth’s rotation. Figure 3.2 illustrates different surface layers which are useful

for understanding the actual shape of the Earth and analytic representations of that shape. It is

possible to observe that the geodetic surface of the Earth is defined as being normal to the gravity

vector and different from the actual irregular shape of the surface. Another important issue related

to the vehicle’s position is the height information that could be defined as the geoid height N , the

distance along the ellipsoid normal from the ellipsoid to the geoid, orthometric height H, which is

the height of the vehicle above the geoid, also known as elevation, and altitude or geodetic height

as h = H +N .

Figure 3.2: Earth surfaces related to geodetic frame.

Assume the position ςςς expressed in the geodetic coordinate system defined as ςςς def.
=
[
λ ϕ h

]T ,

where λ denotes de latitude, ϕ denotes longitude, and h is the altitude above the reference el-

lipsoid. The geodetic model described in [Far08] is defined by specifying four constants. The

ellipsoid eccentricity capable of approximating the geoid is established by the gravitational attrac-

tion and angular rotation rate of the Earth. Therefore, the parameters for the geodetic system
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must be defined consistently to estimate the ellipsoid and gravity model. The geodetic model

estimation parameters are determined by least squares fitting over time with experimental data.

The WGS84 is the geodetic system that will be used in this thesis and the defining constants are

available in the following reference [Far08].

Based on the WGS84 defining parameters, the following ellipse parameter values can be

derived:

f = a−b
a

b = a(1− f)

e =
√
f(2− f)

(3.7)

where a represents the equatorial radius or the semimajor length, f represents the flatness, b is

the semiminor axis and e represents eccentricity. The meridian radius of the curvature is defined

for the north-south direction and represents the radius of the ellipse.

RM (λ) =
a(1− e2)

(1− e2sin2(λ))
3
2

(3.8)

The normal radius RN is defined for the east-west direction, and it is also known as the great

normal or the radius of curvature of the prime vertical

RN (λ) =
a

(1− e2sin2(λ))
1
2

(3.9)

with the information from RM (λ) and RN (λ), the transformation between the geodetic and rect-

angular ECEF coordinates is obtained as

W
B PPP =


xe

ye

ze

 =


(RN + h)cos(ϕ)cos(λ)

(RN + h)cos(ϕ)sin(λ)

[RN (1− e2) + h)]sin(ϕ)

 (3.10)

Combining the information from equations ( 3.6 ) and ( 3.10 ), it is possible to make the trans-

formation from body frame to world frame, as depicted in equation ( 3.11 ).

W
B F =

[
N
BRRR

W
B PPP

]
(3.11)
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3.2 Uncertainty Estimation

This section describes the basic principles and procedure underlying the analysis of the uncer-

tainty addressed in this thesis. The concept of uncertainty arises almost from nearly every aspect

related to robotics, and it is inherent to the input data transformation procedure used to infer the

state of the environment[TBF05]. In order to evaluate the impact of uncertainty propagating from

the input to the output of the computation chain, and to estimate the measurement accuracy, two

methods can be considered: a probabilistic and a deterministic method[Fau93].

Figure 3.3: Isotropic two-dimensional Gaussian density probability function.

In several application scenarios[CMCO11][Mer07][SNK+03], the uncertainty related to the

perception and data fusion are normally modelled as Gaussian noise, although most of these

uncertainty models are non-linear, and therefore the assumption that a Gaussian model has the

required accuracy to represent the uncertainty must be evaluated, using techniques, such as the

Monte Carlo simulation. For an example where the uncertainty on the location of a point XXX is

modelled as a bi-dimensional Gaussian model centered on the point itself, see figure 3.3 . The

uncertainty is described by a covariance matrix ΛΛΛx and it can also be seen as an ellipse whose

axes are given by the principal components of the related covariance matrix.

3.2.1 Probabilistic method

Consider that xxx is the input data and that f is the function representing the geometric transfor-

mation that maps the input xxx onto the final measurement yyy, represented by the equation (3.12).

yyy = fff(xxx) (3.12)

At each step i,a random set of input data xxxi is generated based on the covariance matrix ΛΛΛx

and applied to the equation (3.12). The goal is to obtain a random output measurement yyyi. This

method is repeated a large number of times N , resulting in a distribution of measurements around

the true mean value ȳ̄ȳy (first moment), which can also be approximated by the equation (3.13).
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ȳ̄ȳy ' 1

N

N∑
i=1

yyyi (3.13)

with the covariance:

ΛΛΛy '
1

N − 1

N∑
i=1

[
(yyyi − ȳ̄ȳy)(yyyi − ȳ̄ȳy)T

]
(3.14)

From a practical point of view, the method is very costly in terms of CPU time, and it will only

provide reliable information after a large number of N samples. Taking that into consideration, the

following section will present in detail the analytical procedure used to estimate the covariance

ΛΛΛy.

3.2.2 Deterministic method

The deterministic method considers the fact that the measurements yyy are related to the input

data xxx by an analytical nonlinear function f . Considering an approximation of f for a linear function

using a first order Taylor series expansion, and assuming noise only on the input data xxx and not

on the transformation, ( 3.12 ) becomes[Fau93]:

f(x̄xx+4xxx) = f(x̄xx) +∇f(x̄xx)4xxx+O(‖4xxx‖2) (3.15)

where ∇f(x̄xx) is the derivative of function f at xxx an m × n Jacobian matrix and O(‖4xxx‖2) the

second order term. By ignoring that second order term, from equation ( 3.15 ) it is possible to

compute the mean value of the output measurement:

ȳyy ' E[f(x̄xx) +∇f(x̄xx)4xxx] = E[f(x̄xx)] = f(x̄xx) (3.16)

and consequently the covariance measurement ΣΣΣy is:

ΣΣΣy = E([f(x̄xx) +4xxx)− ȳyy][f(x̄xx+4xxx)− ȳyy]T )

' E([f(x̄xx+4xxx)− f(x̄xx)][f(x̄xx+4xxx)− f(x̄xx)]T )

' E(∇fff4xxx4xxxT∇fffT )

= ∇fffΛΛΛx∇fffT

(3.17)

The method presented provides a non-iterative approach, and therefore a fast algorithm. The

drawback of using this method is that it introduces an approximation of a nonlinear mapping func-

tion. Therefore, it is important to conduct further analyses in order to verify to what extent the

Gaussian approximation affects the final result. A recurrent method to evaluate the first order

analysis is the Monte Carlo simulation[DLLP11], which consists of employing random Gaussian

points centered around a mean value x with covariance ΛΛΛx, and comparing the distribution ob-

tained with the formulation from equation (3.14).
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3.3 Pinhole Camera Model

This section describes the pinhole camera model, by explaining in detail the intrinsic camera

parameters, such as the focal length f and the principal point p. The camera model is also

extended to integrate the extrinsic camera parameters related to the position and orientation of the

camera in the local frame. The pinhole camera model, see figure (3.4), establishes the geometric

relationship between the 3D3D3D point and its 2D2D2D corresponding projection onto the image plane π.

Figure 3.4: Pinhole Camera Model

The projection of a 3D3D3D world point (X,Y, Z)T onto the 2D2D2D image plane at pixel position (x, y)T

can be written as

xy
1

 =

fx 0 xc 0
0 fy yc 0
0 0 1 0



X
Y
Z
1

 (3.18)

where (fx, fy) denotes the focal length and p = (xc, yc) is the principal point, the point where the

image intersects with the optical axis.

KKK =

fx 0 xc
0 fx yc
0 0 1

 (3.19)

As opposed to the intrinsic parametersKKK, which describe the internal parameters of the cam-

era (focal distance, radial lens parameters), the extrinsic parameters define the external position

and orientation of the camera relatively to the body frame BCCC expressed in equation (3.20) and

depicted in figure (3.4).

BCCC =RRRT (−TTT ) (3.20)

with the position and orientation given by a translation vector TTT [3×1] and by a rotation matrix

RRR[3×3].
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3.4 Stereo Triangulation

The triangulation principle is based on the 3D estimation of a point from the intersection of a

set of optical rays Bddd determined by two views of the same 3D surface point. In practice, there

is uncertainty not only around the image point detection due to the image segmentation method,

but also uncertainty in the procedure used to estimate the intrinsic and extrinsic parameters. This

uncertainty causes both optical rays not to cross a single point, see figure 3.5.

The following section will describe in detail the Mid-Point Triangulation method to estimate

the surface point closest to both optical rays, as well as the epipolar geometry associated with

the stereo correspondence, and finally the first order method used to estimate the uncertainty

associated with a stereo rigid baseline system.

3.4.1 Mid-Point Triangulation

The stereo triangulation principle is a well known solution to estimate the 3D position of an

object, if both the intrinsic KKK and extrinsic parameters, expressed thought the RRR and TTT of the

stereo system, are known.

Figure 3.5: Triangulation with nonintersection rays λBi dddi and λBj dddj represented respectively by the
blue and red rays. The perpendicular vector Bddd⊥ to both rays i, j is represented by
the green intersection line.

However, because the uncertainty associated with the estimation of parameters and image

position are known approximately, the major drawback will be the fact that the rays will not actually

intersect in space, as shown in figure 3.5 . Based on that, Trucco [TV98] proposes to estimate

the intersection as the point of minimum distance between both rays. Therefore, the first step is

estimating the ray vector provided by each camera n = i, j as expressed in the following equation
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( 3.21 ) with B
CFn =

[
RRRn 0

]
being the rotation matrix from camera frame to body frame derived

from the extrinsic parameters, and zzz2Dn = (xn, yn) the feature pixel position on the image plane

πn .

Bdddn =B
C Fn



xn−xc
fx

yn−yc
fy

1

1


(3.21)

As shown in figure 3.5, the point BPPP, projected onto the pair of corresponding points zzz2Di and

zzz2Dj , lies at the intersection of the two rays from BCCC i through the direction vector λBi dddi, ∀λi ∈ R+,

and from BCCCj through the direction vector λBj dddj, ∀λj ∈ R+, expressed relatively to the left camera

reference frame. The vector perpendicular to both i and j rays, able to intersect both rays in

3D, is derived from the cross vector Bddd⊥ =B dddi ∧B dddj and is depicted in figure 3.5 by the green

intersection line.

λBi dddi − λBj dddj + α(Bdddi ∧B dddj) = TTT (3.22)

The coefficients of the system, expressed in equation ( 3.22 ), λi, λj , α, are the triple product

of the unit vectors Bdddi, Bdddj and the perpendicular vector Bdddi ∧B dddj. Therefore, as expected from

the geometric considerations, the system has a unique solution if and only if the two rays i, j are

not parallel. Consequently, by solving the linear system of equations described in equation (3.22)

to obtain the coefficients, the 3D position from stereo triangulation BPPP will be

BPPP =
1

2

B

PPPi +
1

2

B

PPPj

=
1

2
(λBi dddi) +

1

2
(TTT + λBj dddj)

(3.23)

where BPPPi and BPPPj are of the segment end points belonging to the line parallel to Bddd⊥ that joins

λBi dddi and λBj dddj, as shown in figure 3.5.

3.4.2 Epipolar Geometry

The epipolar geometry represents the intrinsic projective geometry between two camera views;

it does not depend on the scene structure, and will only rely on the camera’s internal parametersKKK

and relative poseRRR and TTT . This geometric information is essentially an intersection of the image

planes πi, πj with the pencil of planes2 . The information provided by the epipolar geometry makes

it possible to search for corresponding points in stereo matching.

2Family of planes through a known straight line, having the axis as the baseline.
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Consider the two camera views as shown in figure 3.5 . Given a point zzz2Di in the first image,

its corresponding point in the second image is constrained to lie on the line called the epipolar

line of zzz2Di , denoted by lzzz2Di .

From a computational point of view, the match between different views is that for a point zzz2Di

detected in the first image, the corresponding point in the second image view must be on the

epipolar line. Then, the search space for a corresponding point is reduced from 2 dimensions to 1

dimension. This is called the epipolar constraint. Algebraically, in order for zzz2Di in the first image

and zzz2Dj in the second image to be matched, the equation ( 3.24 ) must be satisfied.

zzz2Dj
T FFF zzz2Di = 0 (3.24)

Where the fundamental matrix FFF is expressed in equation ( 3.25 ), composed of the intrinsic

parameters from each cameraKKKi,KKKj , the rigid transformation (RRR and TTT ) is expressed in the first

camera coordinate system to the second one, and [TTT ]× is the skew symmetric matrix defined by

TTT .

FFF = (KKKT
j )−1 [TTT ]×RRRKKK−1

i (3.25)

3.4.3 Uncertainty Estimation for a Stereo rigid baseline

Consider a stereo rigid baseline system with a parallel optical axis (see figure 3.6 ) and the

pinhole camera model, presented in detail in section 3.3 . To compute the 3D3D3D position (X,Y, Z)T ,it

would be possible to follow the formulation from section 3.4.1 , although if there is a stereo rigid

baseline system with parallel optical axis, a point matched from two views can be simplified and

formulated as:

SSS =


X

Y

Z

 =


(x−xc)b

d

(y−yc)b
d

f bd

 (3.26)

where p = (xc, yc) is the main point, zzz2DL = (x, y) is the pixel position in the reference frame

(camera on the left), b is the baseline, d is the disparity, and f is the focal length from both

cameras.

According to the section 3.2, the uncertainty makes it possible to establish the interval of values

that the measurement can assume after all systematic biases have been corrected. Therefore,

the uncertainty from the pixel position mL in the reference frame and the disparity d can be

modelled as uncorrelated zero-mean Gaussian random variables. To approximate the distribution

of the variables as multivariate Gaussians through the first-order uncertainty propagation, from

equation ( 3.26 ), it is possible to obtain a covariance matrix ΣΣΣstereo which approximately models
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Figure 3.6: Uncertainty estimation for a stereo rigid baseline system. The blue ellipsoid repre-
sents the uncertainty covariance ΣΣΣstereo and the green and red circles represent the
covariance matrix (σx, σy) associated with uncertainty while detecting the target on
the image plane.

the uncertainty in the position of a target computed from the noisy measurements of the stereo

rigid baseline system:

ΣΣΣstereo = ∇SSSΛΛΛ(x, y, d)∇SSST

=


b2σ2

x

d2 +
b2(x−xc)2σ2

d

d4
(x−xc)b2σ2

d(y−yc)
d4

(x−xc)b2σ2
df

d4

(x−xc)b2σ2
d(y−yc)

d4
b2σ2

y

d2 +
b2(y−yc)2σ2

d

d4
(y−yc)b2σ2

df
d4

(x−xc)b2σ2
df

d4
(y−yc)b2σ2

df
d4

f2b2σ2
d

d4


(3.27)

where ∇SSS stands for the Jacobian matrix of the equation ( 3.26 ), with ΛΛΛ(x, y, d) being the input

covariance matrix represented by the diag(σ2
x, σ

2
y, σ

2
d). The (σx, σy, σd) are related to the uncer-

tainty associated with the pixel position, which depends on the image acquisition system and on

the algorithm used to extract the pixel coordinates from the center of target points. The uncer-

tainty of pixel coordinates is caused by several factors, such as lens diffraction in image formation,

sensor thermal noise, sensor spatial and intensity quantization, and noise superimposed on the

signal[DLLP11]. This source of uncertainty is propagated through subsequent algorithms, such

as blob and edge detection, and stereo matching routines, contributing to the uncertainty of the

position of feature point pixels on the image.
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3.5 Monocular 3D Estimation based on Flat-Earth model

This section presents a method for determining the 3D position of a target in a global co-

ordinate frame using a fixed monocular camera on-board a MAV. The 3D estimation based on

monocular vision system, with aerial vehicles, has been addressed by Gibbins et al. Gibbins2004

based on flat-earth model with an error which exceeded 20 meters. The method was then im-

proved by Barder et al. [BRM+06], who used a Recursive Least Square (RLS) filter in order to

converge to an error of approximately 5 meters. Campbell et al. [CW06] propose a square root

sigma point filter where the bounds on the estimated position error are explicitly derived from the

filter. Dobrokhodov et al. [DKJG06] follow a similar approach to [BRM+06], although requiring a

terrain model in order to estimate depth.

Most methods outlined are based on the flat-earth model with the assumption that the (MAV)

can measure its own position and attitude in the world coordinate system. Following sections (3.1

- 3.3) and figure 3.7, let λ Wddd =W PPP −W CCC be the relative position vector between the target of

interest and the (MAV). From geometry, it is possible to obtain the relationship

WPPP =W CCC + λ Wddd

=W CCC + λ W
C F Cddd

(3.28)

where WCCC represents the position of the camera in the global frame, and W
C F is the rotation

matrix. The only element on the right-hand side of the equation (3.28) that is unknown is λ.

Therefore, solving the geolocation problem reduces to the problem of estimating the range of the

target λ.

Figure 3.7: 3D Estimated target position WPPP using the flat-earth model.

3.5.1 3D Target position using the Flat-Earth model

If an aerial vehicle is able to measure height-above-ground, then a simple strategy for estimat-

ing λ is to assume a flat-earth-model[BRM+06]. Figure 3.7 details the geometry relation between
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the vehicle and the target, where h = −ςςςh is height-above-ground. Therefore, from figure 3.7, the

range estimated using the flat-earth model is given by

λ =
h

Wdz
(3.29)

The 3D estimated target position WPPP is given by combining equations (3.28) and (3.29) to

obtain

WPPP =W CCC +
h

Wdz

Wdx
Wdy
Wdz

 (3.30)

In summary, this section details the methods for estimating the 3D target using a bearing-

only vision configuration based on the flat earth model, developed for a particular case of aerial

vehicles in order to estimate the 3D target position. Here, the depth information is provided by the

vehicle’s altitude without taking terrain morphology into consideration. The results of estimating

the target position using this assumption are less accurate 3D information and the inability to

estimate the position of targets that are not moving on the ground. This method will be once

again addressed in Section 4.2.5, as a comparative method with the UCoT performance during

the real experimental cases.
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3.6 Decentralized Data Fusion

A Decentralized Data Fusion (DDF) system consists of a network of heterogeneous sensor

nodes, each with its own processing capability, which together do not require any central fusion or

central communication facility. In such a system, fusion occurs locally at each node on the basis

of local observations and the information communicated from neighboring nodes[DW01]. At no

point is there a common place where fusion or global decisions are made to produce a global

picture of the application environment.

A general decentralized data fusion can be characterized by the following three basic con-

straints [DW01]:

• There is no single central fusion center; no node should be central to the successful opera-

tion of the network;

• There is no common communications facility; nodes cannot broadcast results and commu-

nication must be kept on a strictly node-to-node basis;

• Sensor nodes do not have any global knowledge of sensor network topology; nodes should

only know about connections in their own neighborhood.

Because this thesis deals with a decentralized data fusion approach, some relevant issues

should be taken into account carefully. These issues are highly important in the sense that they

could lead to inconsistent estimations. In this context, if the estimated covariances are higher

than the current ones, the estimation is considered consistent. If the estimations are inconsistent,

the filter may end up diverging[Cap11]. One of the problems outlined by Capitan et al. [CMCO11]

is that of rumor propagation (or double-count of information). This problem can occur when the

DDF locally incorporates the same received information more than once, the impact is an in-

correct estimated covariance decrease, what could lead to inconsistent estimations. Therefore,

when non-independent sources of information are combined, their common information must be

removed in order to ensure consistent outcomes[JU97].

The research challenges associated with the decentralized data fusion has been an impor-

tant line of work addressed by the robotic community (see [SS06] [SNK+03] [CMCO11][KKKR13]

[Mer07], Durrant-Whyte et al. [DW01], Grocholsky et al. [Gro02] and Makarenko et al. [MBWDw04]

propose a decentralized data fusion approach where active sensor networks share information by

means of Bayesian filters in a consistent manner, without combining the same information twice,

using the so-called Channel Filters. The Channel filter can be applied in various practical as-

pects of network operations, such as intermediating communication, inserting new and removing

old communication links. Moreover, in Grocholsky et al. [GMKDW03], the DDF algorithm is also

used to perform formation control in a team of robots in order to locally maximize the expected
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information. Even though there is no explicit negotiation strategy, the information exchange be-

tween the members may influence others. Following a more conservative fusion rule to achieve

consistent estimation without the Channel Filter or a fixed network topology, it is possible to use

the Covariance Intersection algorithm from Julier et al. [JU97] and the more recent Covariance

Union method from Uhlmann et al. [Uhl03] that tries to deal with disagreement in a decentral-

ized Gaussian fusion setup. More recently, Capitan et al. [CMCO11] proposed a Decentralized

Delayed-State Information Filter (DDSIF), where full-state trajectories are used to combine in-

formation. This approach provides an estimation that is equivalent to a centralized data fusion

strategy and reduces the impact of communication delays and latency on the estimation. This

method will be explored for 3D multi-target tracking in chapter 5.

The related work has a large spectrum of possible approaches. However, most research is

based on Bayesian methods, and therefore the following section will focus on Bayesian information

fusion.

3.6.1 Decentralized Bayesian data fusion

In a Bayesian approach, the goal is to estimate a degree of belief b(xxxt) of the state xxxt of the

environment by using all the measurements provided by the sensors in a team of N robots, zzz0:t =[
(zzz1

0:t)
T , ..., (zzzN0:t)

T
]T . The belief will represent the conditional probability distribution, p(xxxt|zzz0:t), of

the state given the real data zzz0:t. With the assumption that the data provided by each robot at any

time t are conditionally independent given the state at that instant xt, and the usual Markovian

assumptions, the Bayes filter to compute the belief state b(xxxt) is given by:

p(xxxt|zzz0:t) = η′
N(t)∏
i=1

p(zzzit|xxxt)︸ ︷︷ ︸
update

∫
p(xxxt|xxxt−1)p(xxxt−1|zzz0:t−1)dxxxt−1︸ ︷︷ ︸

prediction

(3.31)

where N(t) represents the number of observations obtained at time t, and η′ is a normalization

constant. The belief state b(xxx0:t) for the state trajectory, from time 0 up to time t, can also be

derived as:

p(xxx0:t|zzz0:t) = η′′p(xxx0)

τ=t∏
τ=1

N(τ)∏
i=1

p(zzziτ |xxxτ )

 p(xxxτ |xxxτ−1) (3.32)

where p(xxx0) represents the prior and η′′ is a normalization constant. In these centralized filters,

access to all the information provided by the team at any moment is required to compute the

(3.31) or (3.32).

In a context of decentralized fusion, it is expected that each robot uses only its local data zzzi0:t,

and then shares its belief with its robots in the communication range. Therefore, the information

received from other teammates is locally fused in order to improve the local perception of the

world. The belief state bi(xxxt) for robot i is:
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bi(xxxt) = p(xxxt|zzzi0:t) = η′ip(zzz
i
t|xxxt)

∫
p(xxxt|xxxt−1)p(xxxt−1|zzzi0:t−1)dxxxt−1 (3.33)

If the full trajectory is considered, which includes the delayed states, that leads to:

bi(xxx0:t) = η′′i p(xxx0)

τ=t∏
τ=1

p(zzziτ |xxxτ )p(xxxτ |xxxτ−1) (3.34)

Comparing equations (3.31) and (3.33), then the relation between the belief provided by the

team-mates and the local ones is given by:

b(xxxt) = η′′
N∏
i=1

bi(xxxt)∫
p(xxxt|xxxt−1)bi(xxxt−1)dxxxt−1

∫
p(xxxt|xxxt−1)b(xxxt−1)dxxxt−1 (3.35)

If the predicted belief is equal to b̂(xxxt) =
∫
p(xxxt|xxxt−1)b(xxxt−1)dxxxt−1 then the equation can be

written as:

b(xxxt) = η′′
N∏
i=1

bi(xxxt)

b̂i(xxxt)
b̂(xxxt) (3.36)

The equation (3.36) is depicted in figure 3.8. The expected output from equation (3.36) will

be equivalent to the centralized data fusion version only if each robot is able to share its belief

regarding each time the local one performs an update with new data. Otherwise, information will

be missed and, clearly, the result will be different from the belief state that would be computed in

a centralized system that received all data at any time[DW01],[Mer07],[Cap11].

Figure 3.8: Decentralized data fusion procedure from equation (3.35) or (3.36), in logarithmic
form with the assumption that the system will have a communication delay zzz−1.
[DW01][Cap11]

For an application scenario with a dynamic target, which means that there is a dynamic state,

the predicted belief state at any given time will depend on all past observations. Therefore, the

predicted belief in a centralized approach (access to all information) will not be the same as

the predicted belief in each individual robot. This issue has been addressed by Bougault et
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al. [BDW04], who described the differences in the prediction model and the number of predic-

tion steps performed in the local nodes between consecutive communications. To overcome this

problem and obtain the exact solution, Rosencrantz et al. [RGT03], and more recently Capitan

et al. [Cap11], proposed to include the full state trajectory in the belief state up to time t, b(xxx0:t).

Therefore, based on equations (3.32) and (3.34), it is possible to recover the global belief from

the local ones:

b(xxxt) = ηp0(xxxt)

N∏
i=1

bi(xxx0:t)

p0(xxxt)
(3.37)

where p0(xxxt) =
∏τ=t
τ=1 p(xxxτ)|xxxτ−1) represents the prediction prior. If one of the nodes receive the

beliefs shared by other nodes, the fusion operation consists of combining all local beliefs after

removing the common information, represented by the prior over the trajectory p0(xxxt), and the

result will be the recover of the same result as being a centralized belief. Another advantage of

using the full state trajectory is the ability to received the belief states in asynchronously manner.

In this way, each robot can accumulate evidence (b(xxx0:t)), and send it whenever it is possible.

From the point of view of implementation, it’s important to bound the state trajectory over a time

interval, not longer than the maximum expected delay of the network in order not to miss any

information about past measurements. In a context of decentralized systems, each robot receives

the belief state from its neighbours and at the same time must send is local information to them. In

this case, the belief fusion equation related to the robot i received information from j is expressed

as:

b(xxxt)←− η
bi(xxxt)bj(xxxt)

bij(xxxt)
(3.38)

where bij(xxx0:t) represents the common information between the robot i and j. This common

information can be maintained by a separate filter called Channel Filter, responsible for predict-

ing the common information up to time t. Every time a node i shares or receives information

with/from another node j, its common information must be updated as follows (considering belief

in logarithmic form):

log bij(xxx0:t)←− log bij(xxx0:t) + log bj(xxx0:t)− log bij(xxx0:t)︸ ︷︷ ︸
j −→ i

+ log bi(xxx0:t)− log bij(xxx0:t)︸ ︷︷ ︸
i −→ j

(3.39)

where the new information received or transmitted is added to the previous common information[Cap11].
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3.7 Related Publications

The work presented in this chapter has been published in the following conferences:

• The geometric principles associated with the stereo rigid baseline, as well as the mid-point

triangulation method, described in section 3.4.1, were applied to the development of a real-

time visual ground-truth system for indoor robotic applications and accepted as a full length-

article [DAMS13] published in the IBPria 2013, Springer-Verlag Lecture Notes in Pattern

Recognition and Image Analysis (submitted in November 2012, accepted in February 2013).

The work proposes a vision-based Ground Truth capable of performing 3D tracking of mul-

tiple targets.

• The mathematical formulation related to the reference frame and coordinate systems, dis-

cussed in section 3.1, and the data association based on the epipolar constraints, presented

in section 3.4.2, were applied to perform 3D human tracking by combining the monocular

measurements from a thermographic camera with the visible spectrum camera. The paper

was accepted as a full length-article [DBM+13] published in IEEE - OCEANS 2013(submit-

ted in June 2013, accepted in September 2013).
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4
Multi-Robot Cooperative
Triangulation Framework

One of the most common and versatile means of perception in multi-robot cooperative tasks

is visual sensing with one or more cameras that are capable of acquiring visual information based

on cooperative approaches. However, because technology miniaturization has improved signif-

icantly, there has been a tendency to decrease the vehicles’ dimensions and payload[KKM12].

This consequently brings new research challenges to the vision community with a natural transi-

tion to a monocular vision setup or to a smaller rigid baseline for stereo systems, which has an

inherent impact in application scenarios where the goal is to estimate the position of targets whose

depth distance exceeds the baseline. The result from a smaller stereo rigid baseline will be a 3D

estimation position error increasing quadratically with depth[GFMP08][Wei12][MR14]. Therefore,

and in the context of an application scenario of rescue and border control missions, as depicted

in section 1.1 and figure 1.1, where the goal is to detect and estimate the position of a dynamic

target in 3D, the main question is:

How is it possible to produce 3D information based on monocular vision information using

a team of robot observers?

The motivation for the proposed framework emerged from open issues in the state-of-the-art

on cooperative perception, already discussed in section 2.2, to which the presented framework

contributes and is outlined as follows:

• provide a multi-robot cooperative method to estimate 3D information based on monocular

vision information;
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• integrate all sources of uncertainty associated with the 3D target estimation;

• improve a monocular vision technique applied to UAVs in order to estimate 3D information

based on the Flat-Earth model;

• provide a distributed architecture model with common semantic data;

• provide the required tools to ensure a more robust data association method between monoc-

ular vision systems;

• overcome the limitations arising from vehicles with a short stereo rigid baseline;

This chapter proposes to address this issue with a novel multi-robot heterogeneous cooper-

ative perception framework, defined as Uncertainty-based Multi-Robot Cooperative Triangulation

UCoT. This framework is capable of estimating the 3D target position based on monocular vi-

sion measurements. The envisioned multi-robot architecture framework is outlined and the layers

that comprise it are described. As part of the architecture framework, this chapter presents the

geometric formulation to ensure a multi-robot feature correspondence in order to improve the

robustness of data association between vehicles with monocular overlapped views.

The framework is validated by presenting the results obtained in an outdoor scenario based

on cooperative perception with a MAV and a UGV, tracking a static and a dynamic target in 3D.

To infer the UCoT contribution, both experimental cases, static and dynamic target, have been

compared with two single perception methods: a stereo rigid baseline and a monocular 3D target

estimation based on Flat-Earth model, detail respectively in Section 3.4.1 and 3.5.

A simulation environment was used to assess not only the impact of introducing more robots to

the environment, but also evaluate which pair of monocular vision system provides the 3D target

estimation with lowest uncertainty and robustness to different levels of Gaussian noise associated

with the attitude and position sensors. Due to the fact that all sources of uncertainty, presented in

the motivation scenario and detailed in the multi-robot cooperative triangulation framework, have

been approximated by a Gaussian distribution, and therefore modeled through the first order un-

certainty propagation, this chapter presents an uncertainty analysis with Monte Carlo simulation.
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4.1 Cooperative Triangulation Framework

This section presents the multi-robot cooperative triangulation framework to estimate 3D tar-

get position based on monocular measurements. The relative position and orientation provided

by each robot are addressed by the framework, and based on the geometric constraints the 3D

target position is estimated by establishing a flexible and dynamic geometric baseline for the coop-

erative triangulation. Therefore, two methods are formulated in this section: the Mid-Point Multi-

Robot Cooperative Triangulation(MidCoT) and the Uncertainty-based Multi-Robot Cooperative

Triangulation (UCoT). In the first method, the framework selects the line that is perpendicular

to the shortest segment for both rays, and assumes that both monocular cameras will contribute

equally to the estimation of the target position, see figure 4.2 and 4.3. In the second method, all

sources of uncertainty associated with the position, attitude and image plane pixel target position

are addressed, and the covariance provided by the intersection rays is evaluated in order to weigh,

in a probabilistic manner, the contribution of each ray to the estimation of the target position, see

figures 4.2 and 4.3.

Both methods form part of an envisioned distributed architecture framework required to ensure

a cooperative perception altruistic commitment capable of sharing useful information between

vehicles over a communication middleware.

Figure 4.1: Distributed Framework Architecture model for Multi-Robot Cooperative Triangulation.

The architecture framework is independent from the position and pose source of information,

as well as from the vision system. It can combine information from heterogeneous vision sen-

sors, such as installed fixed cameras, infrared thermographic cameras, visible and multi-spectral

cameras. This makes it possible to combine information provided by each heterogeneous vehicle,

composed of different information sources, and in a cooperative approach estimate the 3D target

information.
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The proposed architecture model is composed of the following components:

• Localization

This component is responsible for providing the vehicle pose to the local state component. In

the outlined architecture, this information is provided by an IMU as uuu def.
=
[
φ θ ψ

]T , where

(φ, θ, ψ) are respectively the roll, pitch and yaw angles, and a by GPS as ςςς def.
=
[
λ ϕ h

]T ,

where (λ, ϕ, h) are respectively the latitude, longitude, and altitude. The proposed architec-

ture is prepared to receive the vehicle’s pose from other localization mechanisms, such as

a WSN[MGC+12] and VICON[AWC+11], with the respectively associated uncertainty.

• Image Processing

This component is responsible for acquiring images and for processing the 2D targets de-

tected {zzz2D}. The information will be provided to the local state and to the feature cor-

respondence components, where the correspondence points are evaluated based on the

methods detailed in Section 4.1.3.

• Local State

The information provided by the localization and image processing components is pro-

cessed. The output is a 3 tuple 〈WCCC,W RRR, {Wddd}〉 composed of the camera position WCCC,

attitude WRRR and the ray vector {Wddd} related to the global frame. The camera’s position in a

global frame WCCC is derived from equation (4.1), where BCCC is the camera position relatively

to the body frame estimated from the extrinsic parameters, equation (3.20).

WCCC =W
B F BCCC (4.1)

The ray vector Wddd represents the direction vector from the points detected with the monoc-

ular vision system, projected in the global frame as

Wddd =W
B F Bddd (4.2)

with {Bddd} being estimated based on prior knowledge on the intrinsic parameters and de-

tected points {zzz2D}, as expressed in equation (3.21).

• Data Association

This component is responsible for evaluating the tuples shared by other robots, related

to the local state component. This evaluation is performed based on normalized squared

innovation for the 3D intersection between tuples 〈WCCC,W RRR, {Wddd}〉 shared by other vehicles

over a communication middleware. Additionally to the method above, another procedure

is applied, through a geometric validation by establishing a multi-robot epipolar line. The

formulation is described in Section 4.1.3.
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• Multi-Robot Cooperative Triangulation

This component is responsible for estimating the 3D target position from equation (4.13)

and the respective covariance ΣΣΣ3D from all sources of uncertainty, as described in equation

(4.8). Basically, if the feature correspondence component approves the intersection rays

shared by two vehicles with overlapped view, this component will estimate the contribution

provided by each vehicle, from equation (4.12), and incorporate this probabilistic information

into the 3D target estimation.

4.1.1 Mid-Point Multi-Robot Cooperative Triangulation

The formulation proposed in this section is an extension to the well-known stereo rigid baseline

mid-point triangulation method proposed by Trucco[TV98], as depicted in equation (3.22), which

is related to the reference frame of the camera on the left. The Mid-Point Multi-Robot Cooperative

Triangulation (MidCoT) method proposes to remove the rigid baseline in order to support a flexible

and dynamic geometric baseline composed of the information provided by each monocular vision

system, camera position WCCC and attitude WRRR relatively to the global frame, as depicted in figure

4.2.

Figure 4.2: Relative pose between robots i and j with a monocular vision system, estimating the
3D target position. The camera’s geometry changes over time and provides a flexible
and dynamic baseline capable of ensuring cooperative triangulation.
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Therefore, based on a dynamic baseline approach, related to the body frame, with a pair of

monocular vision systems defined as i, j, and assuming that each camera knows its own transla-

tion and rotation matrix TTT i,RRRi, TTT j ,RRRj relatively to their body reference frame:

BRRR =RRRTj RRRi
BTTT =RRRTj (−TTT j)−RRRTi (−TTT i)

(4.3)

Replacing the BRRR and BTTT in equation (3.22), it is possible to obtain

λBi dddi − λBj dddj + α(Bdddi ∧B dddj) =B TTT i −B TTT j (4.4)

with λBi dddi and λBj dddj being the direction vectors related to the body frame, and Bddd⊥ =B dddi∧B dddj the

3D intersection vector perpendicular to both i and j rays. Solving the linear system from equation

(4.4) to obtain the coefficients, λi, λj , α, the triangulated point BPPP will be over the midpoint of the

line segments joining BCCCi + λBi dddi and BCCCj + λBj dddj

BPPP = Γi
BPPPi + Γj

BPPPj

= Γi(
BCCCi + λBi dddi) + Γj(

BCCCj + λBj dddj)
(4.5)

where BCCCi and BCCCj are the camera’s position relatively to the body frame and Γi, Γj are the

weights to be derived. The 3D target position relatively to the global frame, as shown in figure 4.2,

is derived from the transformation matrix W
B F from body frame to world frame, as

WPPP = Γi(
WCCCi + λWi dddi) + Γj(

WCCCj + λWj dddj) (4.6)

and for Γi = Γj = 1
2 establishes a method that will be defined as MidCoT.

The geometric intersection in 3D between λWi dddi, λWj dddj and the perpendicular vector Wddd⊥ is

shown in figures 4.2 - 4.3, as well as the mid-point derived from equation (4.6) between WPPPi and
WPPPj(represented by the blue dot in the covariance ellipse, see figure 4.3).

4.1.2 Uncertainty-based Multi-Robot Cooperative Triangulation

The method to estimate the 3D target position, based on bearing-only measurements from a

multi-robot cooperative approach, was formulated in the previous section by selecting the mid-

point perpendicular vector with the shortest segment relatively to both rays. This mid-point was

selected due to the uncertainty provided by the correspondence detection point zzz2D in each

monocular system and also from the inherent uncertainty of the camera parameters.

The MidCoT assumes that both vehicles will contribute equally to the estimation of the 3D

target position. However, especially in this architecture framework, the uncertainty will be not only

in the outlined sources of uncertainty, but also in the sensors related to the camera’s position and
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Figure 4.3: Covariance 3D ellipse from the intersection rays ΣΣΣPPP i and ΣΣΣPPP j . The MidCoT method
is represented by the blue dot and the UCoT by the blue cross. The purple line is the
vector Wddd⊥ perpendicular to λWi dddi and λWj dddj.

attitude. Therefore, this section proposes a novel approach, called Uncertainty-based Multi-Robot

Cooperative Triangulation (UCoT), which is able to integrate all sources of uncertainty provided

by each intersection ray, and estimate the 3D position by weighing the uncertainty of each one of

them in a probabilistic manner. By introducing this method, the framework becomes capable of

incorporating, in a probabilistic and straightforward manner, the contribution of each monocular

vision system and, at the same time, of supporting all types of heterogeneous vehicles equipped

with different types of accuracy sensors.

Hence, to ensure that all sources of uncertainty are taken into consideration when estimating

the 3D target position, the ΣΣΣ3D will be estimated based on the assumption that there is uncertainty

in the input pixel localization σzzz2D , in the camera’s position σςςς and attitude σuuu relatively to the global

frame, all of them modelled as uncorrelated zero-mean Gaussian random variables.

σςςς =

σλ 0 0
0 σϕ 0
0 0 σh

 σuuu =

σφ 0 0
0 σθ 0
0 0 σψ

 σzzz2D =

[
σx 0
0 σy

]
(4.7)

Using the first-order uncertainty propagation, it is possible to approximate the distribution of

the variables, defined in Section 4.1 as the input state vector ννν(i,j) = [ςςςi,uuui, zzz2Di, ςςςj ,uuuj , zzz2Dj ],

from equation (4.6), as multivariate Gaussians. The ΣΣΣ3D covariance matrix approximately models

the uncertainty in the 3D target estimation, which is computed from the noisy measurements of

the Multi-Robot Cooperative Triangulation, as follows:

ΣΣΣ3D = JPJPJPΛΛΛi,jJPJPJP
T (4.8)
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where JPJPJP stands for the Jacobian matrix of WPPP in equation (4.6) by

JPJPJP [3×16] =∇∇∇(ννν(i,j))
WPPP(ννν(i, j))

=



∂WPPPx

∂ςςςi
∂WPPPx

∂uuui
∂WPPPx

∂zzz2Di
∂WPPPx

∂ςςςj
∂WPPPx

∂uuuj
∂WPPPx

∂zzz2Dj

∂WPPPy

∂ςςςi

∂WPPPy

∂uuui

∂WPPPy

∂zzz2Di

∂WPPPy

∂ςςςj

∂WPPPy

∂uuuj

∂WPPPy

∂zzz2Dj

∂WPPPz

∂ςςςi
∂WPPPz

∂uuui
∂WPPPz

∂zzz2Di
∂WPPPz

∂ςςςj
∂WPPPz

∂uuuj
∂WPPPz

∂zzz2Dj


(4.9)

with ΛΛΛi,j being the input covariance matrix represented by a diagonal line relatively to all sources

of uncertainty present in equation (4.7) for each monocular vision system

ΛΛΛi,j [16×16] =


σςςςi [3×3] · · ·
· · · σuuui [3×3] · · ·

· · · σzzz2Di [2×2] · · ·
· · · σςςςj [3×3] · · ·

· · · σuuuj [3×3] · · ·
· · · σzzz2Dj [2×2]

 (4.10)

As stated at the beginning of this Section, the UCoT aims to address all sources of uncer-

tainty provided by each intersection ray, using a probabilistic weight provided by the estimated

uncertainty of each ray. Therefore, as previously described, using the first-order uncertainty prop-

agation, it is possible to estimate the covariance ΣΣΣPPP i and ΣΣΣPPP j related to WPPPi and WPPPj as follows:

ΣΣΣPPP i = JPJPJP iΛΛΛi,jJPJPJP
T
i JPJPJP i[3×16] =∇∇∇(ννν(i,j))

WPPPi
ΣΣΣPPP j = JPJPJP jΛΛΛi,jJPJPJP

T
j JPJPJP j [3×16] =∇∇∇(ννν(i,j))

WPPPj (4.11)

where JPJPJP i and JPJPJP j are respectively the Jacobian matrix from WPPPi and WPPPj , and ΛΛΛi,j is the input

covariance matrix from equation (4.10). Therefore, with the uncertainty of each intersection ray

ΣΣΣPPP i and ΣΣΣPPP j , and the perpendicular vector Wddd⊥, the probabilistic weight of each ray is expressed

as

Γi =
(Wddd⊥ ΣΣΣPPP j

Wddd⊥
T )2

(Wddd⊥ ΣΣΣPPP i Wddd⊥
T )2+(Wddd⊥ ΣΣΣPPP j Wddd⊥

T )2
Γj = (Wddd⊥ ΣΣΣPPP i

Wddd⊥
T )2

(Wddd⊥ ΣΣΣPPP i Wddd⊥
T )2+(Wddd⊥ ΣΣΣPPP j Wddd⊥

T )2
(4.12)

Using these weights in equation (4.6), it is possible to effectively obtain the optimal solution over
Wddd⊥, and establish a novel method called UCoT. This cooperative triangulation method will en-

sure that the uncertainty of each bearing-only sensor will be weighed using Γi,Γj in a probabilistic

manner comparatively to the MidCoT 3D target estimation method.

WPPP =
(Wddd⊥ ΣΣΣPPP j

Wddd⊥
T )2

(Wddd⊥ ΣΣΣPPP i Wddd⊥
T )2 + (Wddd⊥ ΣΣΣPPP j Wddd⊥

T )2
(WCCCi + λWi dddi)+

+
(Wddd⊥ ΣΣΣPPP i

Wddd⊥
T )2

(Wddd⊥ ΣΣΣPPP i Wddd⊥
T )2 + (Wddd⊥ ΣΣΣPPP j Wddd⊥

T )2
(WCCCj + λWj dddj)

(4.13)
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The contribution of UCoT to the 3D target estimation is depicted in figure 4.3 in the blue cross

with the Γi < Γj , which means that the information provided by the intersection ray λWi dddi will

contribute more significantly to the 3D estimation of the target position.

4.1.3 Multi-Robot Data Association

As part from the distributed architecture framework there is the association component re-

sponsible for evaluating the tuples 〈WCCC,W RRR, {Wddd}〉 shared by other robots in order to establish

the correlation between direction vectors {Wddd}, before proceeding to the next stage where the

triangulation method, UCoT, is applied. This component is even more relevant to the framework,

in a context of heterogeneous robots with different fields of view, as depicted in Figure 4.4, and

the goal is to correlate the possible targets observed by each robots.

Figure 4.4: Multi-Robot Data Association between two overlapped views.

Therefore, two methods have been introduced in this component. First, a probabilistic geo-

metric intersection through the normalized squared error related to the 3D intersection between

two monocular observations:

(WPPPi −W PPPj)TΣΣΣ−1
3D(WPPPi −W PPPj) < ε3D (4.14)

where ε3D follows a chi-square distribution. Only tuples 〈WCCC,W RRR, {Wddd}〉 with an 3D intersection

error consistent with the ΣΣΣ3D, expressed in equation (4.14), are considered valid. The gate’s

bounding values to ensure a valid tuple pair can be obtained from a cumulative χ2 table with 3

degrees of freedom. This method allows the UCoT to detect spurious observations (pairs not

matching) and discard them as uncorrelated observations or even as outliers. Moreover, the

method can be used for data association in case there are multiple targets in the scenario. Another
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contribution to the framework is the ability to establish which pair of cameras contribute more to

the 3D target estimation when there are observations from more than two cameras at the same

instant; therefore UCoT selects the pair with higher accuracy to provides the 3D target estimation

point.

The second method, which is complementary to the method above, is the multi-robot uncer-

tainty epipolar constraint. This method is a geometric validation that establishes a multi-robot

epipolar line. The well-known feature correspondence method between two i, j camera views is

based on the epipolar geometric information estimated from the camera’s internal parameters KKK

and the relative poseRRR and TTT , described in detail in Section 3.4.2. Extending this formulation to

a multi-robot context, where each robot shares the camera’s position WCCC and attitude WRRR, the

local robot can combine its own information with the shared tuple and compute the rotation matrix

RRRi,j and the translation vector TTT i,j between two views i, j:

WRRRi,j = (WRRRj)T WRRRi

TTT i,j =W RRRi,j (WCCCi −W CCCj)
(4.15)

the essential matrix is defined as:

EEEi,j = [TTT i,j ]× WRRRi,j (4.16)

with [TTT i,j ]×, being the skew symmetric matrix of TTT i,j .
Then, the epipolar line for a point from one camera to the other can be estimated from the

essential matrix: lllzzz2Dj = EEEi,jzzz2Di . Moreover, the accuracy of the epipolar line (σe) can be derived

by propagating the sources of uncertainty in the position and attitude of the cameras, as described

in Section 4.1.2. Only pairs with points that fall within the uncertainty narrow band of a σe distance

around the epipolar line are considered valid. The implementation of this procedure is depicted in

figures 4.39 and 4.42, with the uncertainty narrow band σe being estimated based on the Monte

Carlo simulation.
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4.2 Experimental results with a team of heterogeneous vehi-
cles

This section presents the outdoor experimental scenario required to evaluate the proposed

framework, as well as the ground truth target system that was developed to compare accuracy

in post-processing. Both vehicles are described in terms of hardware and software issues, along

with the time synchronization mechanism required to ensure data correlation and camera trigger

synchronism between vehicles.

Also in this section, we present the experimental results1 on the application of the multi-robot

cooperative triangulation framework for two experimental cases: static and dynamic 3D target

estimation. In each experimental case, four methods have been evaluated and compared to the

RTK GPS ground truth system. Moreover, hardware and software issues of the vehicles are

presented in detail, as well as the outdoor scenario where the experimental cases take place.

4.2.1 Outdoor Scenario

The outdoor scenario chosen to evaluate the proposed multi-robot cooperative triangulation

framework, presented in detail in Section 4.1, is a non-urban area with several landscape el-

ements (including vegetation, water, rocks, bushes and semi-urban structures, such as gravel

paths, see figure 4.5).

Figure 4.5: Outdoor Experimental Scenario - "Parque da Cidade"

4.2.2 Ground Truth Target System

In cooperative perception, a critical issue that should be considered is the evaluation of the

system’s performance. Usually, more recent techniques claim to be overall better comparatively

to previous work. Here, better can mean more accurate, less prone to outliers or more scalable

to real-time applications. In principle, the advantages of some techniques in comparison to others

1A video of the experiments is available at https://www.youtube.com/watch?v=OkoNYua5A9Y.
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should be quantified, not only based on the trajectory produced by the different methods through

visual inspection, but also in terms of time correlation and statistical accuracy analysis.

Figure 4.6: Orange life jacket with a RTK GPS.

Based on these requirements, and in the context of an outdoor scenario, a RTK GPS Septen-

trio L1 L2 was assembled with an orange life jacket for color target tracking in a ground truth target

system, capable of providing a centimeter-accuracy in post-processing, see figure 4.6.
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Figure 4.7: The box plot in this figure presents the ECEF coordinate system median and the
standard deviation error in meters from the Ground Truth Target System in a static
position.

Post-processing means making an improvement to the GPS data, influenced by several sources

of errors, such as signal noise caused by atmospheric conditions and receiver clock inaccuracies

(about 3 meters under ideal conditions). Therefore, to overcome these issues, post-processing

will employ reference station corrections and the carrier phase of the GPS satellite signals in or-

der to obtain higher accuracy, typically by tens of centimeters. The expected accuracy makes
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it possible to evaluate the results from the multi-robot cooperative stereo and to considerer the

target position determined by the associated GPS system as an external ground-truth.

In order to evaluate the expected accuracy of the ground truth during the experimental tests,

a static test was performed in the proposed outdoor scenario and higher accuracy was observed

in all ECEF coordinate system axis, see figure 4.7.

4.2.3 Vehicles

This section describes the development of hardware and software for the vehicles to be tested

in the outdoor application scenario proposed. The vehicles follow a modular and hierarchical ar-

chitecture software under a GNU/Linux operating system. The software framework applied in both

vehicles is the Robot Operation System (ROS) because it provides inter-process communications,

modularity and maintainability features, and due to its set of useful development and implementa-

tion tools[QCG+09] . The ROS framework still presents large restrictions for multi-robot scenarios

and some limitations in communications latency and overhead. The robotics community provided

some solutions in order to solve the problem posed by the need to have a centralized ROS master

node. These solutions establish some form of communication between the masters running on

each robot[LWT+13]. However, the intermittent robot connections (usually large areas of oper-

ation with robots entering and leaving the team) are not supported properly. To overcome this

problem, the solution for multi-robot communications in the proposed scenario was integrating the

communication middleware LCM. The LCM is a publish/subscribe middleware[HOM09] capable

of providing a clean method to share topics between vehicles present in the formation and it has

been extensively evaluated by Olson et al.[OSG+13].

TIGRE - Terrestrial Intelligent General purpose Robotic Explorer

The UGV TIGRE (Terrestrial Intelligent General purpose Robotic Explorer)[MAD+13] is a

vehicle that was developed for outdoor natural environments [APB11], [KAL+09], [BCMM12],

[LWT+13] such as the Eurathlon Competition [SWP07]. The goal is for the vehicle to be able

to operate in relatively large operation areas and to carry a suitable set of sensors. It is also

based on an all-terrain vehicle and combines autonomous drive robot capabilities, such as GPS

based navigation, road and terrain classification for motion planning, vision and laser range-finder

obstacle avoidance with outdoor manoeuvrability and specific surveillance sensors such as infra-

red vision.

The three main guidelines structuring the development of the TIGRE are: the ability to oper-

ate in medium sized areas, acting as a research platform in multi-robot coordination in outdoor

environments and supporting robotic research in particular areas of field robotics, such as under-

ground navigation, precise 3D environment modeling and multi-target tracking.
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Figure 4.8: TIGRE - Terrestrial Intelligent General purpose Robotic Explorer

This vehicle is based on an electric propulsion all-terrain system equipped with onboard pro-

cessing (Intel i5 based on a single board computer), wireless communications (IEEE 802.11a

Ubiquiti Bullet 5GHz access point), infra-red pan&tilt thermographic camera (L3 ThermoEye 5000),

laser rangefinder (SICK LMS-200), a visible spectrum camera pair (Basler acA1300-30gc), pre-

cision GPS receivers (Septentrio PolaRx2e and Novatel Smart Antenna) and an inertial sensor

(Microstrain 3DM).

Traction is achieved through a brushless DC motor physically connected to the rear axle. The

direction is also electrically actuated and uses the Ackerman trapezium geometry. A magnetic

encoder provides the absolute direction angle. Four LiFePO4 batteries are used, providing a

minimum 4 hours of autonomy time assuming a continuous usage at 1 m/s vehicle speed.

The vehicle’s sensor layout is depicted in figure 4.8. An aluminum frame with a tower was fixed

to the vehicle to support all the sensors. The color GigE cameras were positioned at the tower top

in order to provide a stereo vision (with external synchronized trigger control). The thermographic

pan & tilt unit was also fixed on the top between the stereo pair, along with the IMU. Both the

GPS and wireless communication antennas were located at the rear of the tower and the laser

rangefinder unit was set at the front of the robot.

The main system electronics are located in a watertight enclosure. A set of custom made low

level vehicle control subsystems (power system control, direction control and traction controller)

were connected in a CAN bus. A custom developed Ethernet/CAN interface was used in one

of the CPU Ethernet ports to provide access to the vehicle CAN bus. In addition, a separate

emergency module with a dedicated remote RF was used to cut the power of the traction motors

remotely and/or actuate the mechanical brakes with a small electric actuator.

PELICAN Micro Aerial Vehicle

The Asctec Pelican MAV is a quadrocopter (see figure 4.9) driven by four brushless rotors with

10′′, capable of supporting a payload of about 500 g, and symmetric to the center of mass. The
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flight range depends on the battery size and payload, but normally the flight time ranges between

10 to 20 minutes[AWS11].

Figure 4.9: Asctec Pelican Micro Aerial Vehicle

The vehicle is equipped with a Flight Control Unit responsible for managing the hardware for

the IMU sensor data fusion and attitude, and for the GPS based position controller. For more

complex computationally onboard processing tasks, such as image processing, an onboard 1.6

GHz Intel Atom Based Embedded Computer system with 1GB RAM and 802.11n Wifi is included

[AWS11] [LAF+10].

For visual color target tracking, a downward camera was added (IDS UEye LE) with a resolu-

tion of 1280× 1024, running at a maximum frame rate of 30 frames per second.

4.2.4 Time synchronization

Time synchronization is an important requirement to ensure multi-robot cooperative perception

from two points of view:

• Data correlation: An important issue for the reliability of the proposed framework is ensur-

ing an accurate time synchronization between the vehicles in order to adequately correlate

the proprioceptive and exteroceptive information acquired by each vehicle. As previously de-

scribed, all vehicles will share topics under a common communication middleware with an

associated timestamp, and therefore it is important to ensure an offset between the vehicles

that is lower than the dynamics of the objects whose position is going to be estimated.

• Multi-Robot camera trigger synchronism: As described in Section 4.1, the goal is to per-

form cooperative triangulation based on monocular information and to establish a dynamic

baseline between vehicles. To ensure a geometric decentralized epipolar validation in order

to estimate the 3D target position with cooperative triangulation, it is important for the system

to develop a camera trigger strategy that does not depend on communication constraints,

with a level of accuracy that is lower than the frame rate and the acquisition latency associ-

ated with the vision system. By using the accurate time synchronization between vehicles,
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4. Multi-Robot Cooperative Triangulation Framework

it was possible to develop a global snapshot by defining the trigger division based on the

frame rate requirement and on the absolute Unix timestamps.

Three clock synchronization protocols were evaluated (NTP , PTP and Chrony) based on the

previous considerations and requirements imposed by the proposed framework, as described in

section 4.1.

The NTP[CDM06] presents an unacceptable time to converge in situations where the system

is in a non-converged state, such as after diverging on boot. The sync time takes 10 hours to

obtain a low offset and a good stability and even after the required sync time of the steady state

lower offset is 1 ms. Another issue observed during the evaluation procedure occurred during

long periods of wireless link saturation, where the offset from the source was almost 30 ms.

Considering the outdoor application scenario, the NTP can overcome the wireless link saturation

by not considering the time source being provided by a wireless link, but instead using an internal

GPS and PPS available in the vehicle.
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Figure 4.10: The box plot in this figure presents the timestamp median and the standard deviation
error between vehicles receiving corrections from the GPS and the PPS with the
Chrony synchronization protocol.

Another clock synchronization protocol evaluated is the PTP[VS07], a standard IEEE 1588

protocol applied by the robotics community as an alternative to the NTP as it improves the steady

state offset with values below < 1 ms after 10 min of synchronization. From the evaluation proce-

dure, it is possible to understand the following limitations: only master-slave multicast messages

are supported in the synchronization and overshoot occurs in the offset because it is necessary

to tune the proportional-integral parameters.

The last clock synchronization protocol evaluated is the Chrony[Chr][DAE10]. This protocol

supports clock synchronization over NTP servers and through an internal GPS and PPS available

in the vehicle. It provides a steady state low offset < 2.6µs even after a non-converged state,

such as after a reboot caused by the drift rate, and the computer real-time clock is stored in the

operating system to support a fast stable offset (less than 0.2s).
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4.2 Experimental results with a team of heterogeneous vehicles

Considering the methods evaluated previously and the outdoor application scenario proposed

with the available GPS, only Chrony is suitable to receive GPS and PPS clock corrections, pro-

viding at the same time the accuracy required to have a multi-robot camera trigger and data

correlation.

The quality of the Chrony synchronization protocol for the TIGRE UGV and the PELICAN MAV

with GPS and PPS is expressed in figure 4.10 with a steady state offset median error of 2.6µs

and a standard deviation of 12ms. The results are related to the experimental tests described in

Section 4.2.5.
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Figure 4.11: Left: Camera Trigger Snapshot accuracy between both vehicles based on the same
absolute timestamp. Right: The box plot in this figure presents the camera trigger
snapshot median and the standard deviation error between both vehicles: the TIGRE
UGV and the PELICAN MAV .

In terms of the global camera trigger accuracy, depicted in figure 4.11, for an absolute Unix

timestamp in both vehicles, with a frame rate of 30 FPS, it is possible to observe an accurate

trigger performance capable of ensuring the requirements expressed previously for the proposed

cooperative stereo framework.

The overall statistical behavior, depicted in the box plot figure 4.11, presents a median trigger

error of 56µs and a standard deviation of 7.86µs between both vehicles. The median error is

explained by the kernel interrupt latency because both vehicles are using a standard Linux Kernel

without the support for hard timing deadlines.
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4.2.5 Results

The following section presents the experimental results related to the implementation of the

Multi-Robot Cooperative Triangulation Framework, described in Section 4.1. The envisioned

framework is evaluated in an outdoor scenario with a team of heterogeneous robots composed

of a UGV and a MAV in two experimental cases: a static and a dynamic target. The contribution

of UCoT to the 3D position estimation is compared to two single perception methods, stereo rigid

baseline and monocular 3D target estimation, and also to the MidCoT. Although the MidCoT

method also contributes clearly to the 3D target estimation based on the cooperative framework,

the UCoT is the method where the attention will be on due to its ability to effectively handle the un-

certainty associated with the observation model by weighting the contribution of each monocular

bearing ray in a probabilistic manner.

Therefore, the four methods evaluated for each experimental case are:

• Method I - Single Robot Stereo rigid baseline

One of the first intuitive and well-known solutions to estimate the 3D target position is a

stereo rigid baseline. It is widely used due to its relatively straightforward manner to es-

timate image scale and depth information. However, for a stereo setup to bring any fur-

ther advantage, the observed target must be within some range according to the stereo

baseline[Wei12], otherwise the stereo setup is reduced to bearing-only sensors with an es-

timation error growing quadratically with depth. Gallup et al., [GFMP08] evaluate the impact

that the baseline has on 3D accuracy as

εz =
z2

b f
εd (4.17)

where εz is the depth error, z is the depth, b is the baseline, f is the focal length in pixels,

and εd is the expected matching error in pixels. This method and the expected depth error

are evaluated in a single robot target estimation and compared to the ground truth target

system’s global position information.

The UGV TIGRE is assembled with a stereo rigid baseline of ∼ 0.8 m, and based on that,

the impact of the baseline will be not only evaluated for different distances to the target, in a

scenario where the target is static and dynamic, but also compared to the Gallup[GFMP08]

stereo depth error model, expressed in equation (4.17).

• Method II - Monocular 3D target estimation - Flat-earth Model

This method was proposed by Beard et al. [BRM+06] for a particular case of aerial vehicles

to estimate the 3D target position, with the depth information being provided by the vehicle’s

altitude without taking terrain morphology into consideration. The results of estimating the

target position using this assumption are less accurate in the 3D estimation and are not
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4.2 Experimental results with a team of heterogeneous vehicles

capable of estimating the position of targets that are not moving on the ground. The method

will be applied as a single perception technique to the MAV Pelican in both experimental

cases.

• Method III - Mid-Point Multi-Robot Cooperative Triangulation (MidCoT)

One of the key limitations of a stereo camera setup, already described in method I, is the

available baseline where the error grows quadratically with depth. This limitation is even

more relevant with the expected decrease in the robot’s scale factor and with the application

scenario’s requirement to track targets at large distances.

Therefore, by assuming a monocular vision system in each vehicle (in the case of the UGV

TIGRE one of the cameras will be unplugged) and a multi-robot cooperative perception

scenario, a novel method is proposed where the relative position and orientation between

robots will provide a flexible and dynamic baseline (see figure 4.2). The expected baseline

and geometric correlation will guarantee an improvement in the accuracy of the target’s

position estimation.

In the proposed method, a dynamic baseline will be established between the UGV TIGRE

and the MAV PELICAN during an experimental test where both vehicles will track a static

(section 4.2.5) or a dynamic target (section 4.2.5) by sharing, through a communication

middleware, the tuple 〈WCCC,WB F , {Wddd}〉. The shared tuple is the information required to

estimate the 3D position of the target with the proposed MidCoT (Section 4.1) based on the

Mid-Point Triangulation (Section 3.4.1 and equation 4.6).

• Method IV - Uncertainty-based Multi-Robot Cooperative Triangulation (UCoT)

In the previous method, the MidCoT selects the line that is perpendicular to the shortest seg-

ment for both rays and assumes that both monocular camera setups will contribute equally

to the 3D target estimation.

In this experimental case, static (Section 4.2.5) and dynamic target (Section 4.2.5) , by

considered the first order uncertainty model derived in Section 4.1.2 and the covariance of

both intersection rays, this method proposes to estimate the 3D target position by weighting

the uncertainty of each ray in a probabilistic manner.

For each experimental case, a ground truth system is available (section 4.2.2) as an exoge-

nous system to evaluate accuracy in post-processing.
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Static Target

A static target was positioned at a distance of ∼ 35 meters from the UGV TIGRE and during

the experimental case the MAV PELICAN hovered over the static target at a distance of ∼ 15

meters, while the UGV TIGRE moved forward at a nominal velocity of ∼ 0.5 m/s, see figure 4.12.

Figure 4.12: Left: Orange static target being tracked by both vehicles: the (UGV) TIGRE and
(MAV) Pelican, as shown in the blue box. Right: field of view of TIGRE’s left cam-
era tracking the orange static target assembled with a (RTK) (GPS) Ground Truth
System.

Both vehicles were given a target tracking task: the PELICAN hovered over the detected target,

and the TIGRE performed an approximation maneuver relatively to the estimated target position.

Figures 4.14, 4.16 and 4.17 present the performance of each method by comparing the 3D

target estimation error with the stereo depth error model (equation (4.17)) for different values of the

expected matching error in pixels, εd represented by the green, red and blue lines. The TIGRE’s

(GPS) trajectory is represented by the blue triangle, the red star is the static (GPS) (RTK) target

and the black cross represents the estimated 3D target position. Methods III and IV also represent

the MAV trajectory with the magenta circles. The performance from method II is depicted in figure

4.15, with the euclidean distance to the target being representative of the MAV altitude with the

assumption of the flat-Earth model.

Figures 4.18 and 4.19 show the 3D covariance ellipse from the intersection rays ΣΣΣPPP i and ΣΣΣPPP i,

described in section 4.1.2 and zoomed in figure 4.3, for three instances with different distances

from the TIGRE to the static target position. The trajectory of the TIGRE is represented by the

blue triangle, and the position provided by the (RTK) (GPS) of the static target is represented by

a blue circle.

Figure 4.18 , which depicts the single robot stereo rigid baseline method, the red and green

crosses represent the TIGRE’s left and right cameras, and the lines represent the rays Wdddi and
Wdddj. While in figure 4.18 both covariance ellipses from the intersection rays ΣΣΣPPP i and ΣΣΣPPP j con-

tribute similarly to the target estimation, in figure 4.19, by applying the UCoT, each covariance ray

contributes based on the monocular vision system available in each vehicle, represented by the
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4.2 Experimental results with a team of heterogeneous vehicles

green and red crosses.

Method µ (m) σ (m)
I - Single Robot Stereo rigid baseline 1.902 2.435

II - Monocular 3D Target Estimation - Flat-earth Model 2.602 0.549
III - Multi-Robot Cooperative Triangulation - MidCoT 2.305 0.501
IV - Multi-Robot Cooperative Triangulation - UCoT 0.873 0.214

Table 4.1: 3D3D3D target estimation mean µ and standard deviation σ error in meters for the four
methods under evaluation in a static target experimental case.
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Figure 4.13: The box plot in this figure presents the 3D3D3D target estimation median and standard
deviation error in meters for the four methods under evaluation in a static target
experimental case.
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estimated 3D target position (black cross). Right: 3D target estimation error (black
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Figure 4.18: Covariance ellipses ΣΣΣPPP i and ΣΣΣPPP j from the intersection rays related to three instances
during the static target tracking for Method I - Single robot stereo rigid baseline.
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Figure 4.19: Covariance ellipses ΣΣΣPPP i and ΣΣΣPPP j from the intersection rays related to three instances
during the static target tracking for Method III - (MidCoT) and Method IV - (UCoT).
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In Method IV, the UCoT weights the contribution of each monocular vision system in a prob-

abilistic manner. Figure 4.20 expresses the value that is applied to each Γi and Γj from equation

(4.12), and afterwards to equation (4.13). The results that are expressed in figure 4.17 and ta-

ble 4.1 are related to the values of Γi and Γj , depicted in figure 4.20, with the PELICAN MAV

presenting higher uncertainty in the GPS when compared to the TIGRE.
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Figure 4.20: Top:Probabilistic weight Γ of each vehicle during the static experimental case, and
with the assumption that the PELICAN vehicle has a higher uncertainty in the GPS
estimated position when compared to the TIGRE. Bottom: Euclidean distance be-
tween the camera and the target.

Figure 4.21 shows an example of a possible scenario where both robots are equipped with

the same level of accuracy sensors. The Γi and Γj values have the same impact on the UCoT at

instant 50s, with the TIGRE weight assuming a higher value because it is closer to the target.
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Figure 4.21: Top:Probabilistic weight Γ of each vehicle during the static experimental case, and
with the assumption that both vehicles have the same level of sensor uncertainty.
Bottom: Euclidean distance between the camera and the target.
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Dynamic target

This section describes an experimental case where a target equipped with the ground truth

system moves at a velocity of ∼ 0.8 m/s, as described in Section 4.2.2 , see figure 4.22.

Figure 4.22: Dynamic target tracking experimental case. Left: Orange life jacket being tracked
and followed by both vehicles. Middle: Field of view of the UGV TIGRE’s left camera
tracking the dynamic target. Right: Field of view of the (MAV) PELICAN’s downward
camera.

Both vehicles were assigned with a target tracking task, where the PELICAN MAV hovered

over the detected target (∼ 20 meters) , and the TIGRE performed an approximation maneuver

relatively to the estimated target position with a safe distance of ∼ 2 meters. However, most of

the time the UGV TIGRE is at a Euclidean distance between 5 to 10 meters, and the PELICAN’s

relative height is between 5 to 20 meters due to the floor gradient of the outdoor scenario where

the target is moving. These variations in distance and relative height can be observed in figure

4.29.

During the data post-processing procedure from the Microstrain 3DM Inertial Sensor, it was

possible to confirm that the sensor was not calibrated, and was unable to provide the Buuu infor-

mation from the (UGV) TIGRE. To overcome this problem and due to the loss of accuracy, the

heading (yaw angle ψ) data was provided by the (GPS).

Figures 4.24, 4.26 and 4.27 present the performance of each method by expressing the 3D

target estimation error obtained for each Euclidean distance between the target and the (UGV)

TIGRE. The TIGRE’s (GPS) trajectory is represented by the blue triangle, the red line and the

arrows represent the (GPS) (RTK) target and the black cross is the estimated 3D target position.

Methods III and IV also present the MAV trajectory, represented by the magenta circles. The

performance from method II is depicted in figure 4.25, with the Euclidean distance to the target

representing the MAV altitude assuming the flat-Earth model.

Figures 4.28 and 4.29 show the 3D3D3D covariance ellipse from the intersection rays ΣΣΣPPP i and ΣΣΣPPP j ,

described in Section 4.1.2 and zoomed in figure 4.3, for three instances with different Euclidean

distances from the TIGRE to the position of the moving target. The TIGRE’s trajectory is repre-

sented by the blue triangle and the position provided by the (RTK) (GPS) of the moving target

is represented by a blue circle. In figure 4.28 , depicting the single robot stereo rigid baseline

method, the red and green crosses represent the TIGRE’s left and right cameras, and the lines
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represent the rays Wdddi and Wdddj. While in figure 4.29 both covariance ellipses from the intersec-

tion rays ΣΣΣPPP i and ΣΣΣPPP j contribute similarly to the target estimation, in figure 4.28, applying the

UCoT from Section 4.1.2, each covariance ray contributes to the target estimation based on the

monocular vision system available in each robot, represented by the green and red crosses.

Method µ (m) σ (m)
I - Single Robot Stereo rigid baseline 1.210 2.253

II - Monocular 3D Target Estimation - Flat-earth Model 1.587 2.421
III - Multi-Robot Cooperative Triangulation - MidCoT 0.996 1.324
IV - Multi-Robot Cooperative Triangulation - UCoT 0.570 0.768

Table 4.2: 3D3D3D target estimation mean µ and standard deviation σ error in meters for the three
methods under evaluation in a dynamic target experimental case.
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Figure 4.23: The box plot in this figure presents the 3D target estimation median and standard
deviation error in meters for the three methods under evaluation in a dynamic target
experimental case.
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Figure 4.25: Left: PELICAN trajectory (magenta circle), the dynamic target (red star) and the
estimated 3D target position (black cross). Right: 3D target estimation error (black
cross) for Method II -Monocular 3D Target Estimation.
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Figure 4.26: Left: TIGRE (blue triangle) trajectory, the dynamic target (red star) and the estimated
3D target position (black cross). Right: 3D target estimation error (black cross)
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Figure 4.27: Left: TIGRE (blue triangle) trajectory, the dynamic target (red star) and the estimated
3D target position (black cross). Right: 3D target estimation error (black cross) for
Method IV - UCoT and the stereo depth error model εd for different values of the
expected matching error, represented by the green, red and blue lines.
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Figure 4.28: Covariance ellipses ΣΣΣPPP i and ΣΣΣPPP j from the intersection rays related to three instances
during the dynamic target tracking for Method I - Single robot stereo rigid baseline.
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Figure 4.29: Covariance ellipses ΣΣΣPPP i and ΣΣΣPPP j from the intersection rays related to three instances
during the dynamic target tracking for Method III - (MidCoT) and Method IV -
(UCoT).
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4.2.6 Discussion of results

Both experimental cases were accomplished and four methods were evaluated by comparing

the target’s ground truth system and the 3D target estimation.

The evaluated results present the following issues:

• Method I, presented in figures 4.14 - 4.24, shows an accuracy consistent with the Gallup

[GFMP08] stereo model error. The result reveals that the stereo rigid baseline behaves

similarly to a bearing-only sensor. However, the 3D target estimation is highly inaccurate in

targets where the depth distance exceeds the available baseline. The mean and standard

deviations of the 3D target estimation error are expressed in figures 4.13 - 4.23, and in

tables 4.1 - 4.2.

The overall 3D target estimation error results from this method are not as pronounced be-

cause the (UGV) TIGRE executes an approximation maneuver task relatively to the target

in the static experimental case (figure 4.14). In the experimental case with a moving target,

the Euclidean distance was always between 5 and 15 meters (figure 4.24).

• Method II, presented in figures 4.15 and 4.25, shows an accuracy consistent with the work

by Gibbins[GRS04] and Beard[BRM+06]. In both experimental cases, the accuracy is simi-

lar to Method I. Analyzing each one of the experimental cases individually, in the static target

the error is caused by the high uncertainty in the estimated position (∼ 3 m) provided by the

low cost GPSin the MAV.

Regarding the dynamic target experimental case, the 3D target estimation error also in-

creases due to the low cost GPS in the MAV, combined with the ground gradient of the

outdoor scenario where the target is moving. In this case, it was clear that this method is

limited because it does not consider terrain morphology.

• Method III - MidCoT, presented in figure 4.16 - 4.26, shows a 3D target estimation error

more or less independent from the distance to the target when compared to Method I. This

behavior is reflected in the standard deviation improvement σ shown in table 4.1. However,

the overall mean µ result is less optimistic when compared to Method I (see figures 4.13

- 4.23, and tables 4.1 - 4.2). In this method, the rays 3-tuple 〈WCCC,WB F , {Wddd}〉 are shared

between vehicles, and will have the same weight Γ for the MidCoT. By assuming an equal

contribution, the impact of the sensor’s uncertainty provided by each vehicle is disregarded.

For the experimental case with a static target, the impact of both vehicles with the same

weight Γ in the triangulation can be observed in figure 4.16 when the Euclidean distance be-

tween the UGV TIGRE and the static target varies between 5 to 10 meters, with the 3D target

estimation error not decreasing as expected. Even though the UGV is closer to the target,

its contribution will have the same impact as the MAV PELICAN 3-tuple (WCCC, 〈WB F , {Wddd〉,
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which is influenced by a high uncertainty in the estimated position(∼ 3 m) caused by the low

cost GPS assembled, and due to the fact that the relative height to the target is stable at

∼ 15 meters (figure 4.19).

This behavior can also be observed during the experimental case with a moving target

(figure 4.26) because the distance between the moving target and the UGV varies between

5 to 15 meters, and the resulting error in the 3D target estimation is dominated by the

uncertainty of the MAV PELICAN.

• Method IV - UCoT , presented in figures 4.17 - 4.27, illustrates an accuracy improvement in

the 3D target estimation when compared to the three previous methods (figures 4.14 - 4.15

- 4.16 - 4.24 - 4.25 - 4.26 ). The contribution of each robot’ with equal weight Γ , present

as a limitation in MidCoT method, is overcome in Method IV - UCoT due to the ability to

integrate all sources of uncertainty provided by each intersection ray, and estimates the 3D

position by weighing the uncertainty of each ray in a probabilistic manner.

The overall improvement is depicted in figures 4.13 - 4.23 with a lower mean µ and standard

deviation σ error in the 3D target position estimation. The mean value and standard devia-

tion could be further enhanced if during the dataset not only the information provided by one

of the UGV cameras was considered, but the information provided by both cameras(due

to the stereo baseline available in the UGV), together with the MAV monocular vision sys-

tem. The equation (4.14) evaluates which pair provides an higher accuracy to the 3D target

estimation; therefore, in a Euclidean distance target/camera between 5 to 10 meters, the

higher accuracy will be guaranteed by the UGV baseline and not by the pair of monocular

vision systems provided by the MAV and the UGV. The equation (4.14) would ensure the

commutation from the pair MAV - UGV to UGV - UGV (rigid stereo baseline). This issue is

depicted in figures 4.14 and 4.17, with the last one having an error higher than the expected

stereo depth error model.

• In both experimental cases, Methods III and IV show an improvement in the standard devi-

ation σ error when compared to Methods I and II (see tables 4.1 - 4.2). This is accomplished

due to the probabilistic geometric intersection, expressed in equation (4.14) which uses the

normalized squared error to intersect the 3D information between two monocular observa-

tions. This component of the architecture framework provides a method to detect spurious

observations (when pairs do not match), which are discarded as uncorrelated observations.

• Figure 4.17, related to Method IV - UCoT, shows a 3D target estimation error more or

less independent of the Euclidean distance between the UGV and the static target. This

is even more relevant when compared with the stereo depth error model, with the error

being propagated with the distance[GFMP08]. The explanation to the UCoT behavior is

associated to the following points:
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– The UCoT weights in a probabilistic manner the contribution of each bearing-only ray

to estimate the 3D target position, as expressed in equation 4.13. Therefore, when the

TIGRE UGV if far from the target its weight for the WPPP is more or less equivalent to the

MAV (ΓUGV = 0.6 and ΓMAV = 0.4) and when is near to the target the UGV weight

increases relative to MAV (ΓTIGRE = 0.8 and ΓUGV = 0.2), as depicted in figure 4.20.

The UGV has higher Γ, even when is far from the target, because its payload sensors

have higher accuracy, relative to MAV.

– Another issue that is also contributing to this behavior is the fact of during the static

target experiment, the MAV was hovering the target with a fixed distance, and only the

UGV was performing an approximation maneuver relatively to the target. Therefore,

this allow us to observe that the ΓUGV increases as it approaches the target.

• One of the requirements imposed to the framework was the ability to ensure real-time and

low computational requirements, so that the framework is scalable to different types of robot

systems. Therefore, during both experimental tests, together with the dataset, the CPU2

time from the MidCoT and UCoT method was recorded. This includes also the data associ-

ation component expressed in equation (4.14) .

The result is summarized in the following table:

Method CPU Time (s)
µ σ

MidCoT 0.0025 0.0105
UCoT 0.0043 0.0206

Table 4.3: Mean value µ and standard deviation σ CPU Time of each method.

2Intel i5-2520M 2.5GHz 4Gb RAM
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4.3 Experimental results with a team of heterogeneous vehi-
cles in a simulation environment

This section describes the simulation environment to evaluate the UCoT method. Furthermore,

this section details the architecture implemented in order to integrate the distributed cooperative

triangulation framework in a straightforward manner in the simulation environment, described in

Section 4.1 and figure 4.1. Simulations are performed in an outdoor environment using a team

of MAVs and a UGV to evaluate the UCoT method under different conditions. The goal is to

assess not only the impact of introducing more robots to the environment, but also evaluate which

monocular vision systems provide the 3D target estimation with the lowest uncertainty and the

robustness of the method to different levels of Gaussian noise associated with the attitude and

position sensors.

4.3.1 Simulation Environment

Simulation is an essential step in robotics research, as it makes it possible to evaluate and

validate different sorts of developments in areas, such as navigation, perception and control, prior

to their integration in real robots [LFBRG12][FRÃM07] [ELDL11] [ELD+12][MSK+12] [DMSK13]

[MK08].

In this case, experimental tests have already been conducted with real two heterogeneous

robots, as depicted in Section 4.2.5. This limitation arises from the fact that field experiments

with a team of heterogeneous robots require human and hardware resources which cannot be

implemented in a straightforward manner. For instance, if a team of aerial robots is being eval-

uated while performing a surveillance task, for safety reasons it is necessary to have at least

one human operator for each robot, which is not feasible for some research groups. Adding to

this, some resources are not available, such as the robots and sensors required. There is some

research focusing on this topic: the work by Johannes[MSK+12], which uses a simulation envi-

ronment developed in Gazebo[KH04] and integrated with ROS to evaluate the MAV behavior such

as flight dynamics; the work by Nathan[MK08] where the Gazebo is used to control the distributed

formation of a swarm team of ground robots which can adapt the shape of the formation based

on the environment constraints; and the work by Dewan[DMSK13], which evaluates the proposed

optimization method to perform cooperative exploration between heterogeneous vehicles.

Based on that, in order to choose the best simulator for the requirements, it was decided

to analyze the simulators that provide 3D space simulation and are used by the robotics com-

munity. The simulators available were: Gazebo[KH04], USARSim[CLW+07], Webots[Mic04],

VREP[FSOM10] and MORSE[ELDL11]. The Gazebo has evolved considerably when it was inte-

grated in the ROS platform, and thus became the most commonly used robotics simulator.

The main limitation of this simulator is the effort required to learn how to integrate sensors into
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Figure 4.30: MORSE Outdoor Simulation Environment, which has a similar terrain morphology
and vegetation to the real outdoor scenario described in section 4.2.1.

the vehicles and to develop realistic outdoor scenarios due to inefficient documentation. However,

the Gazebo 4.0 version (released in July 2014), provides a GUI interface that could overcome the

limitations mentioned. Another available simulator, the USARSim - Unified System for Automation

and Robot Simulation, was initially developed as a simulator for search and rescue operations. It

uses the Unreal Engine gaming platform and was built with the concept of modular components.

It is widely used in RoboCup competitions. However, the communication with external software

is adhoc and does not support some of the most common robotics middleware without additional

programming. Webots is a commercial simulator, and provides a full programming environment to

create customized robots and environments, although the interface to construct new robots and

components is unintuitive and complex, making it necessary to search through data trees to adjust

physical and geometrical parameters. Another commercial solution is the V-REP, which presents

a variety of components and sensors and uses a script language, the LUA language[WMG10],

to allow those components and sensors to interact with each other. Its limitation is its inability to

provide a native method for communicating with middleware. That functionality must be provided

by the user in the form of add-ons[ELDL11].

The Modular Open Robots Simulation Engine, or MORSE, is a library of Python scripts that

run on the Blender Game Engine to interface a 3D environment with external robotics software.

A variety of communication tools allow each of the MORSE components to connect with exter-

nal applications through middleware used in robotics, such as YARP[MFN], ROS[QCG+09] and

MOOS[BSNL10]. The available sensors are fully supported by the middleware and can provide

similar data as their real world counterparts and can work at different levels of realism and ab-

straction. The modifiers can be introduced in each sensor to add Gaussian noise or to change

the data as required to better match the data with real sensors, for instance, turning the coor-

dinate system from the GPS sensor used by Blender into ECEF, or adding Gaussian noise to

images captured by Blender cameras. Therefore, based on the available simulators, MORSE was

chosen as the simulation environment. MORSE proved to be more versatile, modular, flexible

and reusable[ELDL11], and was capable of providing a straightforward implementation of the out-
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door scenario composed of heterogeneous types of robots and sensors, such as GPS, Laser and

Cameras.

To ensure a similar outdoor scenario to the one described in section 4.2.1, the 3D model of

an outdoor scenario was developed in Blender, based on the available Digital Elevation Map files,

with the same type of vegetation and terrain morphology, see figure 4.30. In the particular case

of the UCoT method, this made it possible to assess the impact of this method comparatively to

the Flat-Earth model technique, described in Section 3.5, by introducing this level of realism in the

terrain morphology.

4.3.2 Vehicles

The vehicles applied to the simulator, as depicted in figure 4.31, present the same level of

realism as the real outdoor experimental tests, detailed in section 4.2.3. To accomplish this,

the MAV model provided by the MORSE simulator was included that contains the same sensors

available in the Asctec Pelican MAV. In the case of the UGV TIGRE[MAD+13], the 3D model of

the vehicle was integrated with the modifications required by the Blender to include the degrees

of freedom at each joint of the vehicle. Following the same Ackerman trapezium geometry from

TIGRE, the rear and the front wheels were attached to the platform, with the Bullet physics library

being responsible for simulating the tire friction, as well as the suspension stiffness, compression

and damping interaction with the environment.

Figure 4.31: Simulated vehicles with the same features from the ones used in the real outdoor
experimental tests. Left: UGV TIGRE. Right: Asctec Pelican MAV.

4.3.3 Architecture

The architecture, outlined in figure 4.33, was developed to ensure that the UCoT framework is

integrated in a straightforward manner in the simulation environment, as depicted in figure 4.32,

equivalent to the one developed for the real experimental scenario. Therefore, through the ROS

Middleware the topics Camera and Pose sensor are the information required to ensure that the

UCoT is able to produce a local 3-tuple 〈WCCC,WB F , {Wddd}〉 to be shared with other robots.
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Figure 4.32: Simulated camera view of each vehicle. Left: TIGRE left camera field of view track-
ing an intruder with an orange jacket. Right: Field of view of the MAV downward
camera.

Figure 4.33: Architecture between the MORSE simulation environment and the multi-robot coop-
erative triangulation framework.

4.3.4 Results

This section describes the results related to the validation of the UCoT framework in an outdoor

simulation environment with MORSE. The framework is evaluated using a team of heterogeneous

robots composed of MAVs and a UGV with different values of Gaussian noise applied to position

and attitude sensors. The MORSE component, which provides the position and attitude of each

robot, is called Pose sensor and includes a class Modifier in order to introduce Gaussian noise in

the simulated data. Based on this feature provided by MORSE, the values presented in table 4.4

were applied in each experimental case. The values represent the information provided by the

manufacturers, and are also based on the experimental work detailed in Section 4.2.

The 3D information from the target was used in the task planner of each robot. The UGV was

responsible for following and intersecting the target, if possible, while the MAVs followed the target

with a fixed geometry between each vehicle and the target, as depicted in figure 4.34.

The tests addressed in this section are viewed as complementary to the ones already per-

formed with a team of real robots, as described in Section 4.2. Therefore, the results in figures

77



4. Multi-Robot Cooperative Triangulation Framework

UGV TIGRE MAV Quadrotor
Experimental case Sensor Reference/Model Gaussian Noise Reference/Model Gaussian Noise

I
GPS RTK Septentrio PolaRx + Base Station σςςς =

0.01 0 0
0 0.01 0
0 0 0.02

 NVS08 + Base Station σςςς =

0.1 0 0
0 0.1 0
0 0 0.2


IMU iMAR iNAV-FMS σuuu =

0.00035 0 0
0 0.00035 0
0 0 0.00087

 PixHawk PX4 σuuu =

0.0087 0 0
0 0.0087 0
0 0 0.0174



II
GPS RTK Septentrio PolaRx σςςς =

0.02 0 0
0 0.02 0
0 0 0.04

 UBlox LEA-5T σuuu =

0.5 0 0
0 0.5 0
0 0 0.75


IMU MicroStrain 3DM-GX1 σuuu =

0.0087 0 0
0 0.0087 0
0 0 0.0174

 PixHawk PX4 σuuu =

0.0087 0 0
0 0.0087 0
0 0 0.0174



Table 4.4: Simulated Gaussian noise applied to the position and attitude on each experimental
case.
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Figure 4.34: Trajectory performed by the UGV TIGRE and the MAVs, relative to the target.

4.35 - 4.38 are related to the ability of UCoT to deal with the presence of more than a pair of

monocular vision systems with an overlapped view of the target. Based on equation (4.14), the

UCoT is able to select the pair of cameras able to provide 3D target estimation with higher ac-

curacy. Figures 4.35 and 4.37 present the 3D target estimation WPPP from each robot, as well as

the correspondence median µ and standard deviation error σ with the UCoT framework in both

experimental cases. The covariance ΣΣΣ3D is expressed in figures 4.36 - 4.38.

Another aspect evaluated is the multi-robot uncertainty epipolar constraint. This component

from the data association architecture framework was presented in Section 4.1.3, and proposes to

establish a multi-robot epipolar line with a narrow band derived by the propagation of all sources

of uncertainty associated with the estimation of the 3D target position. Although it was formulated,

this component was not applied to the field experiments; therefore, this thesis proposes to eval-

uate this component under the simulation environment. Figures 4.39 - 4.40 and 4.41 - 4.42 are

respectively related to the experimental cases I and II and represent the epipolar lines between

the UGV, MAV 1 and MAV 2 and the corresponding epipolar narrow band σe estimated based on

the Monte Carlo simulation.
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Figure 4.35: Experimental case I. Estimated 3D target position WPPP by each robot using the
UCoT method.

Figure 4.36: Top view from the 3D Covariance matrix of the target ΣΣΣ3D provided by each robot
during experimental case I, with the red line representing the target trajectory.
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Figure 4.37: Experimental case II. Estimated 3D target position WPPP by each robot using the
UCoT method.

Figure 4.38: Top view from the 3D Covariance matrix of the target ΣΣΣ3D provided by each robot
during experimental case II, with the red line representing the target trajectory.
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UGV − Epipole Lines
 UGV − MAV 1
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MAV 1 − MAV 2
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Figure 4.39: Top: Epipolar Lines estimated based on the Monte Carlo simulation. Bottom:
Robots field of view and the epipolar line between the UGV, MAV 1 and MAV 2
provided by the multi-robot uncertainty epipolar constraint.

Figure 4.40: Accumulative epipolar narrow band search space for each vehicle, related to exper-
imental case I.
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Figure 4.41: Top: Epipolar Lines estimated based on the Monte Carlo simulation. Bottom:
Robots field of view and the epipolar line between the UGV, MAV 1 and MAV 2
provided by the multi-robot uncertainty epipolar constraint.

Figure 4.42: Accumulative epipolar narrow band search space for each vehicle, related to exper-
imental case II.
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4.3.5 Discussion of results

The (UCoT) framework was evaluated under the open-source MORSE simulation environ-

ment. The architecture associated with the integration of the simulation environment is presented

with the UCoT, as well as the architecture developed in Blender for the UGV TIGRE and the

corresponding Ackerman controller component.

The evaluation results present the following issues:

• The median and standard deviation errors in both experimental cases, depicted in figures

4.35 - 4.37, perform adequately and are robust even when more Gaussian noise is in-

troduced in experimental case II. In order to perform cooperative triangulation, the UCoT

framework estimates the dynamic baseline between robots based on the position and atti-

tude 〈WCCC,W RRR, {Wddd}〉; therefore, the framework was expected to be sensitive to the intro-

duction of Gaussian noise. However, due to the probabilistic approach, the contribution of

each monocular measurement is weight Γ to the triangulation and the result is an accurate

3D target estimation based on the multi-robot cooperative perception method.

• The covariance ΣΣΣ3D is expressed in figures 4.36 - 4.38. In figure 4.38 - MAV 1, it is possible

to observe that in almost all of the simulation’s experimental case the covariance was being

produced based on the information provided by both MAVs, due to the ΣΣΣ3D scale. However,

there are instances, such as in positions XY (5, 5) and (−25, 15), where the ΣΣΣ3D increases

when one of the MAVs loses the target’s field of view, and therefore they have to estimate the

3D information based on the pair of cameras in the UGV - MAV 1. The impact from equation

(4.14) is shown in figure 4.38 - MAV 1 at position XY (−30, 10) with UCoT considering that

the pair with higher accuracy is composed of the monocular vision system provided by the

UGV - MAV 1.

• The epipolar narrow band σe estimated based on the Monte Carlo simulation, depicted

in figures 4.39 - 4.42, denotes the uncertainty associated with each experimental case.

The more relevant figures are the ones from experimental case II (figures 4.41 - 4.42),

which present a higher uncertainty σe over the epipolar line. In figure 4.41, the epipolar

line MAV 1 - MAV2 has a higher σe compared with same epipolar line MAV 1 - MAV2 from

the experimental case I. This proves that the Gaussian noise introduced in the simulation

environment, in experimental case II, is propagated to the epipolar narrow band. The overall

conclusion on the usefulness of the multi-robot uncertainty component, detailed in Section

4.1.3, is its ability to deal in a robustness manner with the uncertainty provided by each

heterogeneous robot in the data association step by having a narrow band based on the

sensor accuracy of each robot.

• The outlined simulations were limited to three robots, one UGV and two MAVs. This issue
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is due to the MORSE requirements in terms of computational and graphics resources. The

steps to overcome this issue will be revised in Chapter 6 as future work.
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4.4 Uncertainty Analysis

The first order uncertainty propagation, described in Section 4.1.2 and expressed in equation

(4.8), is evaluated in this section by establishing a comparison with result from the Monte Carlo

simulation.

The ΣΣΣ3D covariance estimated from the first-order uncertainty propagation was derived with

the assumption that all sources of uncertainty in WPPP can be approximated by a Gaussian distribu-

tion. This step involves an approximation of a non-linear mapping function with its first-order Taylor

series approximation; therefore, it is important to conduct further analyses using the Monte Carlo

simulation to obtain the approximations ΣΣΣMC of the actual values, and evaluate ΣΣΣ3D and ΣΣΣMC to

assess the level of inadequacy of this approximation. The Monte Carlo simulation was applied to

the static experimental case, detailed in Section 4.2.5, with the assumption that both monocular

vision systems, Γi and Γj , provided by the UGV TIGRE and the MAV, contribute equally to the

3D target estimation.

The Monte Carlo simulation procedure is composed of the following steps:

• N Gaussian random points centered around a mean value and covariance ΛΛΛi,j are gener-

ated with the assumption that there is uncertainty in the input pixel localization σzzz2D , in the

camera’s position σςςς and attitude σuuu;

• Each point is applied to the equation (4.6), therefore creating a distribution of points.

• Evaluation of the Monte Carlo computed covariance distribution ΣΣΣMC with the one obtained

from equation (4.8). To ensure a fair evaluation, the Eigenvalues (λx, λy, λz) from each

covariance are compared to assess the impact of the linearization provided by the first order

uncertainty propagation ΣΣΣ3D.

Figure 4.43 shows the covariance from the first order uncertainty propagation and the Monte

Carlo simulation for instances with different Euclidean distances between the static target and

both vehicles.

In both figures, the Monte Carlo simulation is represented on the left by the blue crosses and

behind them is the covariance from the first order uncertainty. The overall distribution is expressed

in the covariance ellipse, where the Monte Carlo simulation ΣΣΣMC is represented by a transparent

color and the first order uncertainty propagation ΣΣΣ3D is represented by a gradient color.

Figure4.43 and table 4.5 describe the ΣΣΣ3D from equation (4.8) for the experimental case re-

lated to the MidCoT, due to the same weight Γi and Γj of both monocular vision system, and the

Monte Carlo simulation.

When evaluating the impact of the first order uncertainty propagation, in the case of the UCoT

it was also important to infer if the linearisation was overlooking the weight of the intersection ray

to assess the contribution of each ray. Based on the Eigenvalues from table 4.5, denote a slight
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First order uncertainty ΣΣΣ3D Monte Carlo simulation ΣΣΣMC

λx λy λz
WPPPx WPPPy WPPPz λx λy λz µx µy µz

a) and b) 5 m 0.248 1.124 0.198 0.692 1.960 0.521 0.146 1.054 0.019 0.699 1.960 0.523
c) and d) 15 m 0.290 1.071 0.207 -0.053 1.457 0.3726 0.159 1.051 0.050 -0.0578 1.466 0.3757
e) and f) 25 m 0.248 1.124 0.198 -0.037 3.037 0.2473 0.141 1.038 0.193 -0.0571 3.035 0.2457

Table 4.5: EigenValues (λx, λy, λz) provided by the first order uncertainty propagation ΣΣΣ3D for
MidCoT and UCoT and the Monte Carlo Simulation ΣΣΣMC . The 3D target position is
represented by the mean value from Monte Carlo simulation and the WPPP from MidCoT
method.

accuracy loses, due to the linearization, but the overall performance allow us to conclude that the

UCoT method is not affected by the first-order Taylor series approximation.
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a) b)

c) d)

e) f)

Figure 4.43: Uncertainty analysis on the 3D3D3D target estimation between ΣΣΣ3D and ΣΣΣMC . Left: Sta-
tistical covariance ellipse of the 3D target position from a Monte Carlo simulation
with 10000 samples (blue crosses), together with the covariance ellipse ΣΣΣ3D from
equation (4.8). Right: Covariance ellipse from ΣΣΣ3D and ΣΣΣMC and 3D target position
mean value from the Monte Carlo simulation (red cross) and the WPPP from equation
(4.6) (blue cross).
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4.5 Related Publications

The work presented in this chapter has been published in the following conferences:

• The Multi-Robot Cooperative Triangulation architecture framework, as well as the mathemat-

ical formulation for estimating the 3D target position by establishing a flexible and dynamic

geometric baseline from monocular vision system, described in section 4.1, was accepted

as a full length-article [DALS13] published in the proceedings of the International Confer-

ence on Autonomous Robot Systems (submitted in January 2013, accepted in April 2013).

The method presented in this paper, defined as MidCoT, selects the line that is perpendicu-

lar to the shortest segment for both rays, and assumes that both monocular vision systems

contribute equally to the estimation of the target position.

• The extension of the work presented in [DALS13] to handle the uncertainty of the observa-

tion provided by each monocular vision system, described in section 4.1.1, was accepted as

a full length-article [DASL14] published in the RoboCup Symposium Proceedings, Springer-

Verlag Lecture Notes in Artificial Intelligence (LNAI) (submitted in January 2014, accepted

in July 2014). The method, defined as UCoT, addresses the uncertainty of each monocular

vision system by weighting, in a probabilistic manner, the contribution of each monocular

ray to the cooperative triangulation.

• The hardware and software feature available in UGV TIGRE - Terrestrial Intelligent Gen-

eral purpose Robotic Explorer vehicle and its application in scenarios, such as search

and rescue missions and border control, described in section 4.2.3, was accepted as a

full length-article [MAD+13] published in the proceeding of the International Conference on

Autonomous Robot Systems (submitted in January 2013, accepted in April 2013).

• The experimental results with a team of heterogeneous vehicles related to the 3D target

estimation based on a single rigid stereo baseline and the flat earth assumption method,

described in section 4.2.5, is part of the work accepted as a full length-article [LAD+14]

published in the Elsevier Journal of Robotics and Autonomous Systems (RAS) (submitted

in July 2013, accepted in September 2014).

• Due to the limitations of hardware and software resources in the field experiments with a

team of heterogeneous robots, described in section 4.2, section 4.3 introduces a simula-

tion environment developed in MORSE in order to evaluate not only the behavior of the

UCoT method under different conditions, such as the introduction of more robots to the

outdoor environment, but also the robustness of the method to different levels of Gaussian

noise associated with the sensors available in each robot. This work was accepted as a

full length-article [DAD+14] published in the proceeding of the SIMPAR 2014 - 4th Inter-

national Conference on Simulation, Modeling , and Programming for Autonomous Robots,
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Springer-Verlag Lecture Notes in Computer Science (submitted in May 2014, accepted in

July 2014)
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5
DDF - UCoT - Decentralized Data

Fusion based on Uncertain
Multi-Robot Cooperative

Triangulation

Over the last years, there has been an increasing research effort on multi-robot cooperative

perception, to ensure robust and reliable autonomous perception in real scenarios involving dy-

namic environments and varying perception conditions. Tracking mobile targets with bearing-only

sensors is a clear example where combining information from different robots can be essential

if the targets move dynamically in complex scenarios. In addition, cooperative 3D target estima-

tion is useful in many applications combining static and dynamic cameras, such as search and

rescue[MSM+12][OSG+13] and border surveillance[XDMV12][MCPA09] operations.

There are stochastic filters that model uncertainties probabilistically and fuse data from sen-

sors to estimate the position of one or several targets. Depending on the probability distribution,

different representations can be used, such as Bayes Filters[WBF05], Particle Filters[OUB+06a]

or Kalman/Information Filters[MM11]. However, there are some issues that make the problem

challenging [KKKR13], [SS06]:

• sensors have different levels of accuracy that should be weighed accordingly;

• outliers or measurements coming from spurious data should be avoided;

• data association and initialization of the estimation must be performed.
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This last issue is particularly relevant with bearing-only sensors, which lack depth information

and absolute scale[AWC+11]. Some techniques, already detailed in chapter 2, such as monocular

vision system Structure-from-Motion or Visual Simultaneous Localization and Mapping managed

to combine bearing-only observations to estimate depth with a high accuracy, both in indoor and

outdoor map-building applications [KM07, Wei12]. However, this level of accuracy presents some

constraints, such as high computational requirements, and cameras with low dynamics and large

fields of view.

Additionally, other research proposed solutions to cope with initialization and data association

within the estimation filters[SS06].Instead, this thesis proposes a solution at the level of the per-

ception sensors, i.e., when generating the measurements that the filter will integrate. In particular,

this work applies this idea for cooperative 3D target tracking with multiple cameras on board mo-

bile robots. A method is used that estimates a 3D observation of a target from the monocular

vision measurements of several robots. This method was first introduced in section 4.1.2, and

is called Uncertainty-based Multi-Robot Cooperative Triangulation UCoT, used as a standalone

component[DASL14]. However, this chapter proposes to use the model as a novel multi-robot

sensor integrated within a decentralized stochastic filter for data fusion[CMCO11].

The UCoT is a triangulation method with a dynamic stereo baseline that weighs different

monocular observations according to their uncertainties in a probabilistic manner, and produces

a single 3D measurement. Thus, instead of integrating the bearing-only measurements from the

monocular cameras directly into the filter, the idea is to use (UCoT) to pre-process those mea-

surements and generate 3D measurements that will be used locally by each robot filter. Moreover,

a Decentralized Delayed-State Information Filter DDSIF[CMCO11] is used that allows the robots

to share their local information with other team-mates.

This leads to several advantages:

• UCoT is able to provide the 3D estimation without requiring features available between

frames, for batch recursive 3D estimation, as proposed by other triangulation methods with

monocular vision systems and mobile targets[Wei12].

• UCoT allows the DDSIF to be initialized without additional assumptions. Other filters based

on bearing-only observations need to make assumptions on the initial height or size of the

target;

• UCoT improves the data association phase of the DDSIF, discarding outliers, by means of a

probabilistic validation, detailed in section 4.1.3. Pairs of bearing-only observations whose

triangulation is not good enough are considered inappropriate or very noisy;

• The approach is scalable and flexible, based on a decentralized filter and local communi-

cation. Estimations are computed locally in each robot as they exchange information with

others.
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Therefore, this chapter starts by introducing the general architecture of the proposed approach

and describes the decentralized filter for target tracking. The approach is validated with simula-

tions and field experiments where a team of aerial and ground robots with cameras are used to

track a dynamic target.

5.1 Decentralized Data Fusion Target Tracking Framework

This section describes the general architecture of the approach presented in this chapter for

target tracking, which is based on the decentralized Information Filter depicted in Fig. 5.1. The

filter used, DDSIF, was developed by Capitan et al.[CMCO11]. Each robot runs a local instance of

the DDSIF and computes a local belief over the state of the target based on local measurements.

Then, this belief is shared with other robots and the information (beliefs) coming from others is

fused with the local estimate. Thus, the filter can provide estimates in a decentralized fashion

even when the robots are out of communication range. Once they get closer again, their beliefs

will be fused, avoiding information losses. The decentralized estimation converges to the one

that would be obtained by a centralized filter as long as the robots communicate in a tree-like

network [CMCO11].

Figure 5.1: Architecture of the proposed decentralized data fusion approach.

5.1.1 DDSIF - Decentralized Delayed-state Information Filter

Similarly to the Kalman Filter, the Information Filter (IF) assumes Gaussian probability distri-

butions, but maintains an estimation of the information vector ξξξ = ΣΣΣ−1µµµ and information matrix

ΩΩΩ = ΣΣΣ−1, where µµµ and ΣΣΣ are respectively the mean and covariance matrix of the estimated state.

In this case, the state to estimate consists of the 3D position and velocity of a moving target.

There is a step to predict the position and velocity of the target, and a step to update the belief
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with the local measurements. In the prediction step, the velocity is assumed to be affected by

an acceleration modelled as zero-mean white noise, while the position changes according to that

velocity and the step duration.

Each robot is supposed to carry a camera, and two different kinds of measurements are con-

sidered in the system: zzz2D and zzz3D. The first consists of a position of the target on the image

plane, and the latter is the result of the UCoT sensor and consists of a 3D position of the tar-

get in the global coordinate system. The pinhole projection, described in section 3.3, is used to

model the 2D measurements from the target state. This is a non-linear model and a first-order lin-

earization is applied. However, the model for the 3D measurements is straightforward. Gaussian

additive noise is considered in both cases.

When there is information available from other robots, a fusion step needs to be performed.

Due to the additive nature of the update step, the (IF) allows robots to do this easily. For example,

if robot i receives the belief from robot j (ξξξj , ΩΩΩj), it updates the local belief with the following rule:

ξξξi = ξξξi + ξξξj − ξξξij

ΩΩΩi = ΩΩΩi + ΩΩΩj −ΩΩΩij ,
(5.1)

where ξξξij and ΩΩΩij represent the information previously exchanged between robots i and j. This

common information must be removed first not to get overconfident estimations. Moreover, it can

be computed by a parallel filter as long as the robots communicate in a tree-like network. When

this cannot be assured, other conservative fusion rules can be applied, such as the Covariance

Intersection[JU97]; however, the decentralized estimation loses some information regarding the

centralized estimation[CMCO11].

Another important issue guaranteed by the DDSIF is the ability to maintain trajectories over

the state instead of just the last state. This allows robots not only to integrate local measurements

or beliefs from others that arrived late due to communication problems, but also, in the linear

case, to recover the same estimation as a centralized filter (with a certain lag depending on the

communication hops in the network)[CMCO11].

5.1.2 Integration of UCoT with DDSIF

The DDSIF presented in the previous section allows a team of robots with on-board cameras

to estimate the position of a target in a decentralized fashion. The filter can integrate 2D bearing-

only measurements from the cameras as usual, but it also includes the novel possibility of using

the 3D measurements computed by the UCoT method explained in section 4.1.2.

As shown in figure 5.1, both the DDSIF and the UCoT allow the robots to share information.

Robots share their local estimates on the target 3D position and fuse beliefs from others with the

DDSIF framework. Furthermore, they share their camera position and attitude, as well as their

direction vectors pointing to the target, 〈WCCC,W RRR, {Wddd}〉. This information is used by UCoT to
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generate 3D measurements of the target position and for data association. This flexibility allows

the system to update information just locally when needed, or to fuse information from others

when that information is available. Additionally, the generation of 3D measurements by UCoT

can help the DDSIF by initializing the height estimate. In a simpler filter only integrating bearing-

only measurements, the initial position of the target could be computed by projecting the first

measurement into the ground. However, it is necessary to assume that the target will stay on the

ground, or more generally, that its initial height is known. For example, this assumption is very

restrictive in the case of aerial targets[BMN+06].

Another improvement derived by the inclusion of the UCoT sensor into the filter is the phase

of data association. Based on the methods explained in Section 4.1.2 and 4.1.3, a robot running

UCoT locally can evaluate the appropriateness of bearing-only measurements received from other

cameras. If those measurements do not fit probabilistically with the local target estimate, UCoT

can consider them as outliers and discard them. This method allow us to eliminate spurious

measurements, and helps the filter to converge and reduce the noise in the final estimate.

5.2 Experimental Results

This section describes the experimental results to assess the impact of integrating UCoT as

a virtual sensor with the DDSIF. Two outdoor experimental cases are proposed: a simulated

scenario where two MAVs are tracking a moving target; and a real scenario where a MAV and a

UGV are the trackers.

In both cases, the terrain is not totally flat, but presents an altitude variation of around 2 meters

in the simulation, and 7 meters in the field experiments. The ground truth of the target position

is available due to a high accuracy RTK-GPS sensor with an error below 10 cm, as described in

section 4.2.2. In both cases, an image processing component is run on each robot to detect the

target on the image plane. The target has a distinctive color and the algorithm is based on blob

detection.

5.2.1 Simulation Environment

The simulated environment was created with the realistic robotic simulator MORSE, already

described in section 4.3 and depicted in figure 5.2. The target is simulated with another ground or

aerial vehicle, depending on the experiment. Moreover, it follows the same fixed path during the

experiments, which is unknown to the trackers.

All the configurations shown in figure 5.3 were tested in order to analyze different circum-

stances during the simulations. In configurations (a), (b), and (c), the target was simulated by a

UGV that was moving on the ground at a nominal velocity of 1 m/s, and with a small variation in

terms of altitude. Moreover, the trackers were following the target in different geometric formations
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Figure 5.2: Left: Simulated environment in MORSE. Right: One of the MAV trackers with a cam-
era pointing downwards.

to test their effect on the final estimation. In configuration (d), the target was simulated by another

MAV that also varied in altitude, which can show how the system performs with changes in that

component.

Figure 5.3: Different spatial configurations for two MAVs tracking a moving target.

Tables 5.1 and 5.2 shows average results for each configuration comparing several approaches.

In the first table the DDSIF is run on each robot with the fusion rule as depicted in figure 5.1, while

in table 5.2 a decentralized approach is applied and a conservative fusion rule is used (Covari-

ance Intersection). In the method 2D-2D, both trackers are integrating only 2D measurements; in

2D-3D (UCoT) trackers integrate 3D measurements from UCoT or 2D measurements when there

is no 3D available (no 2D measurements with overlap view from the two cameras at that instant);

in 3D (UCoT), only measurements from UCoT are integrated with the requirement of fulfilling the

probabilistic geometric intersection through the normalized squared error, as expressed in equa-

tion (4.14). Moreover, during the experiments, spurious and noisy observations from the cameras

were simulated to evaluate the system’s performance.

The RMS error of the estimation with respect to the ground truth are shown, as well as the

Normalized Estimation Error Square (NEES) (εNEES). The second metric is useful to evaluate

the consistency of the filter estimate with respect to the actual value [MCC05][Ott13].

εNEES = (x̂xx3D − xxxref )
T

ΣΣΣ−1
3D (x̂xx3D − xxxref ) (5.2)

The NEES evaluation assumes that the actual state vector xxxref of the target, denoted by
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ground truth, is known. The NEES evaluate whether or not the squared estimation error nor-

malized to the state covariance ΣΣΣ3D follows a χ2 distribution with dim(x̂xx3D) with three degrees of

freedom, as expressed in equation (5.2). This metric allow us to assess the filter consistency and

evaluate whether the filter tends to be pessimistic or to overestimate its capabilities.

Configuration 2D - 2D 2D - 3D (UCoT) 3D (UCoT)
X Y Z ε̄NEES X Y Z ε̄NEES X Y Z ε̄NEES

a) 0.090 0.441 2.627 46.698 0.068 0.642 0.321 0.977 0.084 0.149 0.334 0.776
b) 0.482 1.482 11.520 34.818 0.066 0.201 1.262 1.206 0.054 0.154 0.861 1.404
c) 1.210 2.942 14.482 42.318 0.195 0.153 0.223 1.006 0.112 0.086 0.162 1.025
d) 0.057 0.928 3.334 51.597 0.039 0.768 0.340 2.861 0.018 0.035 0.251 1.090

Table 5.1: RMS error on the 3D target estimation (meters) and ε̄NEES mean for each spatial
configuration. The DDSIF is run on two MAV trackers with different fusion approaches.

Configuration

Tracker MAV1 Tracker MAV2
2D 2D

X Y Z ε̄NEES X Y Z ε̄NEES
a) 0.128 0.908 1.304 37.842 0.125 0.538 1.270 38.498
b) 0.785 2.568 3.97 38.365 0.691 2.916 3.117 38.751
c) 0.118 1.662 1.804 34.516 0.117 2.091 1.934 35.516
d) 0.087 0.755 1.605 49.085 0.076 0.675 2.048 52.528

Configuration

Tracker MAV1 Tracker MAV2
2D - 3D(UCoT) 2D - 3D(UCoT)

X Y Z ε̄NEES X Y Z ε̄NEES
a) 0.066 0.528 0.341 0.946 0.056 0.244 0.353 0.875
b) 0.377 1.204 0.578 1.702 0.352 1.481 0.517 1.940
c) 0.083 1.488 2.887 3.866 0.084 1.806 3.175 4.685
d) 0.039 0.834 0.454 2.739 0.034 0.648 0.623 2.199

Configuration

Tracker MAV1 Tracker MAV2
3D(UCoT) 3D(UCoT)

X Y Z ε̄NEES X Y Z ε̄NEES
a) 0.087 0.166 0.350 0.808 0.086 0.166 0.350 0.809
b) 0.165 0.179 0.173 0.915 0.165 0.178 0.173 0.914
c) 0.081 0.296 1.332 1.238 0.081 0.296 1.331 1.239
d) 0.027 0.045 0.332 0.831 0.026 0.043 0.303 0.832

Table 5.2: RMS error on the 3D target estimation (meters) and the ε̄NEES mean for each spatial
configuration. The DDSIF is composed of two trackers (decentralized delayed-state
approach), receiving 2D and 3D (UCoT) measurements from both (MAVs) and the
Covariance Intersection is used to fuse beliefs.

It can be seen that the introduction of the 3D observations provided by UCoT improves the es-

timate error, mainly in the Z component. Also, the consistency is improved, since ε̄NEES values

are lower. With the method 3D (UCoT), the spurious measurements were discarded by UCoT.

However, with the method 2D-3D, some 2D measurements, which may be noisy, were still in-

cluded. This is why the 2D-3D (UCoT) results are slightly worse. In real field experiments, the

2D-3D approach is expected to perform better because there will be periods without overlapped

view, but the level of outlier periods will be considerably lower in comparison with the simulation
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Figure 5.4: Results corresponding to the simulation with the spatial configuration a). 3D target
estimation (blue) of one of the trackers for several DDSIF methods. The ground truth
(red) and the confidence intervals(green) are also plotted.
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Figure 5.5: Results corresponding to the simulation with the spatial configuration a). εNEES of
one of the trackers for several DDSIF methods.
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Figure 5.6: Results corresponding to the simulation with the spatial configuration d). 3D target
estimation (blue) of one of the trackers for several DDSIF methods. The ground truth
(red) and the confidence intervals(green) are also plotted.
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Figure 5.7: Results corresponding to the simulation with the spatial configuration d). εNEES of
one of the trackers for several DDSIF methods.
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tests.

The values shown in the Tables 5.1 and 5.2 between a centralized and a decentralized ap-

proach are quite similar. Even though some information is lost in the decentralized approach with

the Covariance Intersection, the filter still achieves a good performance.

To limit the number of figures, we will focus our attention in the simulation for the spatial

configurations, more relevant, (a) and (d). Therefore, the plots in figure 5.4 and figure 5.6 show

the full trajectories for the simulations of configurations (a) and (d) respectively.

In the case of the 2D-2D method, in order to converge, the filter was initialized assuming that

the target’s height is known. In the other cases, the filter was initialized with the 3D measurements

from UCoT. Nonetheless, the 2D-2D method presents a peak in εNEES at the beginning due to

a poor initialization. In figure 5.4, the impact of the outliers can be seen at instants 260s and

320s, where the estimation starts to diverge for the 2D-2D case. A peak in εNEES can also be

observed at the same time instants. The impact of the outliers by using the method 2D-3D (UCoT)

is only observed at instant 260s, where the filter had no UCoT measurements, and as a result

there was no data association. However, this effect is not present at instant 320s, which means

that 3D measurements from the UCoT were available. With the 3D (UCoT) method, the outliers

were rejected thanks to the data association in equation (4.14). Similar results are depicted in

figure 5.6, at instant 60s.

5.2.2 Field Experiments

Field experiments were also conducted to prove the feasibility of the system in a non-urban

area with several landscape elements, including vegetation and rocks, as depicted in figure4.6

and described in section 4.2.1. The tracker robots used were the UGV TIGRE [MAD+13] and

the Pelican MAV, and the results are related to the dynamic target dataset, as detailed in section

4.2.5. The target consisted of a person moving along the environment at the velocity of ∼ 0.8m/s.

The person was wearing distinctive color clothes in order to help the cameras’ image processing

algorithms.

Both robots were tracking the target, the MAV hovered over it (∼ 20 meters), and the UGV

performed an approximation maneuver with a safe distance of ∼ 2 meters. However, most of the

time the UGV is at a distance between 5 to 10 meters, and the MAV relative height is between 5

to 20 meters, due to the ground gradient of the scenario where the target is moving. As proved

in [DASL14] and described in section 4.2.5, the accuracy of the stereo estimation is low for these

distances, and therefore this work proposes to evaluate the DDSIF by combining the MAV 2D

measurements, and the 3D measurements obtained by UCoT with the monocular information

from the MAV camera and from one of the UGV cameras. The results are detailed in Table 5.3

and depicted in Fig. 5.8.

The overall performance is similar to the one obtained using the simulated environment. In

100



5.2 Experimental Results

0 20 40 60 80

−30

−20

−10

0

10

X
 (

m
)

2D

0 20 40 60 80
−50

−40

−30

−20

−10

Y
 (

m
)

0 20 40 60 80

−5

0

5

Time (s)

Z
 (

m
)

0 20 40 60 80

−30

−20

−10

0

10
2D − 3D

0 20 40 60 80
−50

−40

−30

−20

−10

0 20 40 60 80

−5

0

5

Time (s)

0 20 40 60 80

−30

−20

−10

0

10
3D (UCoT)

0 20 40 60 80
−50

−40

−30

−20

−10

0 20 40 60 80

−5

0

5

Time (s)

Figure 5.8: Results corresponding to the field experiments. 3D target estimate (blue) of one of
the trackers for several (DDSIF) methods. The ground truth (red) and the confidence
intervals (green) are also plotted.
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5. DDF - UCoT - Decentralized Data Fusion based on Uncertain Multi-Robot Cooperative
Triangulation

Method 2D-2D 2D - 3D (UCoT) 3D (UCoT)
X 1.714 0.685 1.146
Y 3.945 1.737 1.249
Z 0.116 0.660 0.555

ε̄NEES 77.667 49.166 17.142

Table 5.3: Field experiment. (RMS) error on the 3D target estimation (meters) and ε̄NEES mean
for one of the trackers for several (DDSIF) configurations.

the case of the 2D-2D method, the filter was initialized with the known height of the person and

therefore the εNEES peak is low, meaning that the value was coherent with the real height. The

lower accuracy shown in all methods is not only due to the outdoor environment, which is affected

by light variations, and but also due to the robots’ high GPS uncertainty (∼ 3m).

5.3 Discussion of the results

This chapter described the integration of UCoT as a novel sensor to be combined with a

decentralized stochastic filter. The method was evaluated with simulations and field experiments

where a team of aerial and ground robots with cameras track a dynamic target.

The results from the simulations and the field experiments show how the multi-robot triangu-

lation makes it possible to ensure a correct filter initialization. Furthermore, the method improves

the data association phase, discarding outliers, by means of a probabilistic geometric validation.

This leads to an improved consistency of the filter, shown in the εNEES in both experimental

cases. Finally, it is shown how this method can be applied in a decentralized filter for cooperative

tracking.

5.4 Related Publications

The work presented in this chapter was accepted as a full length-article[DCM+15] published

in the IEEE International Conference on Robotics and Automation (ICRA) 2015.
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6
Conclusions and Future Work

This thesis contributes to the field of multi-robot systems, addressing the problem of cooper-

ative perception with a team of heterogeneous robots in order to estimate the 3D dynamic target

position based on bearing-only measurements.

This chapter revises the main contributions of the thesis, and outlines potential research topics.

6.1 Revisiting the main contributions

The main contributions of this thesis are:

• An architecture framework has been proposed to ensure, in a context of multi-robot coopera-

tive perception, the altruistic commitment to share the required information with team-mates

so that each robot can estimate the 3D target position locally. The architecture is composed

of five components, with the local state being the component responsible for providing the

required shared 3-tuple, 〈WCCC,W RRR, {Wddd}〉 composed of the camera’s position WCCC, attitude
WRRR and the ray vector {Wddd} related to the global frame. The outlined architecture was eval-

uated and proved to be reliable with field experiments and also in a simulation environment

with a team of heterogeneous robots including a UGV and a MAV.

• This thesis respond to open issues found in the state-of-the-art, related to the 3D dynamic

target estimation position based on bearing-only measurements. Therefore, two methods

have been formulated: the Mid-Point Multi-Robot Cooperative triangulation MidCoT and the

Uncertainty-based Multi-Robot Cooperative Triangulation UCoT. Both methods estimate

the 3D target position based on the geometric constraints associated with the triangulation
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by establishing a flexible and dynamic geometric virtual baseline to perform cooperative

triangulation. The first method, the MidCoT, selects the line that is perpendicular to the

shortest segment of both rays, and assumes that both monocular vision systems are able

to contribute equally to the estimation of the target position. As an extension to the previous

method, the UCoT proposes to handle the uncertainty of the observation model provided by

each robot by weighing the contribution of each monocular vision system to the estimation

of the target position in a probabilistic manner. Both methods have been evaluated with field

experiments and compared to a stereo rigid baseline and a monocular 3D target estimation.

The overall results show that the UCoT method performs better when compared to the

other three methods in terms of mean and standard deviation error of 3D target position

estimation, as depicted in tables 4.1 and 4.2.

• As part of the architecture framework, a probabilistic geometric intersection data associa-

tion component has been formulated using the normalized squared error related to the 3D

space intersection between a pair of monocular vision systems. The component endows

the architecture with an important data association method, allowing the framework to de-

tect spurious observations and discard uncorrelated observations. This component is even

more relevant in a context of heterogeneous robots with different fields of view and with

multiple targets. The impact of this component is confirmed by the improvement of the over-

all standard deviation error of the 3D target position estimation in the MidCoT and UCoT

method, as depicted in tables 4.1 and 4.2.

• As part of the architecture framework, a multi-robot uncertainty epipolar constraint data

association component has been formulated to perform the feature correspondence be-

tween different camera fields of view. The narrow band associated with the epipolar line

was derived by propagating the sources of uncertainty in the position and attitude of each

monocular vision system. The uncertainty narrow band has been estimated based on the

Monte Carlo simulation. This allowed us to incorporate the uncertainty of each robot into an

epipolar search space and support the heterogeneity of each robot with a monocular vision

system. The contribution of this component was validated in a simulation environment with

two MAVs and a UGV.

• A simulation environment was developed with MORSE, and is composed of an outdoor

environment with a team of MAVs and a UGV. The simulation was used to evaluate the

UCoT method under different conditions that were not possible with field experiments, for

instance to assess the impact of introducing more robots to the environment, to evaluate the

UCoT data association component with the ability to choose the pair of camera systems with

the lowest uncertainty, and also evaluate the robustness of the method to different levels of

Gaussian noise in the position and attitude sensors.
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6.1 Revisiting the main contributions

• The Σ3D was derived based on the first-order uncertainty propagation with the assumption

that all sources of uncertainty present in the 3D target estimation can be approximated by

a Gaussian distribution. Because this information is relevant to the UCoT method, and

due the influence of the weights applied to each bearing-only system, this work considered

the existence of uncertainty in the input pixel localization, and in the camera’s position and

attitude. The outlined sources of uncertainty have a non-linear behavior and were modeled

with their first-order Taylor series approximation. Therefore, a Monte Carlo simulation was

conducted to assess the level of inadequacy of this approximation. The results, depicted

in table 4.5, prove that, as expected, the linearization loses some accuracy but the overall

performance allow us to conclude that the UCoT method is not affected by the first-order

Taylor series approximation.

• Due to the expected target dynamic, one of the issues that was imposed to the framework

was the ability to ensure real-time and low computational requirements. This contribution

was accomplish with the UCoT architecture framework being able to estimate the 3D target

position in a single iteration and in real-time, without batch recursive 3D estimation, as

shown in table 4.3.

• In terms of the field experiments, already in itself a contribution from this thesis, this work

also provides a mechanism to ensure multi-robot camera trigger synchronization without

communication between robots. Based on the time synchronization accuracy between

robots, it was possible to develop a camera trigger with a level of accuracy that is lower

than the frame rate and the acquisition latency associated with the vision system. This

mechanism provides the UCoT architecture with a method to ensure a more robust cooper-

ative triangulation by having in the same instance a distributed snapshot from all monocular

vision systems. The accuracy from this mechanism is depicted in figure 4.11.

• The UCoT method as a novel sensor was combined with a decentralized stochastic filter, de-

noted by DDSIF. The approach was validated with simulations and field experiments where

a team of aerial and ground robots with monocular vision systems track a dynamic target.

The results from both experimental scenarios prove how the UCoT is a higher contribution

to ensure a correct filter initialization and also in the data association phase, by means of

the probabilistic geometric intersection data association component able to discard outlier,

described in Section 4.1.3. The contribution of UCoT as a novel sensor to the overall filter

consistency and target estimation accuracy are shown in tables 5.1 and 5.3.
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6.2 Perspectives and Future Work

Despite the effectiveness of UCoT as a method to estimate the 3D target position based

on bearing-only vision information, as described in this thesis, the following paragraphs outline

ongoing and future research topics.

• In this thesis the focus has been on the uncertainty modelling of cooperative triangulation

methods using multiple monocular cameras installed on mobile robots. This paves the way

for future studies of active cooperative triangulation, where the focus would be on deciding

the optimal geometry for two or more mobile robots carrying monocular cameras, so as to

minimize the uncertainty associated to 3D estimation of a target position. Decision-theoretic

techniques can be used to solve this stochastic optimization problem. Model-Predictive

Control techniques have also been used to tackle this problem[LAD+14] but for a set of

pre-defined geometries for the robot formation.

• Throughout this thesis, the architecture framework evaluates, based on the probabilistic

geometric intersection data association component, which pair of cameras provides, through

UCoT, the 3D target estimation with higher accuracy. Therefore, we intend to extend the

UCoT method to be able to weight all direction rays that are correlated to a target and

without use only the best pair of cameras.

• The architecture framework has proved the ability to ensure an altruistic commitment to

share the useful information to the UCoT in order to be able to estimate the 3D information

based on bearing-only information. The level of abstraction, provided by the architecture,

endows the support of other types of bearing-only sensors, such as laser, radar and acoustic

sensors. This will be further experimentally validated in order to infer the impact of introduc-

tion of this type of sensors into the UCoT method.

• Due to the overall improvement provided by the UCoT in the 3D estimation of a target po-

sition, is intended to address other application scenarios, such as: an indoor scenario from

the RoboCup Middle Size League to estimate 3D information from objects, such as ball,

opponents and team-mates based on bearing-only information; in search and rescue mis-

sions, by combining heterogeneous vision sensors including, but not limited to, infrared ther-

mographic cameras, visible cameras and multi-spectral cameras; combining fixed cameras

with autonomous robots in scenarios, such as forest fire fighting activities with fixed cameras

and UAVs. The straightforward manner of integrate bearing-only information, provided by

UCoT, can lead to a new paradigm of cooperative perception where the best of each visual

sensor can be dynamically combined in order to ensure a clearly global visual perception

improvement in the knowledge of the surrounding environment.
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• Ongoing work includes extending the simulation environment to support the integration of

more robots. This has been outlined as a limitation in MORSE due to the requirements

in terms of computational and graphics resources. Therefore, based on the Multi-node

provided by the MORSE, it is intended to use the same simulation scenario in separated

computers in order to be able to extend the number of robots. This approach can also

be used to evaluate the impact of introducing communication constraints, such as, latency

into the UCoT framework when each robot shares the required 3-tuple 〈WCCC,W RRR, {Wddd}〉 to

estimate the 3D information.
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