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•  Definition of Markov Chain (MC) and relation to DES.

•  Discrete Time MCs
•  the transition probability matrix
•  homogeneous MCs
•  state holding times
•  state probabilities
•  transient analysis
•  classification of states
•  steady-state analysis

MARKOV CHAINS 
Outline 

•  Continuous Time MCs
•  the transition rate matrix
•  homogeneous MCs
•  transition probabilities
•  state probabilities
•  transient analysis
•  steady-state analysis
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Def.: A Markov Chain is a discrete state space stochastic process 
where the probability of transitions between states has the 
following property: 

MARKOV CHAINS 
Definitions 

Recall that, in a Markov process: 

•  All past state information is irrelevant (no state memory needed). 
•  How long the process has been in the current state is irrelevant (no 
state age memory needed). 

Discrete Time Markov Chains (DTMC) 
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RELATION WITH DES 

Relation with STA: We will only be concerned with the total 
probability of making a transition from state x to state x’, 
regardless of which event causes the transition: 

€ 

p(x' | x) = P[X(tk +1) = ′ x | X(tk ) = x] = p(x' | x,i).p(i | x)
i∈Γ(x )
∑

Therefore, to specify a (CT)MC model, we will only need to identify: 
1.  A state space χ 
2.  An initial state probability p0(x)=P[X0=x], for all x ∈ χ
3.  Transition probabilities p(x’,x) 

Relation with ETPN: The marking process of an exponential timed 
Petri net is a continuous time Markov Chain (CTMC). 
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Transition probabilities

Chapman-Kolmogorov Equations

DISCRETE TIME MARKOV CHAINS (DTMC) 

n-step transition probabilities
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DISCRETE TIME MARKOV CHAINS (DTMC) 

Chapman-Kolmogorov Equations (Matrix Form)

Forward Chapman-Kolmogorov Equation

Backward Chapman-Kolmogorov Equation
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Homogeneous MCs

The transition probabilities are independent of time k. Note that not all 
probabilities involved (e.g., joint probabilities) are time-independent. 

CK equation

HOMOGENEOUS DTMC 

Setting u = k+m in the CK equation: 

m = n-1 

m
 =

 n
-1
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HOMOGENEOUS DTMC 

CK equation

Transition Probability Matrix
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HOMOGENEOUS DTMC 

State Holding Times (Sojourn Times) 

Random variable representing the number of consecutive time steps spent at state i 

i i i i any j ≠ ii ... 

Geometric distribution 
with parameter 
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HOMOGENEOUS DTMC 

State Probabilities 

If, in addition to the state space χ and the transition probability matrix P 
the initial state probability vector               is specified, the 
DTMC is completely specified. 

Two types of analysis will be carried out: 
•  transient analysis 
•  steady-state analysis 
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HOMOGENEOUS DTMC 
State Probabilities 

Transient Analysis 

Solution: 
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HOMOGENEOUS DTMC 
State Classification 

Reachable 

Absorbing 

j is reachable from i if there is a path from i to j, i.e.,  
if pij

n > 0 for some n=1,2,… 

€ 

i is absorbing ⇔ ∃k0 ,∀k≥k0
:π i(k) =1

Irreducible 

A subset S of the state space χ is said to be closed 
if pij=0 for any i∈S, j∉ S. 
State i is absorbing if it forms a single-element 
closed set (pii=1). 

A closed set of states S is irreducible if state j is 
reachable from state i for any i,j ∈S. 
A MC is irreducible if its state space χ is irreducible. 

Reducible, when there are subsets of the state 
space not reachable from other states (e.g., 
state 1 from 2 in the MC on the right)   

1 2 

1 2 
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0.5
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0.3
1

absorbing
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HOMOGENEOUS DTMC 
State Classification 

Q.: The MC is in state i. Will the chain ever return to state i? 
A.: 

•  definitely yes: state i is recurrent 
•  maybe no: state i is transient 

Hitting time:

Recurrence time:

= P [ever return to i | current state is i] = P [Tii<∞ ] 

first time the chain 
enters j, starting in i 
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HOMOGENEOUS DTMC 
State Classification 

Transient 

Recurrent 

3 4 

2 

5 

1 

6 1 

1 
0.5 

1 

0.5 0.3 

0.7 

0.1 

0.9 
Example

1,2,6 - recurrent 

6 - absorbing 

3,4,5 - transient 

1,2  is reachable from 1,2,3,4,5 ;  
3,4,5 from 3,4,5;  6 from 3,4,5,6 

{1,2}, {6} – closed sets 
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HOMOGENEOUS DTMC 
State Classification 

Theorem 1: If a MC has a finite state space, then at least some state is recurrent.  

Theorem 2: If i is a recurrent state and j is reachable from i, then state j is recurrent.  

Theorem 3: If S is a finite closed irreducible set of states, then every state in S is 
recurrent.  
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Positive recurrent 

Null recurrent If the mean recurrence time is 

If the mean recurrence time is  

State 1 

State 2 

State 6 

  

€ 

E[t11] = kρ1
k

k=1

∞

∑ =1⋅ 0 + 2 ⋅1+ 3 ⋅ 0 + = 2

  

€ 

E[t66] = kρ6
k

k=1

∞

∑ =1⋅1+ 2 ⋅ 0 + 3 ⋅ 0 + =1
  

€ 

E[t22] = kρ2
k

k=1

∞

∑ =1⋅ 0 + 2 ⋅1+ 3 ⋅ 0 + = 2

Ex.:  positive recurrent states 

1 
3 4 

2 

5 

1 

6 

1 0.5 

1 

0.5 0.3 

0.7 

0.1 
0.9 

The mean recurrence time is 

€ 

Mi ≡ E[tii] = kρi
k

k=1

∞

∑

HOMOGENEOUS DTMC 
State Classification 
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Positive recurrent 

Null recurrent If the mean recurrence time is 

If the mean recurrence time is  

The mean recurrence time is 

€ 

Mi ≡ E[tii] = kρi
k

k=1

∞

∑

HOMOGENEOUS DTMC 
State Classification 

Ex.:  null recurrent states 

0 … 1 2 3 

1/2 1/3 1/4 

1/2 1 2/3 

recurrent 

null recurrent 

State 0 is 
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Transient states may never be revisited 

Positive recurrent will definitely be revisited with finite expected 
recurrence time 

Null recurrent will definitely be revisited but the expected 
recurrence time is infinite 

HOMOGENEOUS DTMC 
State Classification 
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HOMOGENEOUS DTMC 
State Classification 

Theorem 4: If i is a positive recurrent state and j is reachable from i, then 
state j is positive recurrent.  

Theorem 5: If S is a closed irreducible set of states, then every state in 
S is positive recurrent or every state in S is null recurrent or every state 
in S is transient. 

Theorem 6: If S is a finite closed irreducible set of states, then every 
state in S is positive recurrent.  
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Periodic 

Aperiodic 

State is visited every d steps 

There’s no d such that the state is visited regularly every d steps 

1 

3 

2 

€ 

periodic
d = 3

Examples: 

HOMOGENEOUS DTMC 
State Classification 

1 

3 

2 

1
1

1

1

1

0.5

0.5

Def.: A state i is said to be periodic if the greatest common divisor d of the 
set {n>0: pii

n>0} is d ≥ 2. If d=1, the state is said to be aperiodic.

€ 

periodic
d = 2

1 

3 

2 

€ 

aperiodic

0.5
0.5

0.5

0.5 0.5

0.5

Theorem 7: If a MC is irreducible, then all its states have the same period.  
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HOMOGENEOUS DTMC 
Summary of State Classification 

states

transient recurrent

null recurrent positive recurrent

periodic aperiodic
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HOMOGENEOUS DTMC 
State Probabilities 

Steady-State Analysis 

Issues to be addressed: 

•  under what conditions do the above limits exist? 

•  if they exist, do they form a probability distribution, i.e.,  

•  how do we evaluate πj ?  

Q.: What is the probability of finding a MC at state i in the long run, 
i.e., after a period of time long enough so that the state probabilities 
have reached fixed values which do not change with time?

If πj exists for some state j, it is referred as the steady-state, equilibrium or stationary state 
probability. If this is true for all states j, we obtain the stationary probability vector  
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HOMOGENEOUS DTMC 
State Probabilities 

Steady-State Analysis 

If the limits exist 

When the MC is periodic, the limits do not exist. 

On the other hand, 

Theorem 8 – In an irreducible aperiodic MC the limits 

always exist and are independent of the initial state probability 

vector. 
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HOMOGENEOUS DTMC 
State Probabilities 

If S is a closed irreducible set of states, then every state in S is positive 
recurrent or every state in S is null recurrent or every state in S is 
transient. 

Recalling Theorem 5 

We get to the following two fundamental Theorems: 

Theorem 9: In an irreducible aperiodic MC consisting of null recurrent or of 
transient states 

For all states j, and no stationary probability distribution exists. 

Theorem 10: In an irreducible aperiodic MC consisting of positive recurrent 
states, a unique stationary state probability vector π exists such that πj>0 
and  

Steady-State Analysis – Irreducible MCs 
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HOMOGENEOUS DTMC 
State Probabilities 

In Theorem 9, Mj is the mean recurrence time 

and the steady state probabilities are determined by solving 

Aperiodic positive recurrent states are very important and desirable – 
they are called ergodic. If all the states of a MC are ergodic, the MC is 
said to be ergodic. 
From Theorems 6 and 10, every finite irreducible aperiodic MC has a unique stationary 
state probability vector determined by solving the above finite system equations. Note that 
solving an infinite system of equations is not so simple, though. 
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HOMOGENEOUS DTMC 
State Probabilities 

Steady-State Analysis – Reducible MCs 

χ 

S2

The chain eventually enters some irreducible closed 
set of states S and remains there forever: 

•  if S consists of 2 or more states, the steady state 
behavior of S can be analyzed as in the irreducible MC 
case 

•  if S consists of a single absorbing state, the MC 
simply remains in that state 

χ 

S1

S

The problem arises when the reducible chain 
contains two or more irreducible closed sets of 
states
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HOMOGENEOUS DTMC 
State Probabilities 

Steady-State Analysis – Reducible MCs 
In this case, the relevant question is: what is the probability that the chain enters a 
particular set S first? 

Def.: probability that the chain enters set S given that it starts at state 
i∈τ: 

τ

S

i

j

τ

S

i

j

r
τ is the set of 
transient states in a 
reducible MC

€ 

ρi(S) = pij
j∈S
∑ + ρr(S)pir

r∈τ
∑

The solution for the unknown probabilities ρi(s) for all i ∈ τ is not easy, but it has a unique 
solution for a finite set τ. However, if the set is infinite, the solution may not be unique. 
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CONTINUOUS TIME MARKOV CHAINS (CTMC) 

The Markov (memoryless) property is expressed here as 

The analysis of CTMC parallels that of DTMC. However, the one-
step probability matrix P can no longer be used since state 
transitions are no longer synchronized by a common clock. 
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Transition functions

Chapman-Kolmogorov Equations

CONTINUOUS TIME MARKOV CHAINS (CTMC) 
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Chapman-Kolmogorov Equations (Matrix Form)

CONTINUOUS TIME MARKOV CHAINS (CTMC) 

The Transition Rate Matrix

Transition rate matrix 
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CONTINUOUS TIME MARKOV CHAINS (CTMC) 

Forward Chapman-Kolmogorov Equation

Backward Chapman-Kolmogorov Equation

Solution of the FCK: (under certain conditions that Q must satisfy)

€ 

H(s,t) = exp Q(τ )
s

t

∫ dτ
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HOMOGENEOUS CTMC 

Note that, for a homogeneous CTMC: H(t,t+Δt) = P(Δt),  

therefore Q(t) = Q = constant 

€ 

dP(τ)
dτ

= P(τ )Q

with i.c.  pij =
1 if j = i
0 if j ≠ i
 
 
 

  

Solution:

(*) 
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HOMOGENEOUS CTMC 

State Holding Times (Sojourn Times) 

Random variable representing the amount of time spent at state i whenever it 
is visited 

€ 

V (i)

€ 

P[V (i) ≤ t] =1− e−Λ(i)t ,      t ≥ 0 Exponential distribution 
with parameter Λ(i) 

€ 

Λ(i) = λij
eij ∈Γ(i)
∑

For MC, an event coincides with a state transition, therefore “interevent 
times” are identical to “state holding times”. 

Defining events eij as events generated by a Poisson process with rate 
λij which cause transition from state i to state j: 
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HOMOGENEOUS CTMC 

Physical Interpretation of the Properties of the Transition Rate Matrix 

€ 

qii =
d
dτ

pii(τ )[ ]
τ= 0

-qii is the instantaneous rate at which a state transition out of i takes place. 

€ 

qij =
dpij (τ)
dτ τ= 0

= λij

qij is the instantaneous rate at which a state transition from i to j takes place. 

Differentiating w.r.t. τ and setting τ=0

⇒ 

€ 

−qii =
d
dτ

1− pii(τ)[ ]
τ= 0

= Λ(i)Note that: 
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HOMOGENEOUS CTMC 

Transition Probabilities 

Once Q is specified, a full MC model specification is obtained: 

•  Pij determined as above 

•  the parameters of the exponential state holding time are given by 

State following transition at the random time instant Tk+1 
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HOMOGENEOUS CTMC 

State Probabilities 

If, in addition to the state space χ and the transition matrix P(τ), the initial 
state probability vector           is specified, the CTMC is 
completely specified. 

Notice that P(τ) = eQτ, therefore the specification of Q is enough.

Two types of analysis will be carried out: 
•  transient analysis 
•  steady-state analysis 
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HOMOGENEOUS CTMC 
State Probabilities 

€ 

π (t) = π (0)P = π (0)eQt

Transient Analysis 

This is the solution of: 

€ 

dπ (t)
dt

= π (t)Q

€ 

π j (t) = P[X(t) = j] = P[X(t) = j | X(0) = i]
all i
∑ P[X(0) = i] = pij (t)

all i
∑ π i(0)

χ, Q 
π(0) π(t)

(**) 
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HOMOGENEOUS CTMC 
State Probabilities 

State transition rate diagram 

qij qjr 
i r 

j 
. 
. 
. 

. 

. 

. 

Therefore the state transition rate diagram contains the exact same information as the transition rate matrix Q

exactly the same as (**) 
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HOMOGENEOUS CTMC 
State Probabilities 

Steady-State Analysis 

Issues to be addressed: 

•  under what conditions do the above limits exist? 

•  if they exist, do they form a probability distribution, i.e.,  

•  how do we evaluate πj ?  

Q.: What is the probability of finding a MC at state i in the long run, 
i.e., after a period of time long enough so that the state probabilities 
have reached fixed values which do not change with time?

If πj exists for some state j, it is referred as the steady-state, equilibrium or stationary 
state probability. If this is true for all states j, we obtain the stationary probability 
vector  
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HOMOGENEOUS CTMC 
State Probabilities 

€ 

dπ(t)
dt

 = 0 ⇒   πQ = 0

Steady-State Analysis 

If the limits exist 

All the results for CTMC parallel those for DTMC. We will state 
only the most relevant result. 

Theorem 11: In an irreducible CTMC consisting of positive recurrent states, 
a unique stationary state probability vector π exists such that πj>0 and  

and the steady state probabilities are determined by 
solving 
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State space of the equivalent CTMC: reachability set R[x0] of the exponential timed Petri net

Computation of the transition rate from state xi to state xj ≠ xi is given by 

€ 

qij = λk (xi)
tk ∈Tij

∑

Where Tij is the subset of TD enabled transitions in xi such that the firing of any 
transition in Tij leaves the CTMC in xj . 

If xj = xi , 

€ 

qii = − qij
j≠ i
∑

RELATION WITH ETPNs 
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MARKOV CHAINS 

Further reading  
•  Birth-Death chains – special structure facilitates the task of 
obtaining explicit solutions for state probabilities (steady-state and 
transient analysis). 
•  Lots of literature on Markov Chains 

Acknowledgments to João Sequeira, who helped preparing 
some slides in this chapter, for some sessions of an ISR/IST 
Reading Group on DES. 


