90 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

! Exercise 3.1.3: Write regular expressions for the following languages:

!

*

a) The set of all strings of 0’s and 1’s not containing 101 as a substring.

b) The set of all strings with an equal number of 0’s and 1’s, such that no
prefix has two more 0’s than 1’s, nor two more 1’s than 0’s.

¢) The set of strings of 0’s and 1’s whose number of 0’s is divisible by five
and whose number of 1’s is even.

Exercise 3.1.4: Give English descriptions of the languages of the following
regular expressions:

*a) (1+€)(00*1)*0".
b) (0*1*)*000(0 + 1)*.
¢) (0+10)*1*,

Exercise 3.1.5: In Example 3.1 we pointed out that @ is one of two languages
whose closure is finite. What is the other?

3.2 Finite Automata and Regular Expressions

While the regular-expression approach to describing languages is fundamentally
different from the finite-automaton approach, these two notations turn out to
represent exactly the same set of languages, which we have Sﬂ.:mm the “reg-
ular languages.” We have already shown that deterministic finite mzao.BmaF
and the two kinds of nondeterministic finite automata — with and without
e-transitions — accept the same class of languages. In order to show that the
regular expressions define the same class, we must show that:

1. Every language defined by one of these automata is also defined by a
regular expression. For this proof, we can assume the language is accepted
by some DFA.

2. Every language defined by a regular expression is defined by one of ?mm.m
automata. For this part of the proof, the easiest is to show that there is
an NFA with e-transitions accepting the same language.

Figure 3.1 shows all the equivalences we have proved or will prove. An arc ?oa.b
class X to class ¥ means that we prove every language defined by class X is
also defined by class Y. Since the graph is strongly connected (i.e., we can get
from each of the four nodes to any other node) we see that all four classes are

really the same.

W

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS

[t

Figure 3.1: Plan for showing the equivalence of four different notations for
regular languages

3.2.1 From DFA’s to Regular Expressions

The construction of a regular expression to define the language of any DFA is
surprisingly tricky. Roughly, we build expressions that describe sets of strings
that label certain paths in the DFA’s transition diagram. However, the paths
are allowed to pass through only a limited subset of the states. In an inductive
definition of these expressions, we start with the simplest expressions that de-
scribe paths that are not allowed to pass through any states (i.e., they are single
nodes or single arcs), and inductively build the expressions that let the paths
go through progressively larger sets of states. Finally, the paths are allowed to
go through any state; i.e., the expressions we generate at the end represent all
possible paths. These ideas appear in the proof of the following theorem.

Theorem 3.4: If L = L(A) for some DFA A, then there is a regular expression
R such that L = L(R).

PROOF: Let us suppose that A’s states are {1,2,.. ., n} for some integer n. No
matter what the states of A actually are, there will be n of them for some finite
n, and by renaming the states, we can refer to the states in this manner, as if
they were the first n positive integers. Our first, and most difficult, task is to
construct a collection of regular expressions that describe progressively broader
sets of paths in the transition diagram of A.

bmncm:mm wm.& as the name of a regular expression whose language is the
set of strings w such that w is the label of a path from state ¢ to state j in A4,
and that path has no intermediate node whose number is greater than k. Note
that the beginning and end points of the path are not “intermediate,” so there

is no constraint that ¢ and/or j be less than or equal to k.

Figure 3.2 suggests the requirement on the paths represented by mm&. There,
the vertical dimension represents the state, from 1 at the bottom to n at the
top, and the horizontal dimension represents travel along the path. Notice that
in this diagram we have shown both ¢ and j to be greater than k, but either or
both could be & or less. Also notice that the path passes through node & twice,

but never goes through a state higher than k, except at the endpoints.

92 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

: (k)
Figure 3.2: A path whose label is in the language of regular expression R;;

i (k) the following inductive definition,
he expressions R;.”, we use the :
s 4 ng — n. Notice that when k = n, there is

. ! ok
starting at k = 0 and finally reaching .
no mmmam&oaon at all on the paths represented, since there are no states greater
than n.
= 0. Since all states are numbered 1 or above, the
at the path must have no intermediate states at all.

hat meet such a condition:

BASIS: The basis is k
restriction on paths is th
There are only two kinds of paths t

1. An arc from node (state) i to node j.
2. A path of length 0 that consists of only some node i.

is possible. We must examine the DFA A and

If i # j, then only case (1) i . e :
mza gomwm.gw,:v:n symbols a such that there is a transition from state ¢ to state

4 on symbol a.

0
a) If there is no such symbol a, then mmu.v = 0.

0 _
b) If there is exactly one such symbol a, then R;;” = a.

c) If there are gymbols aj,az,---,8k that label arcs from state ¢ to state 7,

&Tmﬂmmwv“9w+ﬁm+...+ww.

However, if 1 = j, then the legal paths are the path of length 0 and all wowvm

from ¢ ﬁw itself. The path of length O is represented by ?M Mmmﬁmﬂmxvamw.wom
i . it. Thus, we add € to the variou

¢, since that path has no symbols along 1 5,

expressions devised in (a) through (c) above. That is, in case .Amv WE w%Bvo“(Mw

the expression becomes ¢, in case (b) [one m%Bvow a] the expression mnonW M " ,

and in case (c) [multiple symbols] the expression becomes €+ a1 +az+- k-

INDUCTION: Suppose there is a path from state i to state &?mn goes through
no state higher than k. There are two possible cases to consider:

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS ww

1. The path does not go through state &k at all. In this case, the label of the
path is in the language of mm.T:.

2. The path goes through state k at least once. Then we can break the path
into several pieces, as suggested by Fig. 3.3. The first goes from state
i to state k without passing through k, the last piece goes from % to j
without passing tirough k, and all the pieces in the middle go from %
to itself, without passing through k. Note that if the path goes through
state k only once, then there are no “middle” pieces, just a path from ¢
to k and a path from k to j. The set of labels for all paths of this type
is represented by the regular expression mmnlvﬁwmwivv*thc. That is,
the first expression represents the part of the path that gets to state &k
the first time, the second represents the portion that goes from k to itself,
zero times, once, or more than once, and the third expression represents
the part of the path that leaves k for the last time and goes to state j.

OOV OGO

/lc‘\ <
//‘l‘\\l\l\\\
(k-1) In R (D
In R ik R (

Zero or more strings in R N@ML)

Figure 3.3: A path from ¢ to j can be broken into segments at each point where
it goes through state &k

When we combine the expressions for the paths of the two types above, we
have the expression
B k-1 (k=~1) ; p(k=1)\# p(k=1)
m@mv = mmu.)+ REV(RY,)" Ry;
for the labels of all paths from state i to state j that go through no state higher
than k. If we construct these expressions in order of increasing superscript

then since each mma depends only on expressions with a smaller superscript

then all expressions are available when we need them.
Eventually, we have mm.; for all 7 and j. We may assume that state 1 is the
start state, although the accepting states could be any set of the states. The

regular expression for the language of the automaton is then the sum (union)
n)
J

3

?

of all expressions .ﬂ such that state j is an accepting state. O

Example 3.5: Let us convert the DFA of Fig. 3.4 to a regular expression.

This DFA accepts all strings that have at least one 0 in them. To see why, note

that the automaton goes from the start state 1 to accepting state 2 as soon as

it sees an input 0. The automaton then stays in state 2 on all input sequences.
Below are the basis expressions in the construction of Theorem 3.4.

96 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

This expression is 170(0 + 1)*. It is simple to interpret this expression. Its
language consists of all strings that begin with zero or more 1’s, then have a 0,
and then any string of 0’s and 1’s. Put another way, the language is all strings
of 0’s and 1’s with at least one 0. O

3.2.2 Converting DFA’s to Regular Expressions by
Eliminating States

The method of Section 3.2.1 for converting a DFA to a regular expression al-
ways works. In fact, as you may have noticed, it doesn’t really depend on the
automaton being deterministic, and could just as well have been applied to an
NFA or even an e NFA. However, the construction of the regular expression
is expensive. Not only do we have to construct about n® expressions for an
n-state automaton, but the length of the expression can grow by a factor of 4
on the average, with each of the n inductive steps, if there is no simplification
of the expressions. Thus, the expressions themselves could reach on the order
of 4™ symbols.

There is a similar approach that avoids duplicating work at some points.
For example, all of the expressions with superscript (k + 1) in the construction
of Theorem 3.4 use the same subexpression A‘mm\wv*w the work of writing that
expression is therefore repeated n? times.

The approach to constructing regular expressions that we shall now learn
involves eliminating states. When we eliminate a state s, all the paths that went
through s no longer exist in the automaton. If the language of the automaton
is not to change, we must include, on an arc that goes directly from ¢ to p,
the labels of paths that went from some state ¢ to state p, through s. Since
the label of this arc may now involve strings, rather than single symbols, and
there may even be an infinite number of such strings, we cannot simply list the
strings as a label. Fortunately, there is a simple, finite way to represent all such
strings: use a regular expression.

Thus, we are led to consider automata that have regular expressions as
labels. The language of the automaton is the union over all paths from the
start state to an accepting state of the language formed by concatenating the
languages of the regular expressions along that path. Note that this rule is
consistent with the definition of the language for any of the varieties of automata
we have considered so far. Each symbol a, or ¢ if it is allowed, can be thought
of as a regular expression whose language is a single string, either {a} or {e}.
We may regard this observation as the basis of a state-elimination procedure,
which we describe next.

Figure 3.7 shows a generic state s about to be eliminated. We suppose that
the automaton of which s is a state has predecessor states ¢1,q2,...,q; for s
and successor states pi,ps,...,Pm for s. It is possible that some of the ¢’s are
also p’s, but we assume that s is not among the ¢’s or p’s, even if there is a loop
from s to itself, as suggested by Fig. 3.7. We also show a regular expression on
each arc from one of the ¢'s to s; expression @); labels the arc from ¢;. Likewise,

R

Im

R

k1

Figure 3.7: A state s about to be eliminated

we show a regular expression P; labeling the arc from s to D, for all i. We show
a loop on s with label S. Finally, there is a regular expression R;; on the arc
from g; to p;, for all i and j. Note that some of these arcs may not exist in the
automaton, in which case we take the expression on that arc to be 9.

Figure 3.8 shows what happens when we eliminate state s. All arcs involving
state s are deleted. To compensate, we introduce, for each predecessor ¢; of s
and each successor p; of s, a regular expression that represents all the paths
that start at ¢;, go to s, perhaps loop around s zero or more times, and finally
go to p;. The expression for these paths is Q;S *P;. This expression is added
(with the union operator) to the arc from g; to p;. If there was no arc ¢; — pj,
then first introduce one with regular expression §.

The strategy for constructing a regular expression from a finite automaton
is as follows: :

1. For each accepting state g, apply the above reduction process to pro-
az.om an equivalent automaton with regular-expression labels on the arcs.
Eliminate all states except ¢ and the start state Qo-

2. If g # qqo, then we shall be left with a two-state automaton that looks like

CHAPTER 3. REGULAR EXPRESSIOn.. AND LANGUAGES

R+ Q,5H

R, + Q S*P

im

R+ O S* P

Figure 3.8: Result of eliminating state s from Fig. 3.7

R + Q, S*F

km

Fig. 3.9. The regular expression for the accepted strings can be described
in various ways. One is (R + SU*T)*SU*. In explanation, we can go
from the start state to itself any number of times, by following a sequence
of paths whose labels are in either L(R) or L(S U*T). The expression
SU*T represents paths that go to the accepting state via a path in L(S),
perhaps return to the accepting state several times using a sequence of
paths with labels in L(U), and then return to the start state with a path
whose label is in L(T). Then we must go to the accepting state, never to
return to the start state, by following a path with a label in L(S). Once
in the accepting state, we can return to it as many times as we like, by
following a path whose label is in L(U).

Figure 3.9: A generic two-state automaton

3. If the start state is also an accepting state, then we must also perform
a state-elimination from the original automaton that gets rid of every
state but the start state. When we do so, we are left with a one-state
automaton that looks like Fig. 3.10. The regular expression denoting the

3.2. FL...[E AUTOMATA AND REGULAR EXPRESSIONS 99"

strings that it accepts is R*.

Start

Figure 3.10: A generic one-state automaton

4. The desired regular expression is the sum (union) of all the expressions
derived from the reduced automata for each accepting state, by rules (2)
and (3).

0,1

Start D 1 0,1 0.1
o——0—©@—@

Figure 3.11: An NFA accepting strings that have a 1 either two or three posi-
tions from the end

Example 3.6: Let us consider the NFA in Fig. 3.11 that accepts all strings of
0’s and 1’s such that either the second or third position from the end has a 1.
Our first step is to convert it to an automaton with regular expression labels.
Since no state elimination has been performed, all we have to do is replace the
labels “0,1” with the equivalent regular expression 0 + 1. The result is shown
in Fig. 3.12.

0+1

MmmHﬁ.D 1 0+1 @ 0+1 @

Figure 3.12: The automaton of Fig. 3.11 with regular-expression labels

Let us first eliminate state B. Since this state is neither accepting nor
the start state, it will not be in any of the reduced automata. Thus, we save
work if we eliminate it first, before developing the two reduced automata that
correspond to the two accepting states.

State B has one predecessor, A, and one successor, C. In terms of the
regular expressions in the diagram of Fig. 3.7: @; = 1, L =0+1, R;; = 0
(since the arc from A to C does not exist), and S = @ (because there is no

100 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

loop at state B). As a result, the expression on the new arc from A to C is

¢+ 10*(0+1).
To simplify, we first eliminate the initial @, which may be ignored in a ﬂ.EHom*.
The expression thus becomes 10*(0 + 1). Note that the regular expression 0

is equivalent to the regular expression e, since
L") = {eJUL® UL@OLD) U -

Since all the terms but the first are empty, we see that L(0*) = Amw, %Enw
is the same as L(¢). Thus, 10*(0 + 1) is equivalent to 1(0 + 1), which is the
expression we use for the arc A — C in Fig. 3.13.

0+1

0+1) 0+1
mﬁmﬂ,‘v@ 10 + V@ 5

Figure 3.13: Eliminating state B

Now. we must branch, eliminating states C and D in separate reductions.
i . .
To eliminate state C, the mechanics are similar to those we vmm.moduma above
to eliminate state B, and the resulting automaton is shown in Fig. 3.14.

0+1

O+ DO+ 1)

- -©

Figure 3.14: A two-state automaton with states Aand D

In terms of the generic two-state automaton of Fig. 3.9, the regular mvamM.
sions from Fig. 3.14 are: R=0+1,5 =1(0 + HXO + C,.ﬂ =@, and U = 0.
The expression U* can be replaced by ¢, i.e., eliminated in a nozomﬁmwmﬂﬁs_
the justification is that @* = ¢, as we discussed above. Also, the mu.enmw.muo%
SU*T is equivalent to @, since T', one of the ﬁmﬁ.sm o.m ﬁrm.nozn.mﬁmbmSoP Mwm* m.
The generic expression (R + SUT)*SU" thus simplifies in this case to R*S,
or (0 4+ 1)*1(0 +1)(0 + 1). In informal terms, the language of this wxMNmmmEz
is any string ending in 1, followed by aéo.m%Eva that are each either om
1. That language is one portion of the strings accepted by the automaton o
Fig. 3.11: those strings whose third position m.oqw ?m end has a H.. mQ

Now, we must start again at Fig. 3.13 and eliminate state D instead of C.
Since D has no successors, an inspection of Fig. w.ﬂ. tells us that @owm will Mw
no changes to arcs, and the arc from C' to D .wm mﬁEEmﬂma, along with state D.
The resulting two-state automaton is shown in Fig. 3.15.

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS 101

Ordering the Elimination of States

As we observed in Example 3.6, when a state is neither the start state
nor an accepting state, it gets eliminated in all the derived automata.
Thus, one of the advantages of the state-elimination process compared
with the mechanical generation of regular expressions that we described
in Section 3.2.1 is that we can start by eliminating all the states that
are neither start nor accepting, once and for all. We only have to begin
duplicating the reduction effort when we need to eliminate some accepting
states.

Even there, we can combine some of the effort. For instance, if there
are three accepting states p, q, and r, we can eliminate p and then branch
to eliminate either g or r, thus producing the automata for accepting states
r and g, respectively. We then start again with all three accepting states
and eliminate both ¢ and r to get the automaton for p.

0+1

Start D 10+ 1)
'Y@ - @

Figure 3.15: Two-state automaton resulting from the elimination of D

This automaton is very much like that of Fig. 3.14; only the label on the arc
from the start state to the accepting state is different. Thus, we can apply the
rule for two-state automata and simplify the expression to get (0 + 1)*1(0+1).
This expression represents the other type of string the automaton accepts: those
with a 1 in the second position from the end.

All that remains is to sum the two expressions to get the expression for the
entire automaton of Fig. 3.11. This expression is

(0+1)"1(0+1) +(0+1)*1(0 +1)(0+ 1)
]

3.2.3 Converting Regular Expressions to Automata

We shall now complete the plan of Fig. 3.1 by showing that every language L
that is L(R) for some regular expression R, is also L(E) for some e-NFA E. The
proof is a structural induction on the expression R. We start by showing how
to construct automata for the basis expressions: single symbols, €, and . We
then show how to combine these automata into larger automata that accept the
union, concatenation, or closure of the language accepted by smaller automata.

102 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

All of the automata we construct are e NFA’s with a single accepting state.

Theorem 3.7 : Every language defined by a regular expression is also defined

by a finite automaton.

PROOF: Suppose L = L(R) for a regular ex
for some e-NFA E with:

pression R. We show that L = L(E)

1. Exactly one accepting state.
2. No arcs into the initial state.
3. No arcs out of the accepting state.

duction on R, following the recursive definition of

ad in Section 3.1.2.

The proof is by structural in
regular expressions that we h

@
O ©
©
O ©
©

Figure 3.16: The basis of the construction of an automaton from a regular

expression

BAsIS: There are three parts to the basis, shown in Fig. 3.16. In part (a) we

see how to handle the expressio

seen to be {e}, since the only path from the start state to an accepting state
is labeled €. Part (b) shows the construction for @. Clearly there are no paths
from start state to accepting state, S0 ¢ is the language of this automato
Finally, part (c) gives the automaton for a regular expression a. The langua
of this automaton evidently consists of the one string a, which is also L{a). 1
is easy to check that these automata all satisfy conditions (1), 2), and (3)i

the inductive hypothesis.

n e. The language of the automaton is easily

3.2. FIN. |
INITE AUTOMATA AND REGULAR EXPRESSIONS Howm

1 ™

~O R O

mo/'O s O\

(©

m “w. . ﬁ@@ in the re; _LWHlmx ession-to-e- Lmb construct
f m pr
H gure HM Hr@ :HQCOSCO S 101

INDUCTION: The th
: ree parts of the inducti
assume that th uction are shown in Fi
ions of a m?w:%%mﬁwmm,bmg of a.vw theorem is true for the WEEm&MMM.mW%N we
e also the language mwvummmyo,bm a.:wn is, the languages of these subex pres
) ges of e-NFA’s with a single accepting state. The mwwwmmwczm
- cases

1. The expression is R+ S for som
automaton of Fig. 3.17(a) .mmﬂawm wmwwwﬁ starting ot e e st s
autom. S. is, starting at th
e can mmc. dw’\ﬁ%mﬂw MMMHMMQW»& of either the mcnoBmﬁmu for MHWHMMQMMMMM g
followin & wath EEMM vﬁwm mnnm@a.:m state of one of these mcﬁosmaw.
Ohowing a path label ﬁ.% some string in L(R) or L(S), respectivel q
fohce we teach the 2 epting state of the automaton for R or S .
e-arcs to the accepting state of the new mzdeMﬂooNH

104 CHAPTER 3. REGULAR EXPRESSIONS AND LANGUAGES

Thus, the language of the automaton in Fig. 3.17(a} is L{R) U L(S).

2. The expression is RS for some smaller expressions R and S. The automa-
ton for the concatenation is shown in Fig. 3.17(b). Note that the start
state of the first automaton becomes the start state of the whole, and the
accepting state of the second automaton becomes the accepting state of
the whole. The idea is that the only paths from start to accepting state go
first through the automaton for R, where it must follow a path labeled by
a string in L(R), and then through the automaton for S, where it follows
a path labeled by a string in L(S). Thus, the paths in the automaton of
Fig. 3.17(b) are all and only those labeled by strings in L(R)L(S).

3. The expression is R* for some smaller expression R. Then we use the
automaton of Fig. 3.17(c). That automaton allows us to go either:

(a) Directly from the start state to the accepting state along a path
labeled e. That path lets us accept €, which is in L(R*) no matter
what expression R is.

(b) To the start state of the automaton for R, through that automaton
one or more times, and then to the accepting state. This set of paths
allows us to accept strings in L(R), L{R)L(R), L{R)L(R)L(R), and
so on, thus covering all strings in L(R*) except perhaps €, which was
covered by the direct arc to the accepting state mentioned in (3a).

4. The expression is (R) for some smaller expression R. The automaton
for R also serves as the automaton for (R), since the parentheses do not
change the language defined by the expression.

It is a simple observation that the constructed automata satisfy the three con-
ditions given in the inductive hypothesis — one accepting state, with no arcs
into the initial state or out of the accepting state. [

Example 3.8: Let us convert the regular expression (0 + 1)*1(0 + 1) to an
e-NFA. Our first step is to construct an automaton for 0 + 1. We use two
automata constructed according to Fig. 3.16(c), one with label 0 on the arc
and one with label 1. These two automata are then combined using the union
construction of Fig. 3.17(a). The result is shown in Fig. 3.18(a).

Next, we apply to Fig. 3.18(a) the star construction of Fig. 3.17(c). This
automaton is shown in Fig. 3.18(b). The last two steps involve applying the
concatenation construction of Fig. 3.17(b). First, we connect the automaton of
Fig. 3.18(b) to another automaton designed to accept only the string 1. This
automaton is another application of the basis construction of Fig. 3.16(c) with
label 1 on the arc. Note that we must create a new automaton to recognize 1;
we must not use the automaton for 1 that was part of Fig. 3.18(a). The third
automaton in the concatenation is another automaton for 0 + 1. Again, we
must create a copy of the automaton of Fig. 3.18(a); we must not use the same
copy that became part of Fig. 3.18(b). The complete automaton is shown in

3.2. r.NITE AUTOMATA AND REGULAR EXPRESSIONS

Figure 3.18: Automata constructed for Example 3.8

105"#

R EXPRESSIONS AND LANGUAGES

106 CHAPTER 3. REG ULA

emoved, looks just

- itions are I
NEA, e s th s the strings that

Fig. 3.15 that also accept
O

(c). Note that this e-
ch simpler wcﬁoB@non.o.m
their next-to-last position.

Fig. 3.18
like the mu
have a 1in

3.2.4 Exercises for Section 3.2
e 3.2.1: Hereis a transition table for a DFA:

:o _H

Exercis

“qall@|h
q2 q1
*q3 q2
as if it were

i © - Think of state ¢
regular expressions Ry Note: Thin i

* ive all the .
Y e h integer number &.

the state wit X o
i (1) Try to simplify the expr
* b) Give all the regular expressions R;’. Try

much as possible. |
i i ressions as
) Give all the regular expressions mwmv. Try to simplify the exp
c
much as possible.

T ?m language of the automaton.

i egular expression fo
O r the DFA and give a regular expres-

transition diagram fo
L state g2.

s language by eliminating
se 3.2.1 for the following DFA:

* ¢) Construc
sion for it

cise 3.2.2: Repeat Exerci

Exer
: 0 , 1
—q || ¢ | B
) g3
q1

*q3
(a), (b) and (e) are not available for this exercise

Note that solutions to parts |
g DFA to a regular expression,

2.3: Convert the followin

‘se 3. A
Exercise on technique of Section 3.2.2.

state-eliminati

:

1
p
s
q
r

Exercise 3.2.4: Convert the following regular expressio
X .2.4:

transitions.

using the

ns to NFA's with

3.2. FINITE AUTOMATA AND REGULAR EXPRESSIONS

a) 01,
b) (0+1)01.
c) 00(0 +1)*.

Exercise 3.2.5: Eliminate e-transitions from your e-NFA’s of Exercise 3.2.4.
A solution to part (a) appears in the book’s Web pages.

!

Exercise 3.2.6: Let A = (Q, X, 4, g0, {gs}) be an e-NFA such that there are no
transitions into go and no transitions out of g;. Describe the language accepted
by each of the following modifications of A, in terms of L = L{A):

* a) The automaton constructed from A by adding an e-transition from gy to
do-

* b) The automaton constructed from A by adding an e-transition from go
to every state reachable from ¢o (along a path whose labels may include
symbols of ¥ as well as ¢)

¢) The automaton constructed from A by adding an e-transition to gy from
every state that can reach ¢y along some path.

) d) The automaton constructed from A by doing both (b) and (c).

Exercise 3.2.7: There are some simplifications to the constructions of Theo-
m 3.7, where we converted a regular expression to an e-NFA. Here are three:

1. For the union operator, instead of creating new start and accepting states
merge the two start states into one state with all the transitions of both
start states. Likewise, merge the two accepting states, having all transi-
tions to either go to the merged state instead.

3

For the concatenation operator, merge the accepting state of the first
automaton with the start state of the second.

For the closure operator, simply add e-transitions from the accepting state
0 the start state and vice-versa.

of these simplifications, by themselves, still yield a correct construction;
the resulting e-NFA for any regular expression accepts the language of
sion. Which subsets of changes (1), (2), and (3) may be made to the

tion together, while still yielding a correct automaton for every regular
o

e 3.2.8: Give an algorithm that takes a DFA A and computes the
strings of length n (for some given n, not related to the number
A)-accepted by A. Your algorithm should be polynomial in both
number of states of A. Hint: Use the technique suggested by the
‘of Theorem 3.4.

