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Resumo

Esta tese introduz um método de modelação de tarefas robóticas baseada em redes de Petri.

Nestes modelos, os lugares das redes de Petri representam acções, tarefas, e predicados estabele-

cidos pela leitura de sensores e mensagens transmitidas, enquanto os eventos são representados

por transições. O método proposto segue um modelo hierárquico que vai desde os modelos de

componentes do ambiente ao modelo do plano da tarefa. Estes modelos podem ser usados quer

para execução, quer para análise. O modelo do plano da tarefa pode ser executado directamente

nos robôs. Para análise, todos os modelos são compostos num único modelo, do qual se ex-

traem propriedades lógicas e de desempenho. São obtidas ambas as propriedades estacionárias

e transitórias. Os modelos do ambiente incluem eventos não controláveis, os quais modelam o

impacto de fenómenos f́ısicos ou de outros agentes. O uso de modelos de observação permite

estudar o impacto de falhas sensoriais no desempenho da execução da tarefa. A introdução de

modelos de comunicação, quer para comunicação expĺıcita (e.g., usando a rede sem fios), quer

para comunicação impĺıcita (e.g., observando os outros robôs usando visão), permite modelar

e analisar tarefas envolvendo a coordenação de dois ou mais robôs. Propõe-se um método de

identificação, que permite criar os modelos das acções e do ambiente a partir de dados reais.

São apresentados resultados, usando um simulador realista, que demonstram a aplicabilidade

do método de modelação proposto.
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Abstract

This thesis introduces a Petri net (PN) based robot task modelling framework. In the models,

PN places represent actions, tasks, and predicates set by sensor readings and communicated

messages, while transitions represent events. The proposed framework follows a structured hier-

archical approach ranging from the environment models to the task plan models. These models

can be used both for task execution and analysis. The PN based task plan can be executed

directly in the robots. For analysis, all the models are composed into a single PN which is anal-

ysed both for logical and (probabilistic) performance properties. Both stationary and transient

properties are analysed. Environment models include uncontrollable events which model the

world physics and/or other agents impact on the world. Observation models allow determining

the impact of observation failures in the task performance. The introduction of communication

models, either using explicit (e.g., wireless) or implicit (e.g., vision-based observation of team-

mates), allows modelling and analysis of multi-robot tasks involving the coordination of two

or more robots. An identification method is proposed, which allows creating environment and

action models from real data. Results illustrating the methodology are presented for a robotic

soccer scenario using a realistic simulator.
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Chapter 1

Motivation and Introduction

1.1 Motivation

The importance of robot tasks in everyday life has been increasing over the past years, with
robots expected to perform even more tasks and with higher complexity in the future. Fig.
1.1 shows the cover of the 2005 International Conference on Robotics and Automation (ICRA),
which illustrates that direction, showing robots performing several different everyday tasks,
traditionally carried out by humans.

Figure 1.1: ICRA 2005 proceedings cover.

Traditionally a mobile robot task is programmed in a more or less ad-hoc fashion, without
using formal approaches, but tailored to the task at hand. This approach usually leads to task
plans with few actions and without any a priori knowledge of the expected task performance.
The need for methodologies enabling design and analysis for mobile robot tasks is the main
motivation for this work [Akin et al., 2008]. The availability of design and analysis tools, together
with systematic and consistent modelling methods, will lead to richer task plans that, even
though harder to understand intuitively, can be formally analysed and checked for performance
quality.
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1.2 Approach

The goal in this work is to develop a rich framework which allows the modelling, execution and
analysis of robotic tasks using formal methods, by combining concepts from Computer Science,
Decision and Control theory, and Manufacturing Systems to deal with the problem.

The concepts surrounding robot tasks are not uniform across the literature. As such, consider
the following definitions, to be used throughout this thesis.

The main concept is the robot task. In this thesis, a robot task is a task to be executed
by a robot, including a set of goals and/or a task plan, and a given environment in which that
task plan is to be executed, and/or goals are to be achieved.

A robot task plan describes what actions and how a robot, or set of robots, need to
perform in other to complete the desired task. It consists on a formalism which describes which
actions or tasks should the robot run for any given world state. They can be specified, for
instance, through a logic based approach or through a graph, such as a Finite State Automaton
or a Petri net.

An action is the most primitive element in a robot task plan, representing an interaction
of the robot with the environment and/or other robots.

The term Robot Task Language is often used to describe the formalism behind a robot
task plan considering its execution by a robot. It is usually implemented as a type of program-
ming language geared towards robot applications, be it single or multi-robot. In some cases
it includes low-level specifications, such as hardware device management, and is indeed a full
robot programming language.

To cope with the complexity and dynamic nature of mobile robot tasks, the problem is
discretised using logic predicates. Then, Petri nets are used as the mathematical formalism for
specification, analysis and execution of robot tasks. Further details are given later regarding
this choice, but the main motivation comes from its modelling power, compactness (a Petri net
with a finite structure can model an infinite state space) and available formal methods for Petri
net analysis. As will be shown later, their modelling and analysis power applied to single or
multi-robot tasks can prove to be quite effective.

Besides modelling the decision process, the robot impact on the environment and the actual
environment are also modelled using Petri nets. This environment model includes transitions
performed by other agents and/or the physics of the world. By composing all these models, a
closed-loop Petri net model can be obtained which truly models (with a given approximation)
the overall task. This task can then be analysed both for qualitative/logical and quantita-
tive/performance properties.

Observation and communication models are also included allowing to analyse the impact
on single and multi-robot tasks of observation and communication failures. An identification
algorithm is provided which enables models to be created from real world data, allowing a
decreased-error approximation for real world scenarios. Several theoretic and simulation (using
a realistic robotics simulator) examples are provided showing the applicability of the developed
framework.

Although the examples used throughout this thesis are based on a robotic soccer scenario,
the framework is completely generic. However, given the discretisation using logic predicates,
the framework is only adequate when the mobile robot navigation space and world state can be
discretised.
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1.3 Related Work

Having a robot planning and performing a task involves contributions from many different
fields, including electronics, computer vision, logic, control theory, etc.. Traditionally three
main communities have studied robot tasks: the AI community, mainly focused on planning
and learning of task plans [LaValle, 2006], often for disembodied agents, but increasingly for
robots as well; the manufacturing systems community, which studies performance properties for
automated manufacturing lines [Viswanadham and Narahari, 1992]; and finally the Robotics
community which joins people from several areas to study robots under an integrated perspective
[Brooks, 1985].

Some components of the robot task execution have a continuous nature (e.g., motion con-
trol), while others have a discrete nature (e.g., decision making). Two different base approaches
exist to model robot tasks: the Hybrid Systems [van der Schaft and Schumacher, 2000] approach
and a purely discrete, denoted Discrete Event Systems (DES) [Ramadge and Wonham, 1989]
approach. Hybrid systems are usually used to include a continuous model of the robot motion
control, while having a decision or parameters change based on discrete events [Košecká et al.,
1997; Egerstedt, 2000; Yu Sun, 2003]. However, the higher complexity of the models limits
the size of the robot task plans which can be analysed and the properties that can be studied.
As such, it is much more common to find implementations using pure Discrete Event System
models.

In order to use a purely discrete state model, one needs to include some abstraction which
provides an approximated state of the world. Typically this discretisation is obtained through
the use of logic predicates and by using a topological map [Neto et al., 2003] for the localisation
and navigation of the robot.

Some approaches provide a specific robot programming language, which can include analysis
mechanisms by translating the programmed task to a known logic or temporal based language.
Orccad [Kapellos et al., 1999] provides such programming environment for robot task missions,
enabling extraction of both logic and temporal based properties. Other robot task programming
languages exist which provide similar capabilities, such as CHARON (Coordinated Control, Hi-
erarchical Design, Analysis, and Run-Time Monitoring of Hybrid Systems) [Alur et al., 2002]
or PLEXIL (Plan Execution Interchange Language For Executable Plans and Command Se-
quences) [Verma et al., 2005]. However, none of these frameworks include models of the actual
actions and the other agents (or physics) impact on the world state evolution.

Although specific robot programming languages are common, most of the work found in
the literature is based on DES, using either Finite State Automata (FSA) [Cassandras and
Lafortune, 2008] or Petri nets [Petri, 1966; Murata, 1989]. FSA-based models are mainly used
to design and execute robot tasks, although they can also be used to perform quantitative
and qualitative analysis. In [Košecká et al., 1997] an FSA based approach is provided, where
composition operators are specified together with low-level continuous time control strategies,
allowing task properties to be analysed. In [Damas and Lima, 2004] a modular FSA-based ap-
proach is used to model multi-robot systems showing how some transition parameters affect the
task properties. Petri nets have been widely used to model and control Flexible Manufacturing
Systems (FMS) [Viswanadham and Narahari, 1992; Flochova, 2003]. However, FMS consist
mainly on systems with clearly defined inputs and outputs between the various processes, with
uncontrolled events mainly associated with machine failures, as described for instance in [Castel-
nuovo et al., 2007] and in [Qin and Xu, 2009]. Mobile robot tasks, on the other hand, provide
a much more dynamic environment where the points of interaction between the agents are not
so clearly specified.

In [King et al., 2003] Marked Ordinary Petri Nets are used to model and synthesise deadlock
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free plans for a multi-agent environment. However, the authors do not model failures, and
uncontrolled events are modelled using a simplistic approach, by considering that the probability
of resources availability change does not depend on the current state. Furthermore time is not
taken into account, as all transitions are considered to be instantaneous.

In [Herrero-Perez and Martinez-Barbera, 2008] Petri nets are used to model and control a
FMS with Autonomous Guided Vehicles (AGV). A collision free motion of the AGV is ensured
by using a topological map and preventing more that one AGV in each node. Albeit using
Marked Ordinary Petri Nets with no time associated, they consider that each node travelled
in the topological map has an associated time, and minimise the number of nodes travelled
to compute the task plan which minimises task time. In this system AGVs do not interact
with each other and failures are not modelled. In [Ziparo and Iocchi, 2006] Petri nets are used
to design robot tasks plans, providing qualitative (logical) but not quantitative (performance)
analysis.

The closest work to ours is [Kim and Chung, 2007], where the authors use Generalised
Stochastic Petri nets to model and analyse (both qualitatively and quantitatively) a robot task
for a tour-guide robot. However, the authors approach is very application-oriented and has not
provided a structured framework for modelling and analysing generic robot tasks. Furthermore,
there is no clear distinction between the selection mechanisms and uncontrollable events induced
by the environment, leading to a less modular design.

The developed framework described here can be seen as an extension of the ideas introduced
in [Milutinovic and Lima, 2002] and [Damas and Lima, 2004], as well of the pioneer work of
Wang and Saridis [Wang et al., 1991]. In [Milutinovic and Lima, 2002] the authors propose a
framework for qualitative and quantitative performance analysis of robot tasks using Petri nets.

The work developed in this thesis aims at providing a framework to model, analyse and
execute mobile multi-robot tasks. The framework includes environment models where uncon-
trollable stochastic timed transitions, due to other robots or the world physics, are modelled,
thus providing a closed-loop model to analyse the robot task. Each action model is based on
Generalised Stochastic Petri Nets, allowing for stochastic timed properties to be modelled and
analysed. None of the above mentioned work provides all these capabilities. Furthermore, the
framework was developed to be modular and to provide an hierarchical design.

Although planning was not a subject of research in this work there are several works [LaValle,
2006], including on synthesis and supervision of DES, both using FSA [Lacerda and Lima, 2008]
and Petri nets Flochova [2003], and even on bringing together concepts from the AI community
and the Petri nets community [Hickmott et al., 2007]. For instance, in [Rosell et al., 2003] robot
task sequences of an assembly system are planned using Petri nets. It is part of our future work
to include planning in this framework, as detailed in Chapter 8.

1.4 Original Contributions

The following list describes the main contributions of this work.

Unified Framework for Modelling, Analysis and Execution of Robot Tasks The main
contribution of this work is the sum of its parts, that is, the complete developed frame-
work. Having a clearly defined unified Petri net-based framework which allows for both
modelling, analysis and execution of robot tasks, that does not rely solely on the task plan,
is a key contribution of this work. This work includes not only the theoretical framework
but also the implementation of the various algorithms within the MeRMaID middleware
[Lima et al., 2007];
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Environment Models The introduction of the environment models, containing uncontrol-
lable events associated to other robots and/or the world physics, is an important contri-
bution of the framework. Only through the use of these models can one analyse the true
outcome of the task, as opposed to the typical analysis of the system which is purely based
on a task plan or on an indistinguishable mixture of the two. The environment models
also include observation models which allow studying the impact of observation failures
in the task outcome;

Models Identification Although creating Markov chain models from real observed data is
not new, using these models to create Petri net models of the actions and environment
enables analysis of the overall task, and is an original contribution of this work.

1.4.1 Published Work

The following published papers contain part of the work described in this thesis:

Hugo Costelha and Pedro Lima. Petri Net Robotic Task Plan Representation: Modelling,
Analysis and Execution. Autonomous Agents, IN-TECH, ISBN 978-953-307-089-6, pp.
65 – 89, June, 2010;

Hugo Costelha and Pedro Lima. Modelling, Analysis and Execution of Multi-Robot Tasks
using Petri Nets. Proc. of AAMAS 2008 - 7th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems, Estoril, Portugal;

Hugo Costelha and Pedro Lima. Modelling, Analysis and Execution of Robotic Tasks
using Petri Nets. Proc. of IROS 2007 - IEEE International Conference on Intelligent
Robots and Systems, San Diego, CA, USA, 2007.

The following paper was submitted but is yet waiting for a decision from the journal editorial
board:

Hugo Costelha and Pedro Lima. Petri Net-based Robot Task Plan Representation: Mod-
elling, Identification, Analysis and Execution. IEEE Transactions on Systems, Man, and
Cybernetics.

1.5 Where Does This Work Apply?

Areas of possible application of the proposed framework are listed below:

Robotics The main area of application is mobile robotics, which is focused throughout the
entire thesis. Particular areas of interest include robotic applications in space, rescue
robots, or hazardous scenarios, in which cases manual intervention is very limited and
costly, leading to the need of task execution guarantees before deployment;

Gaming Games are receiving increasing work on artificial intelligence, physics models, agent
cooperation/competition, and are becoming very complex. Most games include autonomous
characters which play with, or against, the human player(s) and interact with other com-
puter players. Whether computer players are competing with, or against, the human
player, they have goals to fulfil. With this complexity increase of the agents, easy work-
able models with enough modelling complexity must be used to improve and accelerate the
design process. The work presented here could help in the definition of the players char-
acters, the players action and task models, providing requisites for desirable performance
levels;
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Home appliances With increasing complexity and autonomy of home appliances comes the
need to coordinate the everyday execution of their tasks. The proposed framework could
be use to model and execute these tasks by autonomous home appliances, particularly if
mobile robots are part of those appliances.

1.6 Thesis Outline

The second chapter of the thesis provides an overview on related work and how the developed
framework fits in. It further provides an overview of robot tasks and the basic notions around
their definition. Chapter 2 provides the formal definition of the types of Petri nets used in this
work together with an overview on how to analyse Petri net models.

The framework for modelling single-robot tasks is detailed in Chapter 3. Here all the layers
and basic building blocks are introduced, ranging from the environment models to the task plan
models.

Chapter 4 details additional extensions to allow modelling of multi-robot tasks, by intro-
ducing communication models.

Chapter 5 details how Petri net analysis methods can be applied within the developed
framework, explaining how single and multi-robot tasks can be analysed for both qualitative
and quantitative properties.

Chapter 6 includes a series of application examples to robotic soccer scenarios, which illus-
trate the applicability of the framework.

Chapter 7 describes how action and environment models can be created from real data,
allowing tasks to be analysed based on real data, as illustrated with a robotic soccer scenario
using a realistic robotics simulator.

Finally, Chapter 8 includes the conclusions, discusses the developed work and provides
directions for the future.

Appendix A and Appendix B are provided for completeness of the thesis, and describe the
various methods used to perform both qualitative and quantitative analysis of Petri nets.
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Chapter 2

Petri Nets

This chapter introduces and extends basic notions of modelling with Petri Nets. Throughout
this work Petri Nets are the foundation of most models and ideas, thus it is important to
understand these models.

One seeks for a modular design of complex robot tasks with some a priori knowledge of
quantitative and qualitative specifications of the designed task. Petri Nets come up as an
appropriate modelling and analysis tool to accomplish that task. Their modelling and analysis
power applied to a single or multi-robot task definition can prove to be quite effective. The fact
that Petri Nets and computer programs that run in robot platforms are very tightly coupled,
makes the implementation of Petri net based task plans execution and their monitoring easier.

Petri nets [Petri, 1966] are a widely used formalism for modelling DES. They allow modelling
important aspects such as synchronisation, resources availability, concurrency, parallelism and
decision making, providing at the same time a high degree of modularity, making them suitable
to model robot tasks. Petri nets provide not just a graphical representation of a system, but
also a strong formal mathematical representation.

Petri nets are preferred to FSA due to their larger modelling power and because one can
model the same state space with a smaller graph. Moreover, although composition of Petri
nets usually leads to an exponential growth in the state space (as for FSA), structurally the
growth is linear in the size of the composed graphs given that the state is distributed. This
makes the design process simpler for the task designer, and helps managing the display of the
tasks both for monitoring and designing purposes. Moreover, one uses Marked Ordinary Petri
Nets and Generalised Stochastic Petri Nets [Murata, 1989], allowing the retrieval of logical and
(probabilistic) performance properties. Both types of analysis with Petri nets already exist in
the literature [Murata, 1989] and have been studied for some time, with a number of tools
publicly available.

Modularity in Petri nets is achieved since each resource can be modelled separately and then
composed with others. Although composition operators exist for FSA, Petri nets can model
subsystems with input and output places, so that they can be connected as in a circuit.

2.1 Marked Ordinary Petri Nets

The simplest models we use are Marked Ordinary Petri Nets (MOPN) [Murata, 1989]:

Definition 2.1.1. A MOPN is a five-tuple PN = 〈P, T, I, O,M0〉, where:

• P = {p1, p2, . . . , pn} is a finite, not empty, set of places;

• T = {t1, t2, . . . , tm} is a finite set of transitions;
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• I = P × T represents the arc connections from places to transitions, such that ilj = 1 if,
and only if, there is an arc from pl to tj, and ilj = 0 otherwise;

• O = T × P represent the arc connections from transition to places, such that olj = 1 if,
and only if, there is an arc from tl to pj, and olj = 0 otherwise;

• M(j) = [m1(j), . . . ,mn(j)] is the state of the net, and represents the marking of the net
at time j, where mn(j) = q means there are q tokens in place pn at time instant j. M(0)
is the initial marking of the net.

A simple MOPN is depicted in Fig. 2.1. It has two types of nodes: places, represented by
circles, and transitions, represented by filled rectangles. The places can contain any number of
tokens, represented by the number of dots (or a number) inside the place. For instance, in the
Petri net shown in Fig. 2.1, place p1 and place p3 both have one token, while place p2 has zero
tokens.

Figure 2.1: A simple Petri Net.

The state of the net is given by the marking of the net, which in turn is given by the number
of tokens in each place. The net evolves through different states (or markings) through the firing
of enabled transitions. A transition is enabled if all its input places have at least one token.
Going back to the example on Fig. 2.1, the set of enabled transitions in the initial marking,
M(0) = [1, 0, 1], is T = {t1}. When an enabled transition fires, all its input places loose one
token and all its output places gain one token. Firing transition t1 in this case would result in
a new marking, M(1) = [0, 1, 1], as shown in Fig. 2.2.

Figure 2.2: A simple Petri Net (after firing transition t1).

In this class of Petri nets, all the transitions are immediate (have zero firing time), i.e., once
they are enabled, they are fired and the new marking is instantly reached. Furthermore, when
referring to input or output nodes of a particular node, one is referring to the nodes connected
to or from that node. For instance, transition t3 has places p2 and p3 as its input places, while
it has only one output place, p1.
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2.2 Generalised Stochastic Petri Nets

While MOPNs are important for qualitative analysis, they are not suitable for performance
analysis. For this purpose, we can use Generalised Stochastic Petri Nets (GSPN) [Murata,
1989; Viswanadham and Narahari, 1992].

Definition 2.2.1. A standard GSPN is an eight-tuple PN = 〈P, T, I, O,M0, R, S〉, where:

• P, T, I,O,M0 are as defined in 2.1.1;

• T is partitioned in two sets: TI , of immediate transitions, and TE, of exponential transi-
tions;

• R is a function from the set of transitions TE to the set of real numbers, R
(
tEj

)
= λj,

where λj is called the firing rate of tEj ;

• S is a set of random switches, which associate probability distributions to subsets of
conflicting immediate transitions.

Stochastic (exponential) transitions, once enabled, fire only when an exponentially dis-
tributed time dj has elapsed. When two or more stochastic transitions are enabled, the firing
probability depends on the enabled transitions rate. If T = {tE1 , . . . , tEn} is the set of enabled
stochastic transitions for a given marking, the firing probability of each transition is given by

P
(
tEj

)
=

λj∑n
i=1 λi

This definition of GSPNs includes also the possibility of associating a probability distribution
to conflicting immediate transitions, by the use of the random switches. These random switches
can be static (invariant to the marking of the net) or dynamic (dependent on the marking of
the net) Viswanadham and Narahari [1992]; Bause and Kritzinger [2002]. We use the later case
by associating weights to the immediate transitions, as described in Definition 2.2.2.

Definition 2.2.2. A GSPN is an eight-tuple PN = 〈P, T, I,O,M0, R,W 〉, where:

• P, T, I,O,M0, R are as defined in 2.2.1;

• W is a function from the immediate transitions set TI to a set of real numbers, W
(
tIj
)

=
wj, where wj is the weight associated with immediate transition tIj ;

• For any given marking, the probability of firing an enabled transition ti is equal to wi/W,
where W is the sum of the weights of all enabled transitions for the given marking.

Consider the GSPN model depicted in Fig. 2.3 (the double end arc is a shorthand for two
arcs in opposite directions and is used only to visually reduce the clutter). In this example, tE1

and tE2 are exponentially timed transitions (drawn as an unfilled rectangle), while tI1 , tI2 and
tI3 are immediate transitions with associated weights. Initially tE1 and tE2 are enabled, since
p1 has a token, and either one will fire after an exponentially distributed time with rate λ1 and
λ2 has elapsed, respectively. The firing probability of each transition is given by

P (tE1) =
λ1

λ1 + λ2
P (tE2) =

λ2
λ1 + λ2

If tE1 fires, the token flows from p1 to p2 and, since tI1 is an immediate transition, it will
immediately fire and the token will flow from p2 to p3, reaching markingM3 = [0, 0, 1]. In this

9



marking tI2 and tI3 form a set of conflicting transitions, whereas only one will fire, according to
the following probabilities:

P (tI2) =
w2

w2 + w3
Pf (tI3) =

w3

w2 + w3

If tI3 is fired, the marking remains the same, if tI2 is fired, the net returns to the initial marking.

Figure 2.3: Generalised stochastic Petri net.

The GSPN marking is a semi-Markov process with a discrete state space given by the
reachability graph of the net for an initial marking [Murata, 1989; Viswanadham and Narahari,
1992]. A Continuous Time Markov Chain (CTMC) and/or the corresponding Embedded Markov
Chain (EMC) can be obtained from the marking process, and both the transition rate matrix
(CTMC) and the transition probability matrix (EMC) can be computed by using the firing rates
of the exponential timed transitions and the probabilities associated with random switches.
With these one can perform transient and stationary analysis of the chain, thus obtaining
performance properties for the corresponding Petri net model. As such, one has two different
types of analysis that can be performed with GSPNs: conservation properties (based on T-
invariants and P-invariants) of the associated MOPN and performance evaluation (based on
the continuous time, discrete state space equivalent Markov process). See Appendix A and
Appendix B for more details.

2.3 Petri Nets Composition

One of the advantages of Petri nets is its modularity. The various models that compose a full
model can be designed separately and combined only when needed, such as when performing
analysis of the full model. The key issue of that process is the composition of the models.

The composition method will depend on the type of places available, and will be thoroughly
explained later in Chapter 3.

2.4 Additional Specifications

In the developed framework, the Petri net models are embodied with some additional building
blocks and place labels are used to distinguish between different types of places, such as: predi-
cate places, action places, communication action places, counter places, task places and regular
(or memory) places. These different types of places do not introduce any change regarding the
definition of the Petri nets, but are crucial in the analysis process explained later, particularly
in the composition of the models.

Regular (or memory) places are normal Petri net places, without any special properties.
The remaining types of places are introduced in the following sections.
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2.4.1 Predicate Places

Predicate places are used to represent logic predicates, having always one or zero tokens. Al-
though Predicate Petri nets exist in the literature [Röck and Kresman, 2006], the tools available
to work with this type of Petri nets are very scarce. As such, predicates are represented by
regular places, as explained next.

Definition 2.4.1. A predicate place pn is a place associated with the predicate P, described by
pn |= P, such that:

• ∀j ,P(j) = true⇔ mn(j) = 1

• ∀j ,P(j) = false⇔ mn(j) = 0,

where P(j) is the predicate P at time step j.

Basically, a place representing a predicate has one token if that predicate is true and zero
tokens otherwise.

Definition 2.4.2. A Petri net model of a predicate is a MOPN where:

• P = {¬p, p}, where and ¬p and p are predicate places associated with predicates ¬P and
P respectively;

• I = ∅;

• O = ∅;

• ∀j ,Mj = [0, 1] ∨ [1, 0].

Although one could achieve the same results by using just one place to represent a predicate,
that would lead to the use of inhibitor arcs. Once again the choice was to maintain the use
of the base Petri nets with minimal extensions added, so as to be able to use a larger set of
available Petri net tools. Furthermore, although it increases the number of places, it does not
increase the state space, and provides a cleaner interface to the user.

Figure 2.4: Representation of predicate by a set of places.

As an example, a Petri net model representing the predicate SeeBall is depicted in Fig.
2.4. Note the usage of the “predicate.” (or, alternatively, “p.”) prefix to denote that the place
is a predicate place, and the “NOT ” prefix to denote the negated predicate.

2.4.2 Task Places

Task places are macro places [Bernardinello and Cindio, 1992] which, albeit not always using
the same definition, are used to create hierarchical Petri nets, leading to a higher degree of
modularity. A task place represents a Petri net, allowing to draw entire Petri net models from
lower layers as single places in higher layers, providing for cleaner and reusable models.

Places associated with tasks have their labels prefixed with “task.” (or, alternatively, “t.”).
These task places will have an important role in the analysis part, particularly in what we
denote as the Expansion Phase, as described later in Section 5.1. Task places will be further
detailed in Section 3.4.
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2.4.3 Action Places

Action places are also a type of macro places. The main difference towards task places, is that
the Petri net models associated with action places cannot include action or task places.

Action places have their labels prefixed with “action.” (or, alternatively, “a.”). Like task
places, action places will also have an important role in the analysis part. More details about
action places will be given in Section 3.4, while details on expanding actions places will be given
in Section 5.1.

2.4.4 Communication Action Places

Communication action places are similar to action places, but are associated with the transmis-
sion of information through communication.

Communication action places have their labels prefixed with “message.” (or, alternatively,
“m.”). Like task and action places, communication action places will also have an important
role in the analysis part. Communication action places will be detailed in Section 4.3.1, while
details on expanding communication action places will be given in Section 5.1.

2.4.5 Counter Places

Counter places are part of the communication actions, and will be used to determine the number
of communication actions, associated with the same message, running simultaneously. Counter
places cannot be used in models other then communication actions.

Counter places have their labels prefixed with “counter.” (or, alternatively, “c.”). These
places are also relevant for the analysis part, particularly when analysing tasks that involve
communication. The use of counter places will be described in more detail in Section 4.3.1.

2.5 Petri Nets Analysis

Petri net properties can be divided in two main sets: qualitative and quantitative. The logical
(qualitative) properties are based on the structure of the Petri net, while performance (quantita-
tive) properties take time into consideration. In the qualitative case, Petri nets can be analysed
for deadlocks, conservation properties and other qualitative properties. In the quantitative case,
stochastic time is used in the analysis, providing results regarding for both stationary and tran-
sient analysis. Note that a MOPN can only be analysed for logical properties, since time is not
included.

Several logical and performance properties can be analysed, using different analysis tech-
niques, as described thoroughly in the literature [Murata, 1989; Viswanadham and Narahari,
1992; Lindemann, 1998; Girault and Valk, 2003; David and Alla, 2005; Cassandras and Lafor-
tune, 2008]. The reminder of this section briefly describes some of these properties and analysis
techniques, with more details being given in Appendix B.

Regarding logical properties, one can analyse properties such as: Reachability and Cover-
ability, which allows determining if a given state is reachable or covered; Boundedness, which
determines if all places in all reachable markings have a finite number of tokens; Safety, where
having a k-safe Petri net means all places have at most k tokens for all reachable markings; or
Liveness and Deadlock, which is associated with the firing possibility of each transition for all
reachable states. Regarding performance properties, one can study both Steady-state and Tran-
sient properties. In the steady-state case, one can obtain, for instance, information regarding
the mean time to reach a given state, the mean time spent on each state, the average number
of tokens in each place, or the average throughput of each transition. In the transient case
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one can study, for instance, how the probability distribution of the number of tokens per place
evolves until the steady-state is reached. Furthermore, one can analyse how changes in the Petri
net affect these properties, be it structural changes, initial marking changes or transition rate
changes, by comparing the results for the different test cases.

These various properties can be analysed using different methods, as summarised in the
following list, for each type of analysis (for more details see the literature referred above):

• Logical

Algebraic - using the incidence matrix, which describes algebraically the transitions
between all places, and the marking of the net, one can obtain a state equation
which describes the Petri net dynamics and compute T-invariants and P-invariants;

Reachability graph and coverability tree - by enumerating the set of (possibly) reach-
able states and performing the analysis of the graph or tree;

Transformation - by transforming or reducing the Petri net such that it belongs to a
class where enumerating all possible states is no longer needed;

Simulation - by analysing, for instance, the result of a Monte Carlo simulation of the
Petri net;

• Performance

– Transient

Numerical Ordinary Differential Equations (ODE) - by explicitly solving the
ODE describing the CTMC using numerical approximation techniques;

Uniformisation - applying uniformisation to the associated CMTC one can obtain
a DTMC with identical mean sojourn time across states, allowing to use a simple
series to compute the probability distribution evolution over the states of the
CTMC;

Laplace Transform - by using symbolical Laplace transforms, for small models, or
analytical Laplace transforms, for large models;

Direct evaluation of the matrix exponential series - by directly evaluating the
expression which describes the probability distribution over time using a matrix
exponential.

– Steady-state

Algebraic - Using the direct approach to solve a set of linear equations;

Iterative - Using iterative methods to converge to the solution of the set of linear
equations.

Algebraic techniques enable the analysis of logical properties without having to enumerate
all states, but are not always applicable. For instance, these can be use to determine the bound-
edness of the net, but generally only provide necessary conditions for reachability properties.
On the other hand, the reachability graph implies enumerating all reachable states but enables
determining reachability properties. However, the reachability graph can only be used with
bounded Petri nets. With unbounded Petri nets, instead of the reachability graph, one can use
the coverability tree, in which case reachability properties are not always guaranteed, depending
on the Petri net. Using transformation techniques which maintain the net properties, often in
the form of reduction, leads to less complex Petri nets, easing the analysis process. For instance,
by greatly reducing the state space one can obtain a smaller reachability graph.
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Regarding performance analysis, particularly transient analysis, the use of direct evaluation
of the matrix exponential series can lead to numerical instabilities due to rounding errors, while
using analytic Laplace transforms requires high numerical precision. The most used techniques
are based on iterative numerical methods to compute the ODE solution, and the uniformisation
approach, which might yield less computational problems. For the steady-state analysis, the
use of a direct approach leads to a result in a fixed number of arithmetic operations, but might
prove problematic due to rounding errors. In this cases an iterative approach can lead to more
accurate results, although it might take a large number of iteration to converge to the solution
Knottenbelt [1996].

The methods implemented for this work were based on the Reachability Graph and algebraic
analysis which, for completeness, are detailed in Appendix B.
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Chapter 3

Modelling Individual Robot Tasks

This chapter details the modelling of single-robot tasks using Petri Nets. Several building blocks
will be defined and then used to model, analyse and execute robot tasks.

Performing a robot task involves different levels of abstraction and different layers of actua-
tion. One would like to give a set of goals to a robot and let it plan how to achieve those goals
under a given set of conditions, and subsequently execute its plan. In this sense, a robot task
consists of modelling, planning and execution.

In this work one does not want to separate completely task planning from task execution,
but rather be able to define tasks and their building blocks under a set of constraints and to be
able to analyse a priori (and a posteriori) the possible outcomes of the task execution. This
means modelling the agent, the actions and the environment, and use a planning algorithm on
top of it to achieve the goals. The algorithm however, needs to be tightly coupled with the
models in order to extract the necessary information to handle the problem constraints, typical
in a robot task problem.

The following points summarise the goals of the developed framework:

Modularity fostering the reuse of developed components;

Design providing an intuitive, and possibly graphical, task design solution;

Analysis providing means to analyse a robot task both before and after its execution;

Execution keeping the models suitable for execution, so that these closely follow the framework
theoretic foundations;

Planning allow synthesis of task plans.

To achieve these goals, a Petri net based solution was developed, using various layers.
Throughout this chapter the models at each layer and their relation are detailed. This chapter
starts with the definition of the different layers, representing different abstractions (Section 3.1).
Then each layer is detailed from the lowest to the highest-level layer, starting with Environment
related models (Section 3.2), followed by the Action Executor layer (Section 3.3), the Action
Coordinator layer (Section 3.4), and ending with the Organisation layer (Section 3.4). Note
that automatic synthesis of Petri net based task plans (planning) was not yet addressed, being
part of the future work.

3.1 Design Methodology

Using different layers provides a modular model of the task. Fig. 3.1 gives an overview of the
used layers.
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Figure 3.1: Models Hierarchy, pointing out the 4 layers and those that intervene in the
analysis, execution and identification.

Each layer is composed as a set of Petri net models which represent different resolution
levels: the Environment layer the bottom, and the Organisation layer at the top. The meaning
of each layer is as follows:

Environment layer Petri net models in this layer represent changes made by other agents
(such as other robots) or physics (such as the motion of a free rolling ball);

Action Executor layer In this layer one finds Petri net models of the actions, representing
the changes performed in the environment by these actions, and the conditions under
which these changes can occur;

Action Coordinator layer Here lies the Petri net based task plan models, which basically
consist of compositions of actions and/or tasks;

Organisation layer This layer is where higher decision models appear, such as goal selection,
thus consisting of compositions of Action Coordinator layer models.

As can be seen in Fig. 3.1, all models are used in the analysis process, but only the two higher
layers and, partially, the Action Executor layer models will be used for execution. Both the
Environment layer and part of the Action Executor layer models can be parametrised through
an identification process on real data, as explained in Chapter 7.

Each layer includes several models (e.g., in the Action Executor there is one model per
action), and each model can be designed separately, thus simplifying the design process.

3.2 The Environment Layer

The Environment layer includes models of the environment dynamics, caused by the controlled
robot, other agents, or simply by the laws of physics. A discrete set of relevant states is
abstracted from the actual environment. Naturally these models will not fully model the envi-
ronment, but an abstraction of it.

The environment models will prove to be important for a priori verification and validation of
tasks. It further allows to determine undesired behaviours and possible unexpected occurrences,
providing means for simulation and decision making based on prediction.

The environment abstraction is achieved by discretising the world using logic predicates. As
such, environment models consist on GSPNs with predicate places, as introduced in Chapter 2.
The environment models definition is as follows:
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Definition 3.2.1. An environment model is a GSPN where all places pj ∈ P are either predicate
or memory places.

To better understand how the environment models are designed, consider a free rolling ball.
In this case, due to friction on the floor, it is expected that the ball will stop after some time.
To model this process using a GSPN model under the given framework, one must first discretise
it, such that we can describe it through the use of logic predicates. In this example, one could
consider that the ball could be moving fast, slowly or be stopped, and that the ball will, with
time, pass from the fastest movement to the stopped state. With this discretisation, one can
model the free ball movement with the Petri net model depicted in Fig. 3.2.

Figure 3.2: Petri net model of a free rolling ball.

Since predicate places must follow Definition 2.4.2, there is no need to always draw both the
positive and negative forms of the predicate. In practice, the models can be drawn in a simpler
form, such that the missing nodes are added during the analysis part (explained in Chapter 5).
For instance, the model depicted in Fig. 3.2 can be draw as shown in Fig. 3.3.

Figure 3.3: Compact Petri net model version of a free rolling ball.

If, for instance, one also wanted to model the fact that some other agent could increase the
ball speed, one could add transitions in the opposite direction, albeit with different associated
rates, considering the probability of that occurrence. Furthermore, it is also possible to include
several transitions with different rates, associated with the same state change, as in the example
depicted in Fig. 3.4. In this example, the rate at which the ball slows down depends on the
weather conditions.

Figure 3.4: Petri net model of a free rolling ball considering the weather conditions.

3.2.1 Observation Models

The environment models model the world state. If full observability with no observation failures
or delays is considered, the environment model predicates are in fact the predicates which
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describe the world state seen by the robot. However, it is possible to include models which
reflect observation failures or delays.

Consider the model shown in Fig. 3.3. In a full observability scenario the predicates used
in that model would also be the predicates used by the robot. Consider now the same scenario,
but where the robot perceives that the ball stopped with an exponentially distributed delay.
To model this scenario, one would need to introduce a predicate, here denoted R1BallStopped,
and include the model shown in Fig. 3.5, describing the ball stopped situation as seen by the
robot. The model in Fig. 3.3 combined with this model would achieve the desired result.

Figure 3.5: Petri net model of the observation with delays.

Additionally to modelling observation delays, it is also possible to include observation errors.
Considering again the same model of the moving ball, modelling observation errors is achieved
by including the model depicted in Fig. 3.6

Figure 3.6: Petri net model of the observation with delays and failures.

Adding observation delay or error models naturally as a cost of increasing the state space.

3.3 The Action Executor Layer

The Environment layer represents the environment and it has no direct association with what
runs on the robot, i.e., it models what is expected to happen in the environment, not how the
robot performs (although its information will be used to make decisions). The other three layers
represent what is actually performed by the robot and how it is suppose to act. The first, and
lowest layer of this group, is the Action Executor layer, which holds the action models.

An action is mainly described by the effects it causes on the environment and the conditions
that need be met for the effects to take place. In logical terms, the action properties can be
partitioned in the following sets:

• Running-conditions: Conditions that need be met for the action to be able to produce
changes in the world;

• Effects: Composed of Success Effects and Failure Effects, reflect the impact an action
has on the world:
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– Success-effects: These are the effects associated with the success of the action.
These include the desired-effects of the action plus additionally intermediate effects
that might occur in order to achieve success;

– Failure-effects: These effects are the undesired ones, which might happen as a
direct result of running the given action.

In this framework, one is additionally interested in modelling the probabilistic nature of
the action, including time properties. For instance, and as explained for the environment
models case, the rate at which the action effects occur will depend on the world state. Such
a model can be achieved using a GSPN, consisting on a set of transitions representing the
environment changes, associated with either the success or failure of the action, following the
rules described in Definition 3.3.1. The general model of an action is depicted in Fig. 3.7.
Although immediate transitions were not included in this model, transitions can be either
stochastic timed or immediate. Only stochastic timed transitions were included in the figure,
since generally an action does not lead to immediate world changes, but takes time.

Definition 3.3.1. A Petri net model of an action is a GSPN, where:

1. P = PE ∪ PR contains only predicate places, where

PE is the effects place set;

PR is the running-conditions place set;

2. All places in PR have “r.” after the “predicate.” prefix;

3. PE = PES
∪ PEF

, where PES
and PEF

are designated respectively success places set and
failure places set.

4. PES
= PESI

∪ PESD
, where PESI

and PESD
are designated as intermediate effects place

set and desired-effects place set, respectively.

5. All places in PESD
have “e.” after the “predicate.” prefix;

6. T = TS ∪ TF with TS ∩ TF = ∅, where:

TS is the set of transitions associated with successful impact of the action;

TF is the set of transitions associated with failure impact of the action;

7. If there is an arc from place pn, associated to predicate P, to transition tj, then there is
an arc from tj to place pm, associated to predicate ¬P, or an arc back to pn;

8. All transitions have one input arc from each running-condition;

9. All transitions tj in TS have the label successj or sj;

10. All transitions tj in TF have the label failurej or fj;

The fundamental changes from traditional models, is that one does not model only the
desired-effects of the action, but also intermediary and failure effects, all of them within a
probabilistic framework through the use of stochastic transitions. Note that enabling an action
does not necessarily imply that any of its transitions will fire, due once again to their stochastic
nature. Given that the action model will be composed with other models, enabling the action
simply implies that the state changes associated to its enabled transitions will have an increased
probability of occurring.
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Figure 3.7: General action model.
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The running-conditions are input places of all transitions to model the fact that the action
can only cause any impact on the environment if these conditions are met. Given that all places
are predicate places, rule 7 implies that the action model maintains the predicates according to
Definition 2.4.2, resulting in a safe Petri net (since there is at most one token per place for all
markings).

As an example, consider an action named CatchBall, where the goal of the robot is to catch
a ball. It is expected that the robot can catch the ball only when near the ball and if it sees
the ball, meaning its running-conditions should be IsBehindBall and SeeBall. Furthermore,
the desired-effect of this action is catching the ball, i.e., getting the predicate HasBall to true.
The resulting Petri net model is shown in Fig. 3.8.

Figure 3.8: Petri net model of action CatchBall.

Failures were not explicitly included in CatchBall action model. Although including them
is possible, and even desired in many situations, these can be already implicitly present, given
that this model will be composed with the environment model, which models external changes.
Only world changes which have a relevant probability increase as a direct result of the action
execution should be included.

For execution purposes the Action Executor models are currently used partially, by taking
into consideration the running-conditions to prevent enabling each action outside of their scope.
If the running-conditions of a given an action are not enabled that action will not be executed,
even if selected by an higher layer.

It is important to note that the running-conditions might be an empty set, meaning that
the respective action can be executed with success at any time. Concerning the desired-effects,
it does not make sense to have an empty set, given that every action should have a purpose.

3.4 The Action Coordinator Layer

The Action Coordinator layer contains Petri net models of robot task plans. A Petri net model
of a task plan consists of a MOPN which models predicate based decisions.

Definition 3.4.1. A task plan model is a MOPN where

1. All places pj ∈ P are either predicate places, memory places, action places or task places.

2. If there is an arc from place pn, associated to predicate P, to transition tj, then there is
an arc from tj back to place pn;

3. The desired output state of the MOPN, in terms of action and task places, is specified by
including “.o” in the place labels. These places are denoted as task output places.
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Item 2 in this Definition is of particular importance, since environment and action models
are the only ones which model changes in the world state, while task plans model action/task
selection decisions based on those predicates. Given that a task plan can contain task places,
which also correspond to task plans, in practice one has an hierarchical Petri net task plan
model without a predefined depth limit.

Task macro places and actions macro places are used to represent a Petri net based task
plan and action, within another Petri net based task plan, respectively. They are referred to as
task and actions places, as the macro condition is implicit.

As an example, consider a soccer-playing robot with the task Get Ball, depicted in Fig.
3.9, which is used for the robot to capture the ball. This plan corresponds to a loop between
actions MoveBehindBall and CatchBall.

Figure 3.9: Petri net model of the Get Ball task plan.

The initial marking in the task plan models is very important, since it determines which
actions, or included tasks, should run when the task is started. The usage of “.o.” in the action
and/or place labels indicates which are the task output places, i.e., which actions or tasks should
be running in the desired final marking of the task plan Petri net in case of success. Although
this knowledge is not used yet, we expect it to allow us to determine a task desired-effects in
the future, which will be important for planning purposes.

To better understand the concept of tasks within tasks, consider now a task plan for a
full soccer playing robot, depicted in Fig. 3.10. Here, besides action Dribble2Goal and task
Shoot For Goal, one also uses the Get Ball task plan described previously.

Petri net based task plans can run directly in a robot if a Petri net execution module is
used, preventing the user from having to do any additional code. Alas, regarding execution, in
the worst case scenario the designer only has to specify the task plan.

3.5 Organisation Layer

The Organisation layer is a conceptual layer, used to perform higher-level decisions. Its defini-
tion is very similar with the Action Coordinator layer, but only tasks are used.

Definition 3.5.1. A task plan model is a MOPN where

• All places pj ∈ P are either predicate places, memory places or task places.

• If there is an arc from place pn, associated to predicate P, to transition tj, then there is
an arc from tj back to place pn;
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Figure 3.10: Petri net model of the Score Goal task plan.

• The desired output state of the MOPN, in terms of action and task places, is specified by
including “.o” in the place labels. The places are denoted as output places.

As an example, consider again a soccer playing robot. Usually robots have different roles in
a soccer game, such as defender, attacker or goalie, which are dynamically assigned during the
game. In this scenario, the role selection would be modelled by a Petri net following Definition
3.5.1 in the Organisation layer. Although the same could be achieved by including additional
models in the Action Coordinator layer, by providing different layers, the models can be designed
and used in a more modular, and thus cleaner, approach.

Given the definition of the Organisation layer, it is clear that one can define additional
higher layers as needed, depending on the application.
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Chapter 4

Modelling Multi-Robot Tasks

This chapter details and extends the framework introduced in the previous chapter to multi-
robot tasks.

There is often the need to coordinate a group of robots in order to achieve a common goal or
improve the probability of success of a given task. This coordination is achieved by synchronising
two or more robots based on heuristics applied to the world state, where each robot would
take the same collective decision given the same view of the world, and/or through message
passing among the robots. In the later case, a robot uses a specific mean of communication to
send information (e.g., using wireless LAN), while in the first case the robot simply perceives
information regarding the world, including other robots, without explicitly exchanging messages
(e.g., using vision).

Modelling the implicit communication case can already be achieved by using the observation
models introduced in Section 3.2.1, as exemplified in Section 4.1. For the explicit case, one needs
to introduce communication models, as detailed in Section 4.3. Section 4.2 introduces model
templates, used to simplify the design of multi-robot task related models.

4.1 Multi-Robot Task Models Without Explicit Communica-
tion

In the developed framework knowledge is represented through logic predicates, which appear as
predicate places in the Petri net models. The multi-robot case is no different, albeit the need to
distinguish between the predicates of the different robots. To do so, each robot is tagged with
a specific name, Rx, where x is the robot number. This tag is then used to prefix each place
label to distinguish to which robot the place belongs.

As an example consider the action CatchBall model shown in Fig. 3.8. If this action were
to be used in a multi-robot task with two robots, then there would be two models, one for each
robot, as depicted in Fig. 4.1.

If full observability, without any errors or delays, is to be considered, then each robot task
plan can use directly the other robots and non-robot predicates, as was detailed for the single-
robot case. For instance, consider a two-robot task plan (denoted Role Supporter) where the
goal is to have just one robot trying to grab the ball, which is achieved using the models depicted
in Fig. 4.2. In this task, if one robot is close to the ball, the other robot will not try to go for
it.

The observation models introduced in Section 3.2.1 can be used in the multi-robot case to
model delays and errors in the observations of other robots information, as it is done for the
predicates of non-robot objects in the environment. In this case, each robot will have its own

25



(a) Action CatchBall model for robot R1. (b) Action CatchBall model for robot R2.

Figure 4.1: Petri net models of action CatchBall for the multi-robot case.

(a) Task R1Role Supporter model (robot R1). (b) Task R2Role Supporter model (robot R2).

Figure 4.2: Petri net models of task Role Supporter for the multi-robot case.

predicate associated with the observation of the other robot predicate state. Considering the
example given above, if errors and/or delays were to be considered, the task plan models would
be the ones depicted in Fig. 4.3. Here predicate R1R2CloseToBall denotes the observation
of predicate R2CloseToBall made by robot R1, while predicate R2R1CloseToBall denotes the
observation of predicate R1CloseToBall made by robot R2.

(a) Task R1Role Supporter model with
observation error/delay (robot R1).

(b) Task R2Role Supporter model with
observation error/delay (robot R2).

Figure 4.3: Petri net models of task Role Supporter for the multi-robot case.

Having for each robot a predicate that reflects another robot predicate, one can now in-
troduce the observation models in the environment layer to model those predicates updates.
Following the given example one would need to introduce the models depicted in Fig. 4.4 to
model observation delays among robot predicates.

To conclude, Fig. 4.5 shows the models that would be used when modelling observation
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(a) Model of predicate propagation with
delays for robot R1 predicate.

(b) Model of predicate propagation with
delays for robot R2 predicate.

Figure 4.4: Petri net models of observation update with delay for the multi-robot case.

errors with delays for the given example.

(a) Model of predicate propagation with
delayed errors for robot R1 predicate.

(b) Model of predicate propagation with
delayed errors for robot R2 predicate

Figure 4.5: Petri net models of observation update with delay for the multi-robot case.

The concepts introduced in the single-robot case together with the robot tags are enough
to model tasks in the implicit communication case. Nevertheless, if the number of robots
increases, creating these models for each robot becomes too cumbersome. To solve this issue
one uses model templates, as described in the next section.

4.2 Multi-Robot Model Templates

In the multi-robot case, each robot model follows a very similar structure, distinguished by the
robot tag. It is thus possible to create a template for each model and generate each robot model
from that template.

Definition 4.2.1. A model template is a model that uses specific place tags, which can be
instantiated to generate models usable in multi-robot scenarios.

Definition 4.2.2. A model template place tag specifies how the tagged places in a model tem-
plate are processed when instantiating the template into an usable Petri net model. The tag
must be one of “(&all)”, “(&!Rx)”, “(|all)”, “(|!Rx)” or “Rx”.

Remark 4.2.1. At most one of the tags “(&all)”, “(&!Rx)”, “(|all)” or “(|!Rx)” can be in-
cluded in each place label.

Remark 4.2.2. The template model name can itself be a template by using the tag “Rx” or
both the “Rx” and “!Rx.” tags.

Remark 4.2.3. If a template model name includes both the “Rx” and “!Rx.” tags, then that
models is denoted an extended template model.
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Remark 4.2.4. A model template can only include the place tags “(&!Rx)”, “(|!Rx)” or “Rx”
if the model template name is itself a template.

Each tag as a specific set of rules which states clear how the actual Petri net model is
obtained from the template, with each template model generating one Petri net model. The
introduction of templates in the template model name allows generating more than one Petri
net model from each template model. Extended template models will be useful when modelling
explicit communication, with more details given in Section 4.3. Algorithm 4.2.1 specifies how
the models are obtained from the templates.

To illustrate the algorithm application and the idea behind model templates, let us rewrite
the models used above using model templates. The action CatchBall models shown in Fig. 4.1
can be written using a simple extended template model, as depicted in Fig. 4.6. The number
of action models will depend on the number of robots included in the multi-robot task plan,
having one action CatchBall model per robot.

Figure 4.6: Petri net model template for action CatchBall, denoted RxCatchBall.

To create the template model for the task Role Supporter shown in Fig. 4.2 one needs
to use additional tags. In this task a robot should start task Get Ball only if no other robot
is close to the ball. As such, it must switch from task Move To Empty Spot to task Get Ball

when there is no other robot close to the ball, and must switch back when there is at least one
robot close to the ball. Such behaviour is achieved using the model template RxRole Supporter

depicted in Fig. 4.7.

Figure 4.7: Petri net model template for task Role Supporter, denoted RxRole Supporter.

If the task Role Supporter is to be conducted using two robots, instantiating task template
RxRole Supporter leads to the two models depicted in Fig. 4.2. However, the given task
template is not limited just to two robots tasks, but can be used with any number of robots.
For instance, if one were to consider a three robots task, then the instantiation of the template
model RxRole Suporter would lead to three tasks, one for each robot. As an example, task
R1Role Supporter Petri net model is depicted in Fig. 4.8 for the three robot case.

Finally, as another example, the templates to generate the models depicted in Fig. 4.4 and
Fig. 4.5 are shown in Fig. 4.9 and Fig. 4.10, respectively.
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Algorithm 4.2.1: Petri net template transformation.

Input: Petri net (extended) template model, PT , and the number of robots, r.
Output: Set of Petri net models, P = {PN(1), . . . , PN(n)}.
begin1

all← {R1, . . . , Rr}; // tags for each robot2

for i = 1 to r do3

for j = 1 to r − 1 do4

PN ′ = PN((i− 1) ∗ r + j)← PT ;5

notRx← all \Ri;6

foreach place pk in PN ′ do7

if pk has tag “(&all)” or “(&!Rx)” then8

foreach tag rm in notRx do9

Create a new place p′ with the same input and output transitions10

as pl;
Label p′ using the label of pl with the tag replaced by rm;11

end12

else // pk has tag ‘‘(|all)’’ or ‘‘(|!Rx)’’13

foreach tag rm in notRx do14

Create a new place p′;15

foreach transition tl connected to/from pk do16

Create a new transition t′ with the same input and output17

places as tl;
Replace the connections from/to t′ to/from pk, to/from p′;18

end19

Label p′ using the label of pk with the tag replaced by rm;20

end21

end22

if pj has tag “(&all)” or “(|all)” then23

Replace the tag in pk label with Ri;24

else25

Remove pk;26

end27

end28

if PT is not an extended template model then29

Break;30

else31

Label PN ′ using the label of PT with tag “!Rx” replaced by notRx(j);32

end33

end34

if PN ′ label includes the tag “Rx” then35

Label PN ′ using the label of PT with tag “Rx” replaced by Ri;36

else37

Break;38

end39

end40

end41
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Figure 4.8: Task R1Role Supporter Petri net model template for a three robot case.

Figure 4.9: Petri net model template for predicate CloseToBall propagation with delays in
the multi-robot case.

Figure 4.10: Petri net model template for predicate CloseToBall propagation with delayed
errors in the multi-robot case.
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4.3 Modelling Explicit Communication

The major problem when using communication is the time information takes to go from the
sender to the receiver, which, theoretically, can go from zero time to infinite time (communica-
tion failure). To model communication, three different communication models were considered,
which cover this time range. The base concept in these models is that a robot has a predicate
place at a given value and wishes to transmit that information to a teammate. The teammate,
upon receiving the information, gets its predicate updated to the same value as its teammate,
in case of successful communication.

The simplest communication model is presented in Fig. 4.11a. Here the communication is
considered instantaneous and always successful. Increasing the model complexity by adding a
probabilistic arrival time for the communication, results in the model depicted in Fig. 4.11b. In
this case, communications are still considered always successful, but the amount of time it takes
varies according to an exponential distribution. The full communication model, which adds the
failure possibility to the previous model, is presented in Fig. 4.11c. Here, besides including a
varying time delay, there is also the possibility that the message does not reach its destination,
thus modelling failures.

sendMsg

recvMsg

Sender
Receiver

success

(a) Deterministic communication model without
failures.

sendMsg

recvMsg

Sender
Receiver

success

(b) Communication model with probabilistic time
and without failures.

sendMsg

recvMsg

Sender
Receiver

success

failure

(c) Full communication model with probabilistic
time and failures.

sendMsg

recvMsg

Sender
Receiver

s.success

s.failure

r.success

(d) Separate view of the full communication model.

Figure 4.11: Explicit communication models.

Given the various communication models, one can choose which one to use, according to the
context where the model is being applied and the property sought to analyse. When using the
explicit communication models, they will be seen in a distributed way to simplify the graphical
view, given that there will be a sender model and a receiver model, as depicted in Fig. 4.11d.

4.3.1 Communication Actions

In order to use the communication models to model explicit communication between robots in
a multi-robot task plan, a new type of actions is introduced, denoted Communication Actions.
The structure of this action was designed such that a message can only be successful received
if both the sender and the receiver run the sending and receiving action simultaneously, re-
spectively. Fig. 4.12 shows two communication action models using the communication model
presented in Fig. 4.11d.
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(a) General send communication action. (b) General receiving communication action.

Figure 4.12: General communication action models.

The models in Fig. 4.12 are not yet suitable, given that the message transition does not occur
simultaneously both for the sender and for the receiver. To achieve that behaviour, one needs
the models depicted in Fig. 4.13. Here a counter place is used to establish that a robot is running
a receiving action. By using that counter as an enabling place of the successful communication
transitions in the sender communication action, one guarantees that the communication is
successful only if both the sender and receiver are running the corresponding communication
actions. Note that this place is called a counter since its number of tokens represents the number
of receiving actions running. Nevertheless, since these communication action models are used to
model explicit robot to robot communication, it is expected that the designed tasks guarantee
that only one receiving communication action of a kind is running at any given time, which can
be checked during the analysis phase.

Definition 4.3.1. A full sending communication action is a GSPN with the structure shown in
Fig. 4.13a, where <msg> represents the exchanged information, Rs denotes the sending robot,
and Rr denotes the receiving robot.

Definition 4.3.2. A full receiving communication action is a GSPN with the structure shown
in Fig. 4.13b, where <msg> represents the exchanged information, Rs denotes the sending
robot, and Rr denotes the receiving robot.

Although the shown actions include the full models, i.e., include both exponential distributed
delays and failures, it should be clear that any of the described communication models can be
used.

Communication action macro places represent communication actions in the Petri net based
task plans. They might be referred to as communications action places, since the macro property
is implicit.

As an example, consider a robot R1 which needs to communicate the value of its predi-
cate CloseToBall to another robot, R2, this time using explicit communication. The needed
communication action models for this task are depicted in Fig. 4.14.

As a final remark, recall that these models are used for explicit robot to robot communi-
cation, hence the need for two action models for each pair of sending and receiving robots.
However, one does not need to create all the robot to robot communications actions. By using
template models, one just needs to create two models for each type of message, one for the
sender, and one for the receiver. For instance, the template models for the models shown in
Fig. 4.14 are the ones depicted in Fig. 4.15.
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(a) General final send communication action. (b) General final receiving communication action.

Figure 4.13: General final communication action models.

(a) R1SendR2 CloseToBall communication action. (b) R2RecvR1 CloseToBall communication action.

Figure 4.14: Communication actions example.

4.4 Task Plans

With the introduction of the communication models for both the explicit case and implicit case,
specifying a multi-robot task is similar to the individual robot task case. The only difference
lies in the inclusion of communication actions and the usage of the tags to denote to which
robot the places belong.

As an example, consider a multi-robot task where the goal is to have n robots, with one
robot going for the ball and the n − 1 remaining robots going for an empty spot. The Petri
plan for this task using implicit communication is obtained by using the task template model
shown in Fig. 4.7 and specifying n as the number of robots.

Although specifying multi-robot tasks can be achieved using the same guidelines as in single-
robot robots tasks it is important to include selection mechanisms. These mechanisms prevent
having the robot sending direct messages to all robots at all times, but communicate instead
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(a) RxSend!Rx CloseToBall communication action
template.

(b) RxRecv!Rx CloseToBall communication action
template.

Figure 4.15: Communication actions template example.

with a robot, or robots, which have an higher probability of making a commitment (and keep
that commitment) in a multi-robot task, by using for instance the state of the world, or implicit
communication. It should be possible to manage these commitment mechanism using, for
instance, predicates in the proposed framework, however that subject was not yet researched in
detail, remaining part of the future work (see Section 8.2 for further details).
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Chapter 5

Analysis of Robot Tasks

This chapter details how robot task plans can be analysed through the analysis of the involved
Petri net models.

Section 2.5 introduced some properties of interest and analysis methods, with Appendix B
having a more thorough explanation on the subject. In order to use those analysis methods,
one needs to create a Petri net model of the overall task 1. Given that all layers are modelled
using Petri nets, these can all be composed together into that single Petri net model. This
single Petri net model represents the overall task, which can be analysed a priori. The analysis
can be both for logical (e.g. deadlocks) and probabilistic (e.g. probability of reaching a given
state) performance properties.

Furthermore, there are a number of properties that must be met during design time, which
allow for some error detection at an early stage of development. As an example consider the
boundedness of the net. Given that we are using predicate places, these can have only one or
zero tokens. If one detects more than one token in a predicate place at design time, or that the
sum of tokens in the two places associated with a predicate is not always one, it means that
there is an error in the models. In the predicate places case, this translates to a simple design
rule which states that if a given predicate p is an input place of a transition t, then one, and only
one, of predicate places NOT p or p must be an output place of transition t. If additionally one
requires action and task places to have at most one token, it results in a safe net requirement.
If the total number of tokens in the two places associated with a predicate is constant (equal
to one in this case) they form a place invariant [Murata, 1989], which can also be determined
from a priori analysis.

Having the modelling and analysis processes integrated under the same framework allows
for a design process based on a continuous loop of design-analysis-design. This loop guides
the development of the tasks in a structured way, leading to improved task plans even before
gathering results from the execution process.

Furthermore, data can also be extracted from the execution process in order to analyse the
task a posteriori, and to further improve the models.

5.1 Expansion Process

The Expansion Process enables us to obtain the single Petri net for analysis by merging all the
environment, action and task Petri net models. The place labels play an important role in this
process, since these allow us to distinguish between the different types of places. The current
expansion algorithm was designed to work with Petri nets where all non counter places are safe.

1It is possible to obtain some properties without having to generate the full Petri net.
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Given that all predicate places are safe by construction, it is thus important that each task
Petri net model is safe, i.e., that each memory, task or action place be safe.

When composing the various Petri nets, there are four basic rules that must always be
followed:

• Predicate places with the same label are considered the same place;

• Counter places with the same label are considered the same place;

• Action, task and memory places are always different places, regardless of their label;

• All transitions are different, regardless of their label.

Given these rules, whenever two Petri nets are composed, if there are several predicate places
(or counter places) associated with the same label, then these are duplicate places and can be
merged. Merging these places consists on keeping just one of the places while maintaining all
the connections of the removed duplicate places. Similar techniques exist in the literature, such
as the composition by place fusion in [Girault and Valk, 2003].

5.1.1 Petri Net Complement

Recall that when designing the Petri net models one is not forced to include the two predicate
places associated with each predicate. As such, those missing places must be added during the
expansion process, through the use of Algorithm 5.1.1, denoted Complement Algorithm. The
Petri net model which results from complementing Petri net PN will be denoted as P̂N .

Algorithm 5.1.1: Petri net complement algorithm.

Input: Petri net model, PN .
Output: Complemented Petri net model, P̂N .

begin1

Merge all duplicate places in PN ;2

foreach place pj in PN do3

if pj is a predicate place then4

If ¬pj does not exist yet, add it;5

else6

Create a complementary place of pj , denoted ¬pj , with marking7

# (¬pj) = 1−# (pj);

end8

foreach input transition ti of pj that is not an output of pj or ¬pj do9

Add an arc from ¬pj to ti;10

end11

foreach output transition ti of pj that is not an input of pj or ¬pj do12

Add an arc from ti to ¬pj ;13

end14

end15

end16

The complement algorithm is not applicable to communication actions. Since these follow
a rigid structure, there is no need to complement them.
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As an example, applying the complement algorithm to the Petri net model depicted in Fig.
3.3 results in the model shown in Fig. 3.2 except, purposely, for the place tokens (see predicate
places p.NOT BallMovingSlow and p.NOT BallStopped).

Note that the complement algorithm also introduces complementary places to non-predicate
places. The importance of these complementary places will be more clear later.

5.1.2 Extended Reachability Graph

Before detailing the actual expansion algorithm, one needs to introduce another auxiliary al-
gorithm, used to compute the Extended Reachability Graph. The reachability graph [Murata,
1989] of a Petri net with initial marking M0, denoted G(M0), allows determining the reacha-
bility set, denoted R(M0), i.e., the set of all reachable markings from the given initial marking
(see Appendix B for more details on computing the reachability graph).

Definition 5.1.1. Given a task plan Petri net model PN , the Extended Petri net model of
that task plan, denoted MPN , is obtained by adding transitions to PN such that predicates can
switch values in any state. Considering an initial marking M0, the reachability graph of MPN
is the Extended Reachability Graph of PN , and is denoted MG(M0). The reachability set of
MPN is the Extended Reachability Set of PN , and is denoted as MR(M0).

Algorithm 5.1.2 describes how to create the extended Petri net models that can be used to
compute the extended reachability graph.

Algorithm 5.1.2: Petri net extension algorithm.

Input: Petri net model, PN .
Output: Extended Petri net model, MPN .

begin1

Merge all duplicate places in PN ;2

foreach place pj in PN do3

if pj is a predicate place then4

If ¬pj does not exist yet, add it;5

Add a new transition t′ with an arc from pj to t′ and an arc from t′ to ¬pj ;6

Add a new transition t′′ with an arc from ¬pj to t′′ and an arc from t′′ to pj ;7

end8

end9

Set all positive and negative predicate place markings to 0 and 1 respectively;10

end11

As an example, the extended Petri net model of task Get Ball (shown in Fig. 3.9) is
depicted in Fig. 5.1.

5.1.3 Reduced Reachability Set

Definition 5.1.2. Given a reachability set R(M0) of task plan Petri net model PN , for an
initial markingM0, the Reduced Reachability Set of PN for the given initial marking, denoted
OR(M0), is obtained by removing all predicate places from the markings. The marking obtained
by removing the predicate places is called reduced marking and is denoted as OM.

Note that no definition was given for the Reduced Reachability Graph, as it is not applicable.
As such, although it makes sense to compute O(MR(M0)), computing M(OR(M0)) is undefined.
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Figure 5.1: Extended Petri net model of the Get Ball task plan.

Definition 5.1.3. An Active Reachability Set is defined as R(M0) ≡ O(MR(M0)) with Mj,
the markings of R(M0), denoted as Active Markings.

As an example, consider again the Get Ball task plan. Computing R(M0) of this task plan,
implies that one needs to determine the extended reachability graph of the Petri net model
depicted in Fig. 3.9, which implies computing the reachability graph of the Petri net model
shown in Fig. 5.1, resulting in the graph presented in Fig. 5.2 (considering that the marking
place labels are given by {MoveBehindBall, CatchBall, SeeBall, NOT SeeBall, IsBehindBall,
NOT IsBehindBall}).
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Figure 5.2: Extended reachability graph for the Get Ball task plan Petri net model.

The extended reachability set of the Get Ball task plan Petri net model is given by all the
markings shown in Fig. 5.2. Computing the reduced reachability set of the extended Get Ball

task plan Petri net model, where the marking is given by {MoveBehindBall, CatchBall}, yields:

M0 = {1, 0}, M1 = {0, 1}

Having obtained all possible states for a Petri net, independently of the predicate states,
will allow any task plan Petri net model to interrupt an included task Petri net model at any
marking, by considering all these states, as explained in the next section.

5.1.4 Petri Net Expansion

The actual expansion process is performed using Algorithm 5.1.3. This algorithm was written
considering that the resulting Petri net model must follow these guiding principles:
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1. A task should always be started in its initial reduced marking;

2. When a task is not enabled, the associated Petri net model reduced marking must only
contain zeros;

3. All tasks and actions should be interruptible in zero time;

The last item of the guiding principles enforces that, having decided to terminate a task or
an action, no exponential transition should have to occur for that task or action to terminate.

Algorithm 5.1.3: Single Petri net generation algorithm.

Input: Base task (bNet) model and all environment (eNeti), action and task models
Output: Single, expanded Petri net

begin1

Create an empty Petri Net, denoted fNet;2

p← 0; // Base priority3

foreach environment model, eNeti, do4

Add êNeti to fNet with priority p, and merge duplicate places;5

end6

Add b̂Net to fNet with priority p− 1;7

foreach task place, then each action or communication action place, in fNet do8

p← priority of parent model− 1;9

if the expanding place is a communication action place then10

Add the corresponding communication action Petri net model using11

Algorithm 5.1.4;
else12

Compute the complemented Petri net model associated with the place being13

expanded, hereby denoted m̂Net;
Prefix m̂Net transition labels with mNet name;14

if the expanding place is an action place then15

Add m̂Net to fNet with priority p;16

else17

Add m̂Net using Algorithm 5.1.5;18

end19

Add an arc from the expanding place to all transitions in m̂Net;20

Add an arc from all transitions in m̂Net to the macro place;21

end22

Merge all duplicate predicate and counter places;23

Prefix the macro place label with an “e” to denote that it has been expanded;24

end25

if bNet is a template model then apply Algorithm 4.2.1;26

Remove the tokens from all predicate places;27

end28

The phrase add Petri net with priority p means that all immediate transitions of the added
Petri net have priority p assigned. The Environment model reflects the world state which is not
controlled by the robot, as such, it makes sense that the environment state be update before
decisions are made when there are conflicts. For the remaining models, priorities are assigned
such that child models immediate transitions have a lower priority. The idea is to model the
fact that upper level decisions take precedence over lower level decisions.

39



Algorithm 5.1.4: Communication actions Petri net model insertion algorithm.

Input: Communication action Petri net model (mNet) and associated macro place,
parent model (fNet) and priority (p)

Output: Parent Petri net model fNet with communication action model inserted

begin1

Add mNet to fNet with priority p;2

Move all the output connections of the expanding macro place to the output place of3

mNet;
Merge the input place of mNet with the expanding macro place, maintaining the4

marking of the expanding macro place;
end5

Algorithm 5.1.5: Task Petri net model insertion algorithm.

Input: Complemented Petri net task model (m̂Net) and associated task place, parent
model (fNet) and priority (p)

Output: Parent Petri net model fNet with task model inserted

begin1

Compute R(M0) of m̂Net;2

Add m̂Net to fNet with priority p;3

foreach input transition ti of the expanding place in fNet do4

Add an arc from transition ti to all places containing one token in M0;5

Add an arc from all non-predicate NOT pj places to transition ti;6

end7

foreach output transition tn of the expanding place in fNet do8

foreach Mj, with j > 0 do9

Add a new immediate transition t′n with the same input places, output places10

and priority as tn;
Add an arc from each place with one token in Mj to transition t′n;11

Add an arc from transition t′n to all non-predicate NOT pj places;12

end13

Add an arc from each place containing one token in M0 to transition tn;14

Add an arc from transition tn to all non-predicate NOT pj places;15

end16

if the expanding place has zero tokens then17

Remove the tokens from all places with a token in M0 and add a token to all18

non-predicate NOT pj places;

end19

end20
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The action places function as enabling places of all transitions on the associated models,
i.e., if there is a token in the action place, then the transitions of the associated Petri net model
are enabled (as long as the running-conditions and remaining input predicate places are also
true). As such, expanding an action place consists of adding arcs from the action place to all
action model transitions and back.

For the communication actions the addition is performed such that one of the reset mecha-
nism transitions is always fired. Having one of those transitions fired, the transitions associated
with the actual communication will fire as long as the communication action is enabled.

Task places, besides working also as enabling places for the associated Petri net model,
must guarantee that the task is always interruptible and that no actions or lower level tasks
keep running when the task is disabled. This is the reason one needs to create complementary
places for non-predicate places, and why we need output transitions for every possible reduced
marking of the associated Petri net model.

Prefixing the transitions with the model names during the expansion algorithm allows deter-
mining to which model they belong when performing the analysis of the final model. Applying
the template rules allows the usage of the expansion algorithm for multi-robot tasks.

After having obtained the single Petri net, one needs to choose an initial state for the task
by setting the number of tokens in the predicate places. This Petri net can then be analysed
using well known techniques, as described in Section 2.5 and Appendix B. For instance, the
probability of running a given action is the the sum of the probability of having at least one
token in all places associated with that action.

For certain Petri net models some properties of the final Petri net can be obtained from the
composed Petri nets.

Proposition 5.1.1. A composed Petri net model is k-safe if it includes at most k communica-
tion actions of a given kind2 and the included tasks are li-safe (considering the active reachability
set), with li ≤ k for each task i.

Proposition 5.1.1 can be verified by going through the various types of models and the
expansion process. Consider first an expansion process with no communication actions. Recall
Definition 2.4.1 and Definition 2.4.2, which imply that any models using predicate places must
guarantee by design that the positive and negative form of the predicate places work as a one
token buffer, i.e., with the sum of the tokens of the two places associated with a given predicate
is always one. Since during the expansion process all predicate places with the same label are
considered the same place, the rule is maintained during the expansion process. Furthermore,
given that both the environment and action models, as of Definition 3.2.1 and Definition 3.3.1
respectively, only contain predicate places, these are safe by design.

Looking at the expansion process, particularly when adding environment models, the only
rule used is that duplicate predicate places must be merged. Since merging duplicate places
means maintaining all the input and output transitions, the safeness will me maintained by this
operations, i.e., Definition 2.4.1 will still be valid for all predicate places.

Regarding the expansion of non communication actions, besides merging duplicate predicate
places, one needs to add the enabling arcs to all transitions in the action model. Adding these
enabling arcs means adding an arc from the action place to each transition in the action model,
and another arc from each transition back to the action place. This addition does not change
the possible number of tokens in the action place and does not invalidate Definition 2.4.1 for
the expanded model, even if considering the active reachability set. As such, expanding a non

2By “kind of communication action” one refers to a particular instantiation of a communication action. For
instance, R1RecvR2 <msg> is one kind of communication action, while R2RecvR1 <msg> is another.
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communication action model still keeps the expanded model safe. As an example, if a task was
formed only by the CatchBall, expanding that task would yield the Petri net show in Fig. 5.3.

Figure 5.3: Safeness property after expanding a simple task model.

Consider now a task without communication actions. If this task does not include other
tasks, but only actions, and the task is safe (considering its active reachability set), then we
can conclude that the overall task, associated with the expanded Petri net, is safe since, as
seen previously, it does not depend on the non-communication action or environment models.
Recall that the expansion process guarantees that each included task is always started in its
initial reduced marking and, naturally, cannot have different active markings other than the
ones included in its active reachability set before expansion.

If besides including non communication actions a task includes other tasks, in the worst case
the overall active reachability set is the active reachability set of the top task times the active
reachability set of each included task. This implies that, considering the active reachability set,
the maximum number of tokens in each included place is maintained by the expansion process,
and thus safeness is also maintained. The same reasoning applies if there is a k-safe task model,
with other task models being li-safe, for all tasks i, in which case the composed task model is
k-safe. Note that this k is a supreme value, as the composed model might be safer due to some
active markings not being reachable, as exemplified below.

When communication actions are included, particularly receiving communication actions, a
new type of place is included: the counter place. Like predicate places, counter places with the
same label are considered the same during the expansion process, but these are not restricted in
their marking like predicate places are. In any given task, if k receiving communication actions
of a given kind are enabled in any possible active marking, then the corresponding counter place
will have k tokens. In this situation, and as long as there is no included task with a higher safe
value, the composed task will be k-safe.

Although Proposition 5.1.1 states a sufficient condition, it is not a necessary one, as including
an unsafe task model might still yield a safe final Petri net model after the expansion process.
As an example consider the task model depicted in Fig. 5.4. The active reachability set of
this model would be unbounded, with action StandBy always having one token and action
CatchBall having 0 or more tokens. However, if the environment or action models do not
include transitions to get predicate SeeBall to get true, transition t1 will never fire in the final
composed model. In this case the composed model would be safe. Nevertheless, given the type
of tasks involved, Proposition 5.1.1 provides a sufficient and important result.

Proposition 5.1.2. If all included tasks are bounded then the composed Petri net model is
bounded.
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Figure 5.4: Example of an unsafe task yielding a final safe composed model.

Proposition 5.1.2 can be explained using the same reasoning as for Proposition 5.1.1, thus
it will not be detailed further.
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Chapter 6

Results of the Application to
Robotic Soccer

This chapter provides results of the developed framework to some examples in a theoretical
robotic soccer scenario, while results using a realistic robotics simulator are provided in Chapter
7. Although all the examples provided are under this scenario, the framework is generic, and
not only applicable to these cases. Since the knowledge is represented through predicates,
the framework is more adequate to be used in robot tasks where the robot location can be
represented using a discrete representation.

RoboCup [Kitano et al., 1997], particularly the robot soccer competition, provides an excel-
lent case test for research in multi-robot systems, where the developed framework can be tested.
The aim of this competition is to forest research on artificial intelligence and robotics, with the
goal of having a team of human-like robots defeating the FIFA world cup champion by 2050.

In the Middle-Size League (MSL) of RoboCup, the robotic soccer scenario is composed with
two teams of robots with 5 to 7 players each, playing on a field with size about 12m by 18m. The
ball is a regular orange FIFA site 5 approved ball. Each team has a predefined colour marker,
which can be magenta or cyan. Over the years, restrictions are lifted in order to approach the
regular human soccer field and rules. As an example, the goals have just recently been changed
into regular goals, removing the blue and yellow colours that were previously used to distinguish
them. Fig. 6.1 shows a top view of a robotic soccer kick-off.

Figure 6.1: Robotic soccer overview.
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The Institute for Systems and Robotics at Instituto Superior Técnico has developed a team
of robots to participate in RoboCup [Kitano et al., 1997] through the SocRob project [Lima and
Custódio, 2005]. Several problems surfaced when developing the team of robots to play robotic
soccer, which led in part to the development of this work. As such, the robotic scenario will be
used to test and obtain results regarding the developed framework.

In order to be able to execute the task plans developed within the framework, one needs to
have a Petri net execution framework. In this work case such framework has been implemented
in the decision layer of the MeRMaID middleware [Barbosa et al., 2007]. Furthermore, the
implementation allows using the same code both in the real robots and in the simulator. The
Petri net execution framework was initially developed by Nelson Ramos, but then extensively
extended and improved by the author of this thesis.

In MeRMaID, the sensorial part of the implementation keeps the predicates up to date
(at least all the predicates that are relevant at any given state). Given a Petri net based task
plan model, the Petri net Executor checks which transitions are enabled, considering the current
selected actions and enabled predicates, and fires them accordingly. All actions that have tokens
at any given moment are the actions that will be enabled. We have also taken advantage of
part of the information provided in the Action Executor layer, namely the running-conditions,
so as to prevent running an action at the lower level when these are not satisfied.

The execution of the tasks can be monitored in order to assert and compare experimental
results with the theoretical ones, allowing to check the models for errors or needed improvements.

This chapter provides three different examples: a single-robot theoretical example in Section
6.1 and two multi-robot theoretical examples, one using explicit communications and the other
using implicit communication, in Section 6.2. Results using a realistic simulator are provided
later in Chapter 7.

6.1 Single-Robot Theoretical Scenario

This section presents results using a theoretical robotic soccer scenario. Several setups are
included, showing the impact on using different tasks, different environment models and different
observation models.

6.1.1 Base Setup

The base setup includes the models used to study a single-robot soccer playing task where no
observation errors or delays are considered. Furthermore, the ball position across the field is
considered to change only as a direct effect of the robot actions.

6.1.1.1 Predicates

The following list contains the predicates used for this example:

Ball position: BallOwnGoal, BallNearOwnGoal, BallMidField, BallNearOppGoal and Ball-

OppGoal;

Robot position: RobotNearOwnGoal, RobotMidField and RobotNearOppGoal;

Other: SeeBall, HasBall and CloseToBall.

The ball position predicates are used to describe the ball position, expecting that only one
ball position predicate be true at any given time. As the names suggest, when the ball is inside
the robot own goal, BallOwnGoal is true, while if the ball is in the opponent goal, then predicate
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BallOppGoal is true. The other predicates reflect the ball position in the area between the goals,
i.e., in the actual field. The same holds for the robot position predicates, except that the robot
cannot go inside the goals.

Predicates SeeBall, HasBall and CloseToBall describe, respectively, the robot seeing the
ball, having possession of the ball, and being in close proximity of the ball.

6.1.1.2 The Environment Models

The environment layer include the ball and robot position models, plus additional environment
information through the modelling of the predicate status, as shown in Fig. 6.2.

(a) Ball position model.

(b) Robot Position model. (c) HasBall model

(d) CloseToBall model

Figure 6.2: Environment models for the base setup.

Has can be seen, the robot and ball position do not change as a result of some other robot
actions (or other phenomenon). However, it was considered that whenever the robot has the
ball possession or is close to the ball, there is a probability of loosing the ball or its proximity,
respectively. The CloseToBall model also includes transitions to maintain the expected logic
properties of predicate CloseToBall, i.e., if the robot and ball are not in the same area of the
field, then it is not possible for the robot to be close to the ball. Similarly, the HasBall model
includes a transition to maintain the correct logic relation with predicate CloseToBall, as it is
not possible for the robot to have the ball possession if it is not close to it.

The rates used in the exponential transitions for the various models are 1/10 for all transi-
tions, except for the HasBall model, where 1/5 was used. Note that this setup uses theoretical
models and that the rate values were not computed from any real data. Nevertheless, time was
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Action Running-conditions Desired-effects

StandBy - -

Move2Ball SeeBall CloseToBall

CatchBall SeeBall, CloseToBall HasBall

Dribble2Goal HasBall RobotNearOppGoal, BallNearOppGoal

Kick2Goal HasBall BallOppGoal

Table 6.1: Action properties.

considered to be measured in seconds, meaning that an exponential transition with a rate of
1/5 will fire in average 1/5 times per second when enabled or, if referring in terms of delay, will
have an average firing delay of 5 seconds once enabled. For instance, for the CatchBall action,
this means that catching the ball takes an average of 5 seconds to be achieved.

6.1.1.3 Action Executor Models

Five different actions were used for this setup:

StandBy The robot does nothing, i.e., does not perform any change on the environment;

Move2Ball Get close to the ball;

CatchBall Grab the ball, if close to it;

Dribble2Goal Take the ball to near the opponent goal while avoiding obstacles;

Kick2Goal Kick towards the goal.

Table 6.1 gives a summary of the actions running-conditions and desired-effects. While
Fig. 6.3 contains the actual models. Recall that the running-conditions and desired-effects
information is available in the predicate labels of the action models, as explained in Section 3.3,
and as can be seen from Fig. 6.3. The StandBy action model is not shown because it is an
empty model, i.e, since it does not perform changes in the environment, it does not contain any
transition. The CatchBall action model is the one depicted in Fig. 3.8. Note the use of label
sn for success transitions, and fn for failure transitions.

The Move2Ball action is used by the robot to get near the ball. The model basically makes
the robot position predicates change towards the ball position predicate that is true, as long as
the robot sees the ball. It includes additional tests to avoid the robot moving to the ball when
it is inside a goal.

The CatchBall action purpose is to grab the ball when the robot is close to the ball. As
such, it makes the predicate HasBall become true, as long as the robot sees the ball and is close
to the ball.

The Dribble2Goal action is used by the robot to take the ball from its current posi-
tion to near the opponent goal, thus changing the robot and ball position predicates until
BallNearOppGoal and RobotNearOppGoal predicates become true, as long as the robot has the
ball.

Action Kick2Goal purpose is to score a goal, making the predicate BallOppGoal become
true, as long as the robot has the ball. While actions StandBy, Move2Ball, CatchBall and
Dribble2Goal do not explicitly include failures, the Kick2Goal action models does so. Action
Kick2Goal explicitly models the fact that the robot can shoot towards the goal from any place
of the field, but the ball can end in any place of the field. Transitions si correspond to success

48



(a) Move2Ball action model.

(b) Dribble2Goal action model. (c) Kick2Goal action model.

Figure 6.3: Action models
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transitions, while transitions fi correspond to failures. Setting an higher rate to transition s1
then s2 and s3, models an higher scoring probably when closer to the opponent goal.

Although the other actions do not explicitly include failures, they can still fail through the
environment model transitions. For instance, the predicate HasBall can become false at any
time (see Figure 6.2c), leading to a failure of actions such as CatchBall and Dribble2Goal.

The rates used in the exponential transitions for the actions models are as follows: 1.0 for
all success transitions, except for transitions s2 and s3 in action Kick2Goal, where 1/4 and 1/8
was used respectively; 1/4 for the failure transitions.

6.1.1.4 The Task Plans

The goal in a robotic soccer scenario is to score goals in the opponent goal, and not let the
opponent score the robot own goal. Currently the opponent is not directly modelled, but only
considered as part of the stochastic environment. As such, the consideration for now was only
to build task plans in order to score in the opponent’s goal.

The base task plan for this example is the Score Goal task plan depicted in Fig. 3.10, which
used the task plan Get Ball depicted in Fig. 3.9 and the actions described in the precious
section.

Task Score Goal includes a random switch, formed by transitions t3 and t4, when the robot
is running the Get Ball task and gains possession of the ball. In this situation the robot can
switch to action Dribble2Goal or Kick2Goal, with the probability depending on the weight of
the two transitions. As such, three different cases were studied and compared, by using different
weights for these two transitions, which represent three different tasks:

Shoot First: by assigning weight 0 to transition t3 and weight 1 to t4, t3 will never fire, meaning
the robot goes from action CatchBall to action Kick2Goal without going through action
Dribble2Goal, thus kicking to the goal as soon as it grabs the ball;

Shoot 50 50: by assigning weigh 1 to transitions t3 and t4, the robot chooses one of Dribble2Goal
and Kick2Goal with probability 0.5, as soon as it grabs the ball while running action
CatchBall;

Shoot Later: by assigning weight 1 to transition t3 and weight 0 to t4, t4 never fires, meaning
the robot runs action Kick2Goal after having run action Dribble2Goal successfully. The
robot will only kick the ball when it has possession of the ball and it is near the opponent
goal;

6.1.1.5 Results

For this base setup, it was considered that the robot could always see the ball, and that the
robot and ball were placed initially near its goal and the field center respectively, resulting in the
following initial predicate state: NOT BallOwnGoal, NOT BallNearOwnGoal, NOT BallMidField,
BallMidField, NOT BallNearOppGoal, NOT BallOppGoal, RobotNearOwnGoal, NOT RobotMid-

Field, NOT RobotNearOppGoal, SeeBall, NOT HasBall and NOT CloseToBall. All the following
setups for the theoretical single-robot scenario follow these considerations.

Since none of the actions performs changes on the environment when the ball is inside a
goal, one can expect the task to include deadlocks, corresponding to scored goals. Furthermore,
given that no transition to the BallOwnGoal was included, there can only be goals in the oppo-
nent goal. Qualitative analysis of the full task model confirmed that expectation, resulting in
deadlock states where a goal was always scored in the opponent goal. Each task was determined
to be safe, having at most on token per place. Each pair of predicate places formed an invariant
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as expected, and all five actions also formed an invariant, given that one, and only one action,
runs at any given time.

Given that both three tasks only include deadlocks with a goal being scored in the oppo-
nent goal, the long term probability of having one token in predicate places BallOppGoal and
BallOwnGoal is 1 and 0 respectively. This means that comparing the steady state analysis for
these two predicates for the three tasks is not much useful. In such cases the transient analysis
proves to be more interesting.
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(b) Probability of scoring in our goal.

Figure 6.4: Score goal probability evolution.

As Fig. 6.4a shows, although the stationary probability of scoring in the opponent goal is
one for all tasks, it takes longer to reach that probability when shooting first. On the other
hand, shooting later means reaching the stationary state faster. This is an expected result, since
the Kick2Goal action has a lower probability of scoring when kicking far from the opponent
goal.

Investigating what happens in the begging of time, the results are the opposite. As Fig.
6.4b shows, the short-term probability of scoring in the opponent goal is higher when the robot
runs task Shoot First, which is also an expected result given that the ball travels faster than
the robot. If the robot and ball are far from the opponent goal, the ball will reach the opponent
goal faster if the robot kicks it, instead of dribbling the ball and shooting later.

This is one example of interesting a priori results one can obtain using this framework. This
knowledge can then be used in runtime, for instance, to change the weights of transitions t3 and
t4 according to the score status and the game time left.

6.1.2 Base Setup with Uncontrolled Ball Position

This second example is identical to the previous one, but considers that the ball position can
change without being a direct result of the robot actions. Such behaviour is achieved by intro-
ducing the environment model depicted in Fig. 6.5. In this model, the ball position can change
at any time as long as the robot does not have possession of the ball.

The rate used in the exponential transitions for the the ball position models is 1/10.

51



Figure 6.5: Ball position model.

6.1.2.1 Results

Performing the transient analysis as in the previous case yields the results shown in Fig. 6.6.
Given that there are uncontrollable transitions which might lead to a goal being scored in the
robot own goal, the probability of scoring in the opponent goal is no longer one. Given that
these uncontrollable ball position transitions can only occur if the robot is not in possession of
the ball, dribbling the ball closer to the goal yields less risks to the robot, leading to a higher
stationary probability of scoring in the opponent goal when shooting later, as detailed in Fig.
6.6a.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Transient analysis results for BallOppGoal predicate

Time [s]

P
ro

ba
bi

lit
y(

B
al

lO
pp

G
oa

l|t
>

t’)

 

 

Shoot_First (Base setup)

Shoot_50_50 (Base setup)

Shoot_Later (Base setup)

Shoot_First

Shoot_50_50

Shoot_Later

(0.82266)
(0.85644)

(0.8796)

(a) Probability of scoring in the opponent goal.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Transient analysis results for BallOwnGoal predicate

Time [s]

P
ro

ba
bi

lit
y(

B
al

lO
w

nG
oa

l|t
>

t’)

 

 

Shoot_First
Shoot_50_50
Shoot_Later

(0.17734)
(0.14356)

(0.1204)

(b) Probability of scoring in our goal.

Figure 6.6: Score goal probability evolution with uncontrolled ball position.

The evolution of having a goal scored in the robot own goal is depicted in Fig. 6.6b. As
expected, shooting first leads to an higher probability of having a goal scored in the robot goal
at all times.

The short-term results are presented in Fig. 6.7. The relation between the outcome of
the three different tasks with the uncontrolled ball position model is identical to the one in
the previous example. Comparing each task outcome with the previous example results that
the task with the uncontrolled ball position model leads to higher scoring probabilities in the
short-term. This might be explained by the fact that the model in Fig. 6.5 includes both a
transition to the robot goal and the opponent goal, associated to the fact that the uncontrollable
transitions are enabled only when the robot does not have possession of the ball.
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Figure 6.7: Probability of scoring in the opponent goal (initial time instants).

6.1.3 Base Setup with Uncontrolled Ball Position and Observability Failures

This last case studies a single-robot scenario involving observability problems, by using the
observation models detailed in Section 3.2.1 for the predicate CloseToBall.

In order to analyse the task using observation models for predicate CloseToBall one must
first create an additional predicate which reflects the robot observation of the actual predicate,
here denoted R1CloseToBall. The robot decisions based on the CloseToBall predicate must
also be updated to use the R1CloseToBall instead, which in the present case involves updating
the Get Ball task to the model presented in Fig. 6.8. Note that the action models remain
unchanged, since the conditions needed for these to have an impact on the world do not depend
on the robots observations but on the true state of the world.

Figure 6.8: Petri net model of the Get Ball task plan for the observability failure setup.

Four different setups were considered by using the two different observation models depicted
in Fig. 6.9 with different rates, together with the Shoot Later task plan model:

No Observation Errors or Delays The previous setup with the ball position model includ-
ing the uncontrollable transitions;

Observation delay The same setup as in the previous item but with the Get Ball task shown
in Fig. 6.8 and the observation model shown in Fig. 6.9a. The rate used for transitions
t1 and t2 of the observation model is 10;
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Larger observation delays The same setup as in the previous item but with the observation
model transition rates decreased to 1;

Observation errors and delays The same setup as in the previous item, but with the obser-
vation model replaced by the one depicted in Fig. 6.9b. The transitions in the observation
model have rates 1.0 for s1 and s2, and 0.1 for f1 and f2;

Larger observation errors and delays The same setup as in the previous item, but with
the rates of transitions f1 and f2 increased to 0.5;

(a) Observation model with delays for the
CloseToBall predicate.

(b) Observation model with delays and errors for the
CloseToBall predicate.

Figure 6.9: Observation models for the CloseToBall predicate.

6.1.3.1 Results

Performing again a transient analysis for each of these setups yields the results shown in Fig.
6.10.
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Figure 6.10: Score goal probability evolution with different observation models.

The results in Fig. 6.10 show that if the observation delay is very small then the impact on
the task outcome is almost negligible. Increasing the observation delay to a value comparable
with the values used in the actions transitions leads to a higher decrease on the probability of
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scoring in the opponent goal. Introducing low rate observation errors on top of the delays also
does not affect much the outcome of the task. Only when the failure rates are increased to a
value in the order of magnitude of the exponential transition rates, does the outcome of the
task show a relevant decrease on the probability of scoring in the opponent goal.

The lessons to be learned here is that observation models should only be used when their
delays and/or failure rates are significant. Since introducing these models leads to a larger
state space, they should only be used when there is an expected relevant impact on the task
performance and/or logical properties.

6.2 Multi-Robot Theoretical Scenario

Nothing prevents using explicit and implicit communication models simultaneously, however,
to better illustrate the application of each case, two different setups are exemplified: one where
explicit communication is used (Section 6.2.1) and one using implicit communication (Section
6.2.2).

6.2.1 Multi-Robot Example Using Explicit Communication

For the explicit communication application example consider a pass between two robots, the
kicker and the receiver.

Given two tasks, coordinatedKick, for the kicker, and coordinatedReceive, for the re-
ceiver, a two-robot Pass task plan corresponds to a single coordinatedPass relational task,
which consists of running both individual tasks in parallel, one in each robot. The key here
is to make sure that both individual tasks run synchronously, either by implicit or explicit
communication.

In this example it is assumed that the decision to commit the two robots in the coordinated
pass was already made, and focus on the task execution analysis, keeping the critical sections
synchronised.

This example uses the same list of predicates used in the single-robot example (see Section
6.1.1.1), plus the predicates associated with the communication actions. The environment layer
models used are the same ones as used in the single-robot base setup as depicted in Fig. 6.2.
However, given that this is a multi-robot task, there will be a CloseToBall and HasBall for
each robot.

The multi-robot Pass task plan uses actions StandBy, Move2Ball and CatchBall, used
previously in the single robot example base setup (see Fig. 6.3), but adapted to the multi-robot
case. Additionally, the following actions were used:

Dribble2KickerPosture: The robot dribbles to the kicker posture to be ready to pass the ball
(Fig. 6.11b), which is always considered to be near its own goal;

Send Ready2ReceiveBall: The pass receiver acknowledges that it is ready to receive the ball;

Recv Ready2ReceiveBall: Waits for a communication from the receiver to know it is ready to
receive the ball;

PassBall: Passes the ball to another robot. It was considered that passes are only done from
near the own goal or the midfield to near the opponent goal (Figure 6.11c);

Go2ReceiverPosture: The robot moves to a destination posture, which is good for receiving
the ball. The receiving posture was considered to be always near the opponent goal (Figure
6.11a).
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(a) RxGo2ReceiverPosture action template model.

(b) RxDribble2KickerPosture action template
model.

(c) RxPassBall action template model.

Figure 6.11: Action template models used in the multi-robot example.

Note that Fig. 6.11 shows the actions templates, used to generate the action themselves.

Task Coordinated Kick is obtained by running actions Dribble2KickerPosture and Recv -

Ready2Receive in parallel, followed by action PassBall upon getting predicate Got Ready2-

ReceiveBall to true. Task Coordinated Receive is formed by a sequence of actions, start-
ing with Go2ReceiverPosture, followed by Send Ready2Receive when predicate NearOppGoal

gets true, and ending with action CatchBall when Sent Ready2ReceiveBall gets true. Re-
garding communication, the relevant actions for the coordinatedPass multi-robot task are
Recv Ready2ReceiveBall and Send Ready2ReceiveBall. These two communication actions
follow exactly the structure shown in Fig. 4.13, but with “<msg>” replaced by Ready2ReceiveBall.
The Petri net models of both tasks are depicted in Fig. 6.12a and Fig. 6.12b (recall that R1 is
the kicker and R2 the receiver).

(a) Task Coordinated Kick model.

(b) Task Coordinated Receive model

Figure 6.12: Task models used in the multi-robot example.

Note that for depicting the Petri net models of tasks Coordinated Kick and Coordinated -
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Receive no templates were used. Although templates are useful to describe actions and commu-
nication actions for multi-robot scenarios, they are not always suitable for designing multi-robot
tasks with explicit communication. Something more is needed, which relates to the commitment
mechanisms, as discussed later in Chapter 8.

Given that the focus here is on the analysis of the execution of the multi-robot task, without
using yet selection or commitment mechanisms, both robots were considered to be already set
up for the execution of the pass. As such, the pass between the two robots can be obtained
through the Pass task plan depicted in Figure 6.13.

Figure 6.13: Multi-robot Pass task plan.

6.2.1.1 Results

The setup used for the results consisted on placing both robots in the midfield area, with
robot R1 holding the ball, resulting in the following initial predicate state: NOT BallOwnGoal,
NOT BallNearOwnGoal, BallMidField, NOT BallNearOppGoal, NOT BallOppGoal, NOT R1Near-

OwnGoal, R1MidField, NOT R1NearOppGoal, R1SeeBall, R1HasBall, R1CloseToBall, NOT R1-

GotR2 Ready2ReceiveBall, NOT R2NearOwnGoal, R2MidField, NOT R2NearOppGoal, R2SeeBall,
NOT R2HasBall, NOT R2CloseToBall, and NOT R2SentR1 Ready2ReceiveBall.

The Pass task plan success probability was analysed by monitoring the number of tokens
in place action.R2StandBy. Since robot R2 only reaches action StandBy if it was able to
successfully receive the ball, reaching this action means the Pass task plan was successful.

The first results were conducted considering a deterministic environment (by removing all
the stochastic transitions from the environment models). Given that no failures were explicitly
included in the action models, the only failure in this case is the communication failure. As such,
the plan success probability should depend only on the relation between the communication
failure and success rates, yielding:

PPlan success =
λcomm success

λcomm success + λcomm failure

Exp. Action Comm. Comm. Plan success
# success rates success rates failure rates probability

1 1 1 1 0.50

2 1 1 10 0.09

3 1 10 1 0.91

4 1 10 10 0.50

5 10 10 10 0.50

Table 6.2: Plan success probability vs transition rates with deterministic environment.

Table 6.2 shows the results obtained with different transitions rates for this setup, con-
firming the above statement. The graph showing the expected number of tokens in place
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action.R2 StandBy over time is shown in Fig. 6.14 for experiments 1, 4 and 5. This graph
shows that, although the stationary plan success probability only depends on the communica-
tion rates, increasing the success transition rates leads to a performance improvement in the
short term.
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Figure 6.14: Pass task plan success probability over time for different transition rates.

The following experiments include additional failures by using the full HasBall and CloseTo-

Ball environment models for each robot, as shown in Fig. 6.3. The ball position model was
kept deterministic, without stochastic timed transitions. This setup was tested with different
transition rates, obtaining the results shown in Table 6.3.

Exp. Env. rates Action Comm. Comm. Plan success
# HasBall CloseToBall suc. rates suc. rates fail rates probability

1 0.2 0.1 1 1 1 0.32

2 0.2 0.1 1 1 10 0.06

3 0.2 0.1 1 10 1 0.62

4 0.2 0.1 1 10 10 0.34

5 0.2 0.1 1 100 0.1 0.69

6 0.2 0.1 1 10000 0.0001 0.69

7 0.2 0.1 10 10000 0.0001 0.96

Table 6.3: Plan success probability vs transition rates with probabilistic environment.

In this case, increasing the communication success also increases the plan success probability
as expected, but only to a certain point, as experiments 5 and 6 show. Only by increasing the
remaining action transitions success rate can the plan success probability increase further. In
experiment 7, the success rates are much higher than the failure rates, leading to an almost
100% success probability.

Qualitatively, and like in the single-robot example, the task was determined to safe, and
the predicate places form place invariants. Furthermore, as expected, both setups end always
in deadlock, given that the tasks are sequential.

6.2.2 Multi-Robot Example Using Implicit Communication

This setup shows an example of a multi-robot task using implicit communication and its results.
It consists on a multi-robot task with three robots where the goal is to have, at any given time,
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one robot trying to score a goal, while the other two robots have a supporting role. The
supporting robots try to move to an empty spot in the field.

The list of predicates used for this setup was the same as for the single robot case (see
Section 6.1.1.1), but adapted for each robot. The environment models used were the ones shown
in Fig. 6.2, adapted for the multi-robot case and with the stochastic transitions removed, as
to not include failures in the environment models. An additional environment model, denoted
BallReset was added to enable the robots to play continuously. The template for this model
is depicted in Fig. 6.15.

Figure 6.15: BallReset environment template model.

The multi-robot task plan is achieved by running the Play Coordinated Soccer task in
each robot, whose template model is depicted in Fig. 6.16.

Figure 6.16: RxCoordinated Soccer task template model.

The Role Supporter task template model is the one depicted in Fig. 4.7, while the
Role Attacker task template model is depicted in Fig. 6.18a. The Move To Empty Spot task
template model is shown in Fig. 6.18b.

Figure 6.17

The actions used in this setup are Move2Ball, CatchBall, Dribble2Goal and Kick2Goal,
which were already used in previous examples, with their models shown in Fig. 6.3, plus ac-
tions Move2NearOwnGoal, Move2MidField and Move2NearOppGoal, with their template models
depicted in Fig. 6.19.

59



(a) RxRole Attacker task template model.

(b) Move To Empty Spot task template model

Figure 6.18: RxRole Supporter and Move To Empty Spot task template models.

The rates used in these new action models stochastic transitions were the same as in the
previous models, i.e., 1.0.

Three different case were analysed as to assert the implication of observation failures in a
multi-robot scenario:

A Considers no observation failures;

B Considers observation delays for predicate CloseToBall with rate 10;

C Considers observation delays and errors for predicate CloseToBall, with rate 10 for transi-
tions s1 and s2 and rate 0.5 for transitions f1 and f2.

As it was done in Section 6.1.3, in order to consider observation failures in test cases B and
C, additional predicates were introduced to reflect the observation of each robot proximity with
the ball by other robots. Test cases B and C include an environment model per robot, following
the template model depicted in Fig. 4.9 and Fig. 4.10, respectively.

6.2.2.1 Results

The multi-robot task plan of this example was designed such that only one robot should be trying
to catch the ball at any given time. This property can be verified by analysing the number of
tokens in places action.R1CatchBall, action.R2CatchBall and action.R3CatchBall.

Exp. 0 robots 1 robot 2 robots 3 robots

A 0.73 0.27 0 0

B 0.74 0.26 9.28E-4 1.47E-5

C 0.75 0.25 1.11E-3 1.69E-5

Table 6.4: Probability of a given number of robots trying to catch the ball, per experiment.
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(a) RxMove2NearOwnGoal action template model.

(b) RxMove2MidField action template model.

(c) RxMove2NearOwnGoal action template model.

Figure 6.19: Additional action template models.
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Table 6.4 shows the probability of having 0, 1, 2 or 3 robots trying to catch the ball simulta-
neously. As expected, when no observation failures exist (case A), only one robot at most tries
to catch the ball. By including observation delays having two, or even all the robots trying to
catch the ball, no longer has zero probability. By further introducing observation errors this
unwanted situations have a probability increase. Nevertheless, even in the worst case, C, the
probability of having more than one robot going for the ball is still very low.

Given that a ball reset was included, there are no deadlocks in any of the three cases. As
such, the values in Table 6.4 result from a stationary analysis and represent steady-state values.
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Chapter 7

Model Identification

Chapter 5 detailed how to design task, action and environment models, and use them to perform
robot task analysis, with results provided in Chapter 6. Although the environment and action
models can be created manually, this might prove to be a cumbersome experience in many
situations, especially if the number of actions and/or predicates increases. This chapter details
a proposed method for creating the action and environment models automatically from real
data, based on the following steps:

1. Specify a list of actions with their running-conditions and desired-effects;

2. Specify, if needed, episode start state and end state;

3. Run data collection experiment;

4. Estimate the action and environment models;

By estimating these models from real data one improves the models approximation, leading
to improved models.

This chapter starts by detailing how data is collected (Section 7.1) and then describes how
this data is used to generate the Petri net models (Section 7.2). Finally, Section 7.3 provides
results with a robotic scenario using a realistic robotics simulator.

7.1 Data Collection Experiment

The data collection experiment is used to gather information about the actions impact in the
world in order to estimate the action and environment models. The experiment consists on
running each action based on the actions running-conditions and desired-effects. The experiment
flowchart is depicted in Fig. 7.1.

The current implementation includes a counter per action to hold the number of times each
action was selected during all data collection experiment episodes. These counters are used
both to determine when the experiment should end and to increase the selection probability of
less selected actions. Additionally, start and end predicate states can be specified. The start
state is used to guarantee that each episode starts with the given start state predicates true.
If an end state is specified, whenever that state is reached during an experiment, the current
data collection experiment episode is ended and a new one is started.

During the data collection experiment only one action is selected at any given time, and each
action is selected only if its running-conditions are true. Note that when randomly selecting a
new action, due to the current action desired-effects becoming true, nothing prevents selecting
the same action.
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Figure 7.1: Models identification data collection experiment.

7.2 Model Estimation

Once the data collection is accomplished, the goal is to obtain the Petri net model of each action
and of the environment from the experiment data, such that the analysis can be performed
using automatically obtained realistic models. For each episode ran during the data collection
experiment all predicate values and changes are stored, plus the selected action over time. Each
time one or more predicates changes, there is a state change. Since one action is enabled at
a time, each state change can be attributed either to the enabled action or the environment
(recall that environment transitions occur in parallel with the action transitions). Given enough
time, we will eventually capture all possible state changes. However, given that the a priori
knowledge consists only of the available predicates list, and the actions running-conditions and
desired-effects, we cannot know if a state change is caused by the action or the environment,
or both. As such, and since during the data collection experiment we are associating each
state change with an action, each identified action model will in fact (partially) contain the
environment model, i.e., part (or all) of the environment model will be embedded in each action
model. Details on how to overcome this limitation is part of the future work, as discussed in
Chapter 8.

Having processed all data, one obtains a Markov chain model for each action (plus envi-
ronment) where each event is defined by the set of predicates that were changed and the set
of predicates that were maintained, i.e., the event is fully defined by the states it connects. A
GSPN model can be created containing only stochastic transitions, whose marking process is
equivalent to the obtained Markov chain.

As an example, consider an hypothetical result for the CatchBall action used in previous
examples, depicted in Fig. 7.2. As can be seen, all identified transitions have as inputs the
predicate places associated with all predicates that were true in the starting state, and have as
outputs predicate places associated with all predicates which were true in the reached state.

For the GSPN model to be fully specified, one needs to compute the transition rates. From
the experiment data, it results for each event, for each action, a set of elapsed times corre-
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Figure 7.2: Hypothetical identified Petri net model.

sponding to the time taken from the start state to the reached state on every occurrence of the
event. With this information one can compute the transition rates. Given the consideration of
all transitions following an exponential distribution, the probability of the event ei occurring in
a given state s, for a given action a, is given by [Murata, 1989]:

a
sP (ei) =

a
sλi∑a

sN
j=1

a
sλj

,

where a
sN is the number of events that can occur in state s, in action a.

For each state, for each action, the probability of an event occurring can be estimated based
on its frequency, considering all occurrences of all events that can occur in that state:

a
sP (ei) =

#a
s∆tei∑a

sN
j=1 #a

s∆tej
,

where a
s∆tei is a vector with the elapsed time obtained for each occurrence of event ei in state

s, in action a, and # denotes vector length.
Since the time for each event to occur follows an exponential distribution, and all events

are considered independent, the rate at which any event occurs in a given state, in a given
action, is the sum of the rates of all events occurring in that state. Furthermore, the maximum
likelihood estimator of the rate parameter for an exponential distribution is given by the mean
of the elapsed times, resulting in

a
sλ =

a
sN∑
j=1

a
sλj =

 1∑a
sN
i=1 #a

s∆tei

a
sN∑
l=1

a
s∆tel

−1
It results that one can estimate the rate of each event using:

a
sλi = a

sP (ei) ∗
a
sN∑
j=1

a
sλj =

=
#a
s∆tei∑a

sN
j=1 #a

s∆tej
∗

 1∑a
sN
i=1 #a

s∆tei

a
sN∑
l=1

a
s∆tel

−1

=
#a
s∆tei∑a

sN
l=1

a
s∆tel
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The rate associated with the event is the rate associated with the corresponding transition.
In practice one will not have an infinite number of episodes, which implies that one might not

capture all existing transitions and/or states. Since higher probability transitions are captured
with higher probability, the impact on the performance properties should be negligible, given
an enough number of episodes. However, there can be a higher impact on logical properties,
particularly concerning reachable states. Nevertheless, most of the logical properties are still
valid. For instance, both the invariance over predicate places property and the safeness of the
net must hold (for the states/transitions found), even if not all transitions were identified.

Since one cannot know if all possible transitions were detected, currently the number of
episodes is selected empirically. Nevertheless is part of the future work studying measures that
might give a runtime indication of how well the approximation is doing, enabling to automati-
cally determine when an experiment should end.

7.3 Single-Robot Example with Identification

In order to test the framework with real data, several experiments were performed using WeBots
[Michel, 1998], a realistic simulator. Fig. 7.3 shows an overview of the simulation environment.

Figure 7.3: Simulation environment.

Since the code that runs in the real robots is the code that runs in the simulator, all the
experiments in this setup were performed using the actual robot code implementation.

Given that the proposed identification algorithm does not yet enable separating the envi-
ronment model form the actions models, one can only analyse tasks with real data when there
is at most one running action at any given time. As such, it is not yet possible to apply the
framework with real data on multi-robot scenarios.

Most of the models and predicates used for the single-robot scenario in the identification
experiment were similar to the ones used in the theoretical cases. However, some improvements
add to be made to accommodate this more realistic scenario, such as the inclusion of ball
movement predicates.

During the entire experiment, only one robot was running the task under analysis, while
all other 9 robot were running the Move2StartPosition action. The idea here is that each
“non-experimenting” robot tries to maintain its posture during the entire experiment.

7.3.1 Predicates

The following list contains the predicates used for this example:

Ball position: BallOwnGoal, BallNearOwnGoal, BallMidField, BallNearOppGoal and Ball-

OppGoal;
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Action Running-conditions Desired-effects

Stop - RobotStopped

MoveBehindBall SeeBall IsBehindBall

CatchBall IsBehindBall, SeeBall HasBall

Dribble2Goal HasBall
NearOppGoal, Aimable2Score

BallNearOppGoal

Aim2Score HasBall, Aimable2Score GoalOpportunity

Kick2Goal HasBall, GoalOpportunity BallKicked

Table 7.1: Action properties for the identification experiment.

Ball movement: BallMovingToOwnGoal, BallMovingToOppGoal, BallMovingFast and Ball-

Stopped;

Robot position: NearOwnGoal, MidField and NearOppGoal;

Robot movement: RobotStopped;

Other: HasBall, IsBehindBall, NearBall, SeeBall, BallKicked, GoalOpportunity and Aima-

ble2Score.

Most of the predicates were already used and explained previously. The ball movement
predicates are used to indicate when the ball is moving and where to. The IsBehindBall is
true when the ball is between the robot and the goal with the robot facing the ball. Predicate
GoalOpportunity is true when there is a scoring probability, while predicate Aimable2Score

is true when the robot is one rotation away from being in a good position to score a goal.

7.3.2 Actions

The actions included in this experiment are Stop, MoveBehindBall, CatchBall, Dribble2Goal,
Aim2Score and Kick2Goal, with the properties indicated in Table 7.1. Recall that these prop-
erties are needed to run the identification algorithm.

For the data collection experiment the start state was defined as having predicates BallOwn-
Goal and BallOppGoal false, while the end state was defined as having any of these two pred-
icates true. Furthermore, whenever the ball enters the goal, it stays in the goal until a new
episode is started. As such, no identified model will include transitions having simultane-
ously input predicate BallOwnGoal and output predicate NOT BallOwnGoal, or input predicate
BallOppGoal and output predicate NOT BallOppGoal, i.e., there will be no identified transition
modelling the removal of the ball from the goal.

7.3.3 Identification Results

When comparing the theoretical results with the experimental ones, four different data collection
experiments will be considered, A, B, C and D, with each experiment including an enough
number of episodes such that each action was selected at least 10, 100, 1000 and 10000 times,
respectively. Note that experiment A data is contained in experiment B data, which is contained
in C, which is contained in D. The actual number of action selection times per experiment is
shown in Table 7.2 (the action names are compressed to save space).

Fig. 7.4 shows the same data as table 7.2 using a logarithmic scale. The graph shows that
the average rate selection of each action does not change with the number of episodes. Including
the weights in the action selection during the data collection experiment is not enough to lead
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Exp.
# Action Selection

A2S CB D2G K2G MBB Stop

A 21 42 23 11 48 40

B 131 262 137 100 331 274

C 1011 1940 1012 1000 2468 1922

D 10013 18209 10025 10001 23405 18136

Table 7.2: Number of times each action was selected per experiment

to a more uniform action selection, but at least prevents form having a larger difference. The
larger number of transitions fired for some actions is not only a result of that action including
an higher number of transitions, but also due to the conditions associated with each action. For
instance, for the given test scenario, action MoveBehindBall running-conditions only includes
SeeBall, meaning that it could always be selected during the data collection experiment (since
predicate SeeBall was considered to be always true) while, for instance, Dribble2Goal has
running-conditions predicates SeeBall and HasBall. As such, even with the weights included
to increase the selection probability of less selected actions, some actions can only be selected
in a much smaller state space, leading to a smaller number of selection times over time.
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Figure 7.4: Number of action selection times versus number of episodes.

Fig. 7.5a and Fig. 7.5b depict the number of distinct transitions fired versus the total
number of transitions fired obtained while running experiment D. Although the ratio between
the number of distinct transitions fired and the total number of fired transitions is decreasing
with the number of episodes, the number of new transitions found is still increasing by a
reasonable rate. Fig. 7.6 provides a different view by showing the number of distinct transitions
fired for each action versus the number of times that action was selected. The figure shows that
the rate at which the number of distinct transitions grows is indeed decreasing. This means
that the system contains a very large number of transitions and that, even when having run
each action 10000 times, there are still transitions and states that were never identified. We
will see later that this has a limited impact on the task analysis results.

The information in Fig. 7.6 might be used in runtime to determine when an experiment
should end, although there is still no stoppage condition defined for the data collection experi-
ment. For instance, the figure shows that the MoveBehindBall action still has a new transition
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Figure 7.5: Number of distinct transitions fired vs number of total fired transitions.

firing rate higher than the remaining actions, in spite of being the most selected action. This
means that indeed this action is the most complex action in the identification process, prone to
include a higher number of transitions.
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Figure 7.6: Number of distinct transition versus the number of action selection times.

7.3.4 Analysis Results

In order to compare the theoretical results with the experimental ones, three different tasks
were devised, similar to the ones used in Section 6.1.1.4:

Score Goal Shoot First Whenever the robot captures the ball (predicate HasBall is true), if
the direct path to the opponent goal is free (predicate Aimable2Score is true), the robot
tries to score immediately;
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Score Goal Shoot 50 50 This task represents a midterm between the other two actions. When-
ever the robots captures the ball, it will randomly decide (with 0.5 probability) if it should
try to score or dribble the ball closer to the goal.

Score Goal Shoot Later The robot only tries to score if, besides having a direct path to the
goal free, it is near the opponent goal (predicate NearOppGoal true);

The task plan models are depicted in Fig. 7.7. The Get Ball task plan is identical to the
one shown in Fig. 3.9, but with action MoveBehindBall instead of action Move2Ball.

For each task, the theoretical models are obtained by generating the single Petri net model,
using the expansion process described earlier, with the action models obtained through the
identification process. Since the ball is not removed from the goals during each episode, and
given that the purpose of these tasks is to score a goal, it is expected that the obtained Petri
net model of the overall task will contain deadlocks, corresponding to a goal scored in one of
the goals. As such, and similarly with the single-robot theoretical example, a transient analysis
was performed in order to perform a comparison with the transient results of the previous
experiments. In these tests the experimenting robot and ball were initially positioned near the
robot own goal and middle field, respectively.

7.3.4.1 Transient Analysis

Conducting the transient analysis and measuring th probability of scoring a goal in the oppo-
nent goal for the Petri net generated from Score Goal Shoot Later, for each data collection
experiment set, lead to the results depicted in Fig. 7.8. As can be seen from the figure, the
result obtained with experiment C data is very similar to the one obtained with experiment D
data, in spite the transition increase rate shown in Fig. 7.5, i.e., in spite of the number of new
transitions still being found.

For the experimental results, each task was ran 10000 episodes, i.e., the experiment ran until
the robot scored 10000 goals (including goals scored both in its goal and the opponent goal).
Each episode consisted in placing the robot in the same initial conditions as the theoretical
case and running the task until a goal was scored (the same end conditions as the theoretical
transient analysis).

Fig. 7.9a shows the theoretical transient analysis results, obtained using the D data set,
versus the experimental results. In spite of all the approximations done, the results still yield
a low error. Furthermore, the difference between the three tasks for the experimental case is
similar to the difference for the theoretical case. This is of the utmost importance, since one of
the goals of the framework is to be able to give insight when comparing different tasks in terms
of performance, i.e., allowing to evaluate the performance impact on changing some parameters
of the task plan.

Analysing each task during the initial 14s (see Fig. 7.9b), one can see that shooting earlier
leads to higher probability of scoring in the short term, but in the long term it leads to a lower
scoring probability. This is expected as when kicking immediately the robot can score sooner,
but with a high failure probability, as opposed to kicking only after getting close to the goal,
which takes longer time but has higher probability of scoring. Furthermore, it is interesting
to compare this result with the one obtained in the Section 6.1.1. In spite of having used a
fewer number of predicate and simpler action models, the information provided is not much
difference, specially in what concerns comparing the three devised tasks with each other. This
strengthens the idea that for many situations there is no need to create complex models or even
creating the models from real data, as simpler models would provide similar information.

There is a reasonable time difference between the increase of scoring probability between the
theoretical and experimental result, which is explained by the fact that we are considering that
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(a) Score Goal Shoot First task plan model.

(b) Score Goal Shoot 50 50 task plan model.

(c) Score Goal Shoot Later task plan model.

Figure 7.7: Task plans used in the identification experiment.
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Figure 7.9: Theoretical vs experimental transient analysis for predicate BallOppGoal.

72



Task
Probability

BallOwnGoal BallOppGoal “No goal”

Shoot First 3.09E-04 9.94E-01 5.5E-03

Shoot 50 50 2.64E-04 9.974E-01 2.82E-03

ShootLater 2.36E-04 9.98E-01 1.15E-03

Table 7.3: Theoretical steady-state probability of scoring goals (from transient analysis).

all stochastic timed transitions follow an exponential distribution. In reality, some transitions
always have a minimum time which must elapse before the transition can fire, which is not
captured at the moment (this issue is part of future work).
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Figure 7.10: Theoretical vs experimental transient analysis for predicate BallOwnGoal.

The comparison of the probability of scoring in our own goal for the theoretical prediction
versus the experimental results is depicted in Fig. 7.10. The probability of scoring in the robot
own goal is very low, having little statistical significance for the number of episodes performed.
Nevertheless, the maximum probability error is less than 3.2E-04 (as obtained from the plotted
values).

An important aspect of these results, is that while the sum of the probabilities of predicates
BallOwnGoal and BallOppGoal for the experimental case when a steady-state is reached is 1,
the same does not happen for the theoretical case, as shown in Table 7.3. This result is due
to the fact that the generated single Petri net model of the overall task includes deadlocks
which do not correspond to a goal scored, either due to not having performed enough data
collection episodes for the action and environment models, or due to the fact that the task
plan was actually poorly designed. Knowing which of the two answers is the right one can only
be achieved by analysing the found deadlocks, the path that led to those deadlocks, and the
designed task. For the given test cases, it results that these unexpected deadlocks were due to
not having performed enough data collection episodes. This conclusion is further backed up by
the results shown in Fig. 7.5 and by the fact that the experimental results did not include any
deadlock other than a goal scored.

Finding deadlocks when performing the theoretical analysis, which are due to having not
performed enough data collection episodes, mainly has implications in the qualitative (logical)
analysis. In the quantitative (performance) analysis, as it was shown, the impact on the deter-
mined values is very low, given that higher probability transitions will be properly identified
and modelled. Concerning the qualitative analysis, the main impact is on the analysis of the set
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of reachable states, since some states might not be included. Nevertheless, we can still perform
all the qualitative analysis, knowing that the results are valid with a given probability that in-
creases with the number of data collection episodes. For instance, in our test scenarios, we were
able to conclude that, for all states found, the task is safe. We also determined that both sets of
predicates formed by BallOwnGoal, BallNearOwnGoal, BallMidField, BallNearOppGoal and
BallOppGoal, and formed by NearOwnGoal, MidField and NearOppGoal form place invariants.
This is an expected and mandatory result, since both the ball and the robot can only be in one
part of the field at any given time. If these invariants were not found, then it would indicate that
the software running in the robots, responsible for computing the predicates during execution,
would contain an error.

The fact that the net is safe and all pairs of predicate places form an invariant, makes the
average number of tokens per place represent the average time spent in any action, for action
places, and the average time a predicate was in a given state, for predicate places (for additional
performance measures computation check Appendix B).

7.3.4.2 Steady-State Analysis

Based on the above results, and in order to further study the impact of the unexpected deadlocks
described earlier, a steady-state analysis was performed. With the three task plans shown, and
by repositioning the ball in the centre of the field whenever a goal is scored, the robot can play
indefinitely. To model and analyse this setup under our framework, all that is needed is to add
an environment model (manually designed), which models the repositioning of the ball when a
goal is scored. For the action models we will use exactly the same data as used in the results
above, but will only consider the D case. The initial state consisted on placing the robot and
ball in the field centre. The environment model used to reposition the ball is depicted in Fig.
7.11.

Figure 7.11: BallReset environment model.

With this new setup one would expect that the resulting generated Petri net would yield
no deadlocks. However, and as explained earlier, since there were not enough data collection
episodes, that is not the case. Nevertheless, by performing an analysis of the communication
classes found (see Appendix A for details on communication classes), it was determined that
for each task plan there was one large transient class containing around 90% of the tangible
states, and all the remaining classes contained only one absorbing state. As such, it was decided
to perform the steady-state analysis of the task excluding all absorbing states, i.e., considering
only the large communication class.
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Tasks Action Places Predicate Places

Shoot First 2.61E-02 8.73E-02

Shoot 50 50 1.62E-02 8.77E-02

Shoot Later 1.20E-02 9.01E-02

Table 7.4: Average steady-state error of the number of tokens per place.

For the experimental results, the robot played until the computed average number of tokens
per place stabilised, i.e., until an experimental steady-state was reached. For the steady-state
analysis, comparing the average time spent by the robot in each action yields the results depicted
in Fig. 7.12.
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(b) Experimental variation versus theoretical
variation.

Figure 7.12: Theoretical vs experimental average time spent per action.

The steady state average error, measured as the average absolute difference between the
experimental and predicted number of tokens for all action places and for all predicate places
is shown in Table 7.4.

The steady state average error between the number of tokens for all action places and for all
predicate places is shown in Table 7.4. In spite all the approximations the results are still very
similar. This result further strengths the conclusions described earlier, allowing to use these
techniques to perform stationary analysis whenever there are deadlocks due to insufficient data
collection episodes.
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Chapter 8

Conclusions and Future Work

The diversity and complexity of tasks using mobile robots is increasing. However, most robot
tasks are still designed without any knowledge of their expected execution properties. There is a
need to be able to determine and study the task properties to ensure that some task performance
levels and logical properties are achieved.

Mobile robot tasks provide a greater challenge than manufacturing systems, where this
type of properties have been studied for some time. Unlike mobile robots, manufacturing
systems have a more controlled environment with clear interfaces between each device in the
manufacturing line. On the other hand, mobile robots are bond to work on an highly dynamic
environment where the interactions with both the environment and other robots are not so
strict, increasing the complexity of the task. To model these interactions, besides having to
introduce more complex action models, one needs to include models of the environment. These
models account not only for expected outcomes, conditions when these outcomes are possible,
but also uncontrolled changes either due to the robot executing the task, other robots, agents
or physics.

Given this inherent complexity and dynamics of mobile robot tasks, only by performing some
simplifications and approximations can one ensure that it is possible to analyse and determine
those properties for a given mobile robot task.

8.1 Thesis Summary

This work uses Discrete Event Systems, particularly Petri nets, as a modelling and analysis
framework for mobile robot tasks where the world state is approximated through the use of
logic predicates.

The key contribution of this work is the introduction of a framework to address the problem
of modelling, analysis and execution of robot tasks, providing a structured, hierarchical and
modular approach to the design of robot tasks. By using Generalised Stochastic Petri Nets,
stochastic time is associated with world changes (transitions), allowing to model and analyse the
task for performance/quantitative properties. Both transient and steady-state analysis can be
performed. By a suitable modification of the Petri net structure (e.g., for conflicting immediate
and stochastic transitions) logical/qualitative analysis is also accomplished. Petri nets provide
a suitable tool to model both concurrency, parallelism and synchronisation, which are essential
aspects of robot tasks.

The action models are probabilistic, containing uncontrollable transitions, which mimic the
uncontrollable characteristics of a mobile robot task. The inclusion of environment models
provide the means to model environment changes which can be attributed either to the world
physics or other robots impact. These environment models allow closing the loop, enabling a
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Petri net model of the overall task to be created, from which the desired properties can be
determined.

The introduction of observation models enables asserting the impact of observation failures
on the task outcome. These observation models range from full observability without failures
of any kind, to exponential-distributed time observation delays and/or errors. These models
also prove useful to model and analyse multi-robot tasks where robot coordination is achieved
through decision-making based on, possibly, collective perception of the world, hereby denoted
as implicit communication. The introduction of communication models further extends the
ability to model and analyse multi-robot tasks, by providing means of modelling robot-to-
robot communication. Several communication models are presented which range from zero-
time/zero-failure communication to exponentially distributed time delays and failures, allowing
to determine the impact of communication problems in multi-robot task properties.

A priori analysis of the task properties allows for important information to be retrieved even
before executing the task. The framework provides a design-analysis-design iterative approach
which leads to improved task plans. Simulation results and runtime analysis of experimental
data can be used to further reduce model incorrections and test the validity of the models. The
models used for the actions applied over an environment can be created manually or obtained
through an identification algorithm which builds the models from real data using a specific
unmanned data collection experiment. By using these identified models one ensures that the
task properties reflect the real task. Once these identified models are obtained, a task which
uses those models can be analysed in a very short time span (depending on the state space of
the task) using the provided framework, as opposed to the number of hours or days one would
need to perform real experiments to collect task execution data. These models can be combined
with manually parametrised models, preventing having to re-run the entire experiment if small
changes are made to the environment. Although using real-data-based models provides for
real-value-based properties, there is no need to always use real-data-based models, particularly
if one is only interested in understanding the relative impact of changing some properties of
the task under analysis. By manually changing transition parameters one can also study the
sensitivity of the task to the variation of those parameters.

8.2 Discussion and Future Work

The main limitation of the developed framework is not being able yet to identify the environment
models separately from the action models. Although this limitation does not affect manually-
built models, it prevents real data based models from being used in the analysis of tasks where
more than one task runs simultaneously, which is the case for all multi-robot tasks. This
is an important issue to be solved in the future, either by performing additional analysis on
the collected data, or by providing more a priori information to allow distinguishing an action
transition from an environment one. Including stopping and quality assessment methods for the
identification algorithm is also part of the future work. Currently the algorithm runs “blindly”
for a specific amount of time or number of episodes.

In order to model more complex multi-robot tasks, with multi-robot behaviours interleaved
with individual behaviours in more than two robots, one needs to incorporate selection and
commitment maintenance mechanisms. In the proposed framework dealing with the existence
and removal of commitments can be viewed as any other predicate test. What still needs to
be done, is how to commit, when to enter the commitment, and how to select which robots to
commit with. Considerable work has been done regarding these aspects of relational behaviours
[Cohen and Levesque, 1991; van der Vecht and Lima, 2005; Huang et al., 2005; Toktam Ebadi
and Purvis, 2009]. We expect in the future to be able to integrate existing work into the
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developed framework in order to solve these aspects.
The usage of template models allowed to ease the burden when creating multi-robot action

and task models. Nevertheless, it might be useful to use, besides these templates, another Petri
net formalism, denoted Coloured Petri nets [Jensen, 1989]. Coloured Petri nets are suitable to
model distributed systems, and could provide a more compact design of the task models for the
multi-robot case.

As future work one will investigate how the complexity of analysis algorithms can be de-
creased by allowing some of the properties to be derived, or to be ensured, during design time,
without having to compose the full Petri net model. A possible approach is to create specific
task plan composition operators as proposed in [Košecká et al., 1997; Huang et al., 2005; Ziparo
and Iocchi, 2006] (not to be confused with the composition operators used in the expansion
algorithm). By limiting the types of composition operators used to design Petri net based task
plans, one might ensure that some logical properties are met at design time. The composition
operators could also be used to obtain a set of running-conditions and desired-effects for a
given task plan based on the Petri net model of that task plan and the running-conditions and
desired-effects of the actions and tasks used in that task plan. The task’s set of conditions could
then be used to provide a more intuitive design of higher-level task plans from the lower-level
ones.

Planning, or synthesis of plans, within the current framework is also an interesting sub-
ject for the future. Several work exists in the literature concerning the synthesis of Petri net
based controllers from specifications [Hickmott et al., 2007; Dideban and Alla, 2008; Mauser
and Lorenz, 2009]. The action models already include running-conditions and desired-effects,
which provide the base logic knowledge for STRIPS [Fikes and Nilsson, 1971] base planning (for
task models the composition operators mentioned in the previous paragraph could be used to
provide the set of conditions). However, this type of planning does not take into consideration
performance issues, as it is a pure logic-based planner. Probabilistic planning approaches exist
in the AI community, including planners using high performance methods based on Stochas-
tic Satisfiability (SSAT) [Majercik and Boots, 2005]. Recent work aims at bringing together
approaches from the AI planning and the Petri nets community [Hickmott et al., 2007]. In
this sense, Markov Decision Processes (MDP) [Puterman, 1994] are also tightly coupled with
the developed framework. Recalling the Score Goal Petri net task plan depicted in Fig. 3.10,
there was a random switch formed by transitions t3 and t4, whose weights changed according to
the desired task. These two transitions and their associated weights can be thought to provide
an action selection decision process, which allow viewing the system as an MDP. Another ap-
proach would be to synthesise a Petri net task plan based on the available models with random
switches for actions and task selection, and then use a learning algorithm to improve the task
plan outcome by changing the weights of the transitions involved in the random switches. A
similar approach is proposed in [Neto, 2008] with FSA.

All the analysis results presented were obtained using an analysis tool (implementing algo-
rithms publicly available) developed by the author. The monitoring tools plus the execution
Petri net framework in MeRMaID are also mainly a work from the author. However these
tools are implemented across different technologies, using Matlab R©, C++ and Java R©. It is the
intention of the author to provide an unified tool which allows both for the design, analysis and
monitoring of robot tasks in the future. Such a tool will greatly improve the usability of the
developed framework, making it more easy to be used with real robots in real scenarios.
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Bruno D. Damas and Pedro U. Lima. Stochastic Discrete Event Model of a Multi-Robot
Team Playing an Adversarial Game. In Proceedings of the 5th IFAC/EURON Symposium on
Intelligent Autonomous Vehicles. Elsevier, July 2004.
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Sarah Hickmott, Jussi Rintanen, Sylvie Thiébaux, and Lang White. Planning via petri net
unfolding. In IJCAI’07: Proc. of the 20th int. joint conf. on Artifical intelligence, pages
1904–1911. Morgan Kaufmann Publishers Inc., 2007.

He-Jiao Huang, Xuan Wang, Qing-Cai Chen, and Xiao-Long Wang. Specification and verifi-
cation of multi-agent systems with a porperty-preserving component-based methodology. In
Fourth International Conference on Machine Learning and Cybernetics. IEEE, August 2005.

Dean L. Issacson and Richard W. Madsen. Markov Chains, Theory and Applications. Wiley,
1976.

Kurt Jensen. Coloured Petri nets: A high level language for system design and analysis. In
Applications and Theory of Petri Nets, pages 342–416, 1989.

Konstantin Kapellos, Daniel Simon, Muriel Jourdan, and Bernard Espiau. Task Level Spec-
ification and Formal Verification of Robotics Control Systems: State of the Art and Case
Study. Int. Journal of Systems Science, 30(11):1227–1245, November 1999.

Gunhee Kim and Woojin Chung. Navigation Behavior Selection Using Generalized Stochastic
Petri Nets for a Service Robot. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 37(4):494–503, July 2007.

Jamie King, R.K. Pretty, and R.G. Gosine. Coordinated execution of tasks in a multiagent
environment. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and
Humans, pages 615–619, 2003.

Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa, and Hitoshi Mat-
subara. RoboCup: A Challenge Problem for AI and Robotics. In RoboCup-97: Robot Soccer
World Cup I, pages 1–19. Springer-Verlag, July 1997. ISBN 3-540-64473-3.

William J. Knottenbelt. Generalised Markovian Analysis of Timed Transition Systems. PhD
thesis, Department of Computer Science, University of Cape Town, June 1996.
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Gonçalo F. Neto, Hugo F. Costelha, and Pedro U. Lima. Topological Navigation in Config-
uration Space Applied to Soccer Robots. In Springer-Verlag, editor, RoboCup 2003 Book,
Padova, Italy. RoboCup, July 2003.

Vı́ctor A. Ocasio. Stability of Boolean Dynamical Systems and Graph Periodicity. Master’s
thesis, University of Puerto Rico, Mayagüez Campus, May 2009.
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Appendix A

Markov Chains

Markov chains are the underlying stochastic process of the marking graph of stochastic timed
Petri nets. As such, this chapter introduces the concepts around Markov Chains and explores
the various analysis techniques that where applied in this work.

A stochastic process, i.e., a collection of random variables over time, that satisfies the
Markovian property and have a countable state space is a Markov Chain. If time is discrete,
these are referred to as Discrete Time Markov Chains (DTMC), otherwise, if time is continuous,
these are called Continuous Time Markov Chains (CTMC).

This appendix does not introduce anything new, but is a detailed summary concerning the
concepts and analysis of both DTMCs and CTMCs for the sake of completeness of this docu-
ment. More details can be found in the literature [Issacson and Madsen, 1976; Viswanadham
and Narahari, 1992]. We will focus only on finite homogeneous Markov Chains.

A.1 Geometric Distribution

The probability mass function of a geometrically distributed random variable X which describes
the number of independent and identical Bernoulli trials needed to obtain the first success is
given by

P{X = k} = (1− p)k−1, k = 1, 2, . . . (A.1)

where p is the probability of success of each Bernoulli trial. The mean of X is given by

E[X] =
1

p
(A.2)

The cumulative distribution function of X is

FX(k) = Pr{X < k} = 1− (1− p)k (A.3)

It can be shown that a geometrically distributed random variable X has the following prop-
erty

P{X = m+ n | X > m} = P{X = n} (A.4)

Eq. (A.4) describes what is know as the memoryless, or Markov, property. The future only
depends on the current state, and not on the history.

A.2 Exponential Distribution

The exponential distribution is the continuous analogue of the geometric distribution.
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The probability density function of an exponentially distributed random variable X with
parameter λ is given by

fX(x) = 0, x ≤ 0

= λ.e−λx, x > 0,
(A.5)

where λ is called the rate of X with x ∈ R. The mean of X is given by:

E[X] =
1

λ
(A.6)

The cumulative distribution function of X is given by

FX(x) = P{X < x} = 0, x < 0

= 1− e−λx, 0 ≤ x ≤ ∞
(A.7)

Given an exponentially distributed random variable X, the following properties hold

P{X > x} = e−λx x ≥ 0
P{x ≤ X ≤ y} = e−λx − e−λy 0 ≤ x ≤ y (A.8)

Furthermore, the following can be shown

P{X > x+ y|X > x} = P{X > y}, x, y ≥ 0 (A.9)

Like Eq. (A.4) demonstrated the Markov property for geometric distributions, Eq. (A.9)
demonstrates it for exponentially distributions.

A.3 Discrete Time Markov Chains

A discrete time stochastic process that satisfies the Markov property and has a countable state
space is a DTMC. The study of DTMCs is rather important since the study of CTMCs can be
partially done recurring to DTMCs, as will be detailed later.

Definition A.3.1. A Discrete Time Markov Chain is a discrete time stochastic process {Xn, n ≥
0} that satisfies the Markov (or memoryless) property, i.e., given states i, j, k ∈ S,

P{Xm+1 = i|Xm = j, . . . , X1 = k} = P{Xm+1 = i|Xm = j} (A.10)

The values of Xm form a countable discrete state space.

The n-step transition probabilities, i.e., the probability of going from state i at time step m
to state j in n steps is given by

pij(m,m+ n) = P{Xm+n = j|Xm = i}

If the above probability is independent of the initial time step m, the DTMC is homogeneous.

Definition A.3.2. A DTMC is homogeneous, or has stationary transition probabilities, iff for
all n, pij(n,m) does not depend on n or m, but only on m− n.

For homogeneous DTMCs the n-step transition probabilities can be written

pij(m,m+ n) = pij(n)

The one step transition probability is obtained with pij(1), and thus given by

pij(1) = P{Xn = j|Xn−1 = i}

The 1-step transition probabilities of the entire chain can be written in a matrix form.
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Definition A.3.3. Given a DTMC, the transition probability matrix is a square matrix denoted
by P and given by

P = [pij ] =

 p00 p01 · · ·
p10 p11 · · ·
...

...
. . .


The transition probability matrix P is a non-negative stochastic matrix, i.e., given states

i, j ∈ S ∑
j∈S

pij = 1 and pij ≥ 0

The relevant Markov chains for this work are all homogeneous, therefore non-homogeneous
Markov chains will not be subject of study here.

A.3.1 Sojourn Times in States

The sojourn times are important to compute several properties of Markov chains and could be
used, for instance, to compute the time spent responding to failures in a real system.

Definition A.3.4. Given a DTMC, the sojourn time Ti is a geometric random variable corre-
sponding to the number of time steps spent in state i each time state i is visited.

It can be shown that, given the Markovian nature of the DTMC, the sojourn time in state
i is given by

Ti =
1

1− pii

A.3.2 Evolution of the Chain

The evolution of DTMC is described by the Chapman-Kolmogorov equation, which can be
written as

pij(m+ n) =
∑
k∈S

pik(m)pkj(n) (A.11)

With this equation, the n-step probabilities can be computed from the 1-step probabilities.
Considering the transition probability matrix P , and noting that P (0) = I (there is no transition
if time does not elapse), Eq. (A.11) leads to

P (n) = Pn (A.12)

Note that P (n) is still a non-negative stochastic matrix.

Consider now the probability of being in state j at step n

πj(n) = P{Xn = j}, ∀n ≥ 0, ∀j ∈ S

By the total probability theorem we have

P{Xn = j} =
∑
i∈S

P{Xn = j | X0 = i}P{X0 = i},

which results in

πj(n) =
∑
i∈S

πi(0)pij(n) (A.13)

87



Let Π(n) = [π0(n) π1(n) . . .] be the probability of reaching all the states after n time steps
have elapsed, with Π(0) being the probability mass function of the random variable X at the
beginning of time. Then, Eq. (A.13) can be written in matrix form as

Π(n) = Π(0)P (n) = Π(0)Pn (A.14)

Given the pmf of the initial random variable, X0, and the transition probability matrix P ,
we can compute the pmf of the random variable for any given step n using Eq. (A.14).

A.4 Continuous Time Markov Chains

The previous section detailed Markov chains with discrete time. This section now continues the
study but for the case when time is continuous.

Definition A.4.1. A CTMC is a continuous time stochastic process {X(t) : t ≥ 0}, with a
countable discrete state space, that satisfies the Markov (or memoryless) property, i.e., let S be
the countable state space, given times 0 ≤ t1 < t2 ≤ t3 and states i, j, x ∈ S, then

P{X(t3) = i|X(t2) = j ∧X(t1) = x} = P{X(t3) = i|X(t2) = j} (A.15)

The transition probabilities are given by

pij(t1, t1 + t2) = P{X(t1 + t2) = j | X(t1) = i} (A.16)

The homogeneous concept also applies to CTMCs, in which case the transition probabilities
can be written as

pij(t1, t1 + t2) = pij(t2)

Like with DTMC, the probability transition matrix can also be written in matrix form.

Definition A.4.2. Given a CTMC, the transition probability matrix, denoted by H(t) is given
by

H(t) = [pij(t)] =

 p00(t) p01(t) · · ·
p10(t) p11(t) · · ·

...
...

. . .


Remark A.4.1. By definition, given time index t ≥ 0, pij(0) is 1 for i = j and 0 otherwise.

Note that, like in the DTMCs case, the transition probability matrix is a non-negative
stochastic matrix, so ∑

j∈S
pij(t) = 1 and pij ≥ 0

In the DTMCs case the 1-step probability transition matrix was computed. In the CTMCs
case, since they work over continuous time, the transition probability matrix only makes sense
with a given time interval.

Like in the DTMCs case, only homogeneous CTMC will be referred in this appendix.

A.4.1 Sojourn Times

The meaning of sojourn times in CTMCs is exactly the same. The difference is while the
sojourn time Ti in state i was geometrically distributed in DTMCs, in CTMCs it is exponentially
distributed. Furthermore, the following definition is introduced

Definition A.4.3. Given a CTMC, consider the sojourn time Ti of state i exponentially dis-
tributed with rate λi. If λi = 0, the state is denoted an absorbing state, if λi =∞, the state is
said to be instantaneous, and if 0 < λi <∞, the state is said to be stable.
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A.4.2 Evolution of The Chain

The evolution of CTMC can be also described by the Chapman-Kolmogorov equations (the
continuous version) and the Kolmogorov differential equations.

Given a CTMC and times ∆t1,∆t2 ≥ 0, with ∆t1 + ∆t2 = ∆t, the transition probabilities
can be written as

pij(∆t) =
∑
k∈S

pik(∆t1)pkj(∆t2) (A.17)

In matrix form, Eq. (A.17) can be written as

H(∆t) = H(∆t1)H(∆t2) (A.18)

Eq. (A.18) represents the continuous time version of Chapman-Kolmogorov equations, which
model the CTMC evolution.

Definition A.4.4. Given a CTMC, Q(t) is called the infinitesimal generator, or transition
rate matrix, where qij(t) is the rate of going from state i to state j at time t for i 6= j, and qii
is the rate for leaving state i at time t.

It can be shown that the transition rate matrix fulfils the following property∑
j∈S

qij(t) = 0, ∀ t

Since we are only studying homogeneous CTMCs, the transition rate matrix will be constant
over time, thus, for all time t ≥ 0,

qij = qij(t)

Q = Q(t) = [qij ]

It can be shown that the forward and backward Kolmogorov equations, which describe the
evolution of the chain forward and backward in time, are given respectively by

dH(t)

dt
= H(t)Q, H(0) = I (A.19)

dH(t)

dt
= QH(t), H(0) = I (A.20)

Extracting the solution from these equations gives the relation between the transition prob-
ability matrix and the transition rate matrix,

H(t) = eQt, (A.21)

where expression eAt is defined for a square matrix as

eAt =

∞∑
n=0

(At)n

n!

Eq. (A.21) allows the computation of the probability of reaching a state given the transition
rate matrix.

Consider now the probability of reaching a given state

πj(t) = P{X(t) = j} (A.22)
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and let Π(t) be the state probability for all states,

Π(t) = [π0(t) π1(t) . . .]

By the total probability theorem, the transition probabilities are given by

πj(t) =
∑
i

P{X(0) = i}P{X(t) = j | X(0) = i}

=
∑
i

πi(0)pij(t)

In matrix form results in

Π(t) = Π(0)H(t) = Π(0)eQt (A.23)

A.5 Markov Chains Classification

Before getting into the analysis of Markov Chains, it is convenient to introduce some important
terms, used for classifying Markov Chains. We will introduce these terms using the DTMC
specification, but the same applies considering continuous time instead of discrete time steps.

A.5.1 Communication Classes and Irreducibility

A Markov chain can be partitioned and classified accordingly to the accessibility between its
states.

Definition A.5.1. Given states i, j ∈ S, state j is said to be accessible from state i if pij(n) > 0
for some n ≥ 0. States i and j are said to communicate if each is accessible from each other.

From Definition A.5.1 the following holds true:

1. State i communicates with itself for all i ∈ S;

2. If state i communicates with state j, then state j communicates with state i, for all
i, j ∈ S;

3. If state i communicates with state k, and state k communicates with state j, then state i
communicates with state j, for all i, j, k ∈ S.

Definition A.5.2. In a DTMC, a communication class is defined as the class composed by
states that can communicate with all states within that class.

Using communication classes we can partition DTMCs into sets of states sharing the same
class.

Definition A.5.3. A DTMC is called irreducible if it contains only a single communication
class, i.e., all states communicate with each other.

Definition A.5.4. A communication class C in a DTMC with state space S is said to be closed
if, given two states, i and j, j is not accessible from i for all i ∈ C and j ∈ S\C, otherwise, C
is said to be open.
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A.5.2 Transience and Recurrence

Given a DTMC, let fii(n) denote the probability of returning to state i for the first time in n
steps, after leaving state i. The probability of ever returning to state i after leaving it, denoted
by fi, is given in this case by

fi =
∞∑
n=1

fii(n)

The expected number of time steps taken by the DTMC to return to state i after leaving it
is

vi =
∞∑
n=1

nfii(n)

Definition A.5.5. Given a DTMC, a state i is said to be recurrent if fi = 1, and transient if
fi < 1. A recurrent state i is said to be positive recurrent, or non-null recurrent, if vi is finite,
and null recurrent if vi is infinite.

A.5.3 Periodicity and Ergodicity

Definition A.5.6. Let di be the greatest common divisor of the number of steps such that
pii(n) > 0. A recurrent state is called periodic with period di if the di > 1, and aperiodic if
di = 1.

Definition A.5.7. A DTMC is called ergodic it is irreducible and all its states are aperiodic
and positive recurrent.

Remark A.5.1. The periodicity of a chain does not make sense in the CTMCs case given time
is continuous. It results that all CTMCs are aperiodic.

Remark A.5.2. A Markov chain is said to be positive recurrent, null recurrent, periodic, etc.,
if all its states are respectively positive recurrent, null recurrent, periodic, etc..

A.5.4 State Classification

A Markov chain can be classified based on the periodicity and recurrence of its states. Moreover,
these are in fact class properties, as detailed here. The following list details some properties
regarding classes in Markov chains:

1. All states within the same class share the same properties regarding transience, recurrence,
positive recurrence and periodicity, meaning that, if a state i holds one of these properties,
and state i communicates with state j, then state j also holds the same property.

2. All states in an open communication class are transient;

3. All states in a finite closed communication class are positive recurrent;

4. If a communication class has null recurrent states then it is an infinite closed communi-
cation class;

5. In a finite chain, not all states are transient and all recurrent states are positive recurrent.
Therefore, if a chain is irreducible and finite, then all its states are positive recurrent;

6. If a chain is irreducible, then all the states are transient or all the states are recurrent;

7. If a state is recurrent, the mean number of visits is infinite, while if the state is transient,
the mean number of visits is finite.
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A.6 Analysis of Markov Chains

There are two types of analysis we can perform with Markov chains: transient analysis and
steady-state analysis. As the names indicate, the transient analysis devotes to the study of
properties of the chain evolution until it reaches a steady-state (if it exists). Steady-state
analysis concerns with the study of stationary probabilities as time goes to infinite. This section
focus on the study of the analysis of both DTMCs and CTMCs, including how to benefit from
the analysis of CTMCs from DTMCs through the use of Embedded Markov Chains.

The Markov chain analysis techniques described in this section were implemented using
Matlab R©.

A.6.1 Steady-State Analysis

As said previously, the steady state analysis searches for the existence of stationary state prob-
abilities and its computation. We shall see how these are computed and under which conditions
they exist for both the DTMCs and CTMCs cases.

A.6.1.1 DMTCs

Consider the state probability limits, denoted by Π,

Π = [π0 π1 . . .] = lim
n→∞

Π(n)

Recalling Eq. (A.14), it results

Π = lim
n→∞

Π(n) = lim
n→∞

Π(0)Pn = Π(0) lim
n→∞

Pn (A.24)

If the DTMC is irreducible, aperiodic and positive recurrent, then

∃npij(n) > 0, (A.25)

i.e., eventually any state is reachable from any state.

Using the Perron-Fronebius theorem it results that, under the above conditions, Π exists,
is unique, and independent of Π(0). Moreover, it results that

Π = ΠP∑
j∈S

πj = 1

πj ≥ 0

(A.26)

and

lim
n→∞

Pn =

 Π
...
Π

 (A.27)

Note that if the chain starts with probability distribution Π, the probability distribution
does not change regardless of the number of steps. Thus, Π is called the stationary probability
vector, or the steady-state probability vector, of the DTMC.

Remark A.6.1. An irreducible aperiodic DTMC is positive recurrent iff there is a unique
stationary probability vector associated with the DTMC satisfying Eq. (A.27).

92



Given an irreducible, aperiodic, positive recurrent DTMC, πj denotes the fraction of time
steps spent on state j in the long run. Given that vj is the expected number of steps between
successive visits to state j, it further results that

πj =
1

vj
= lim

n→∞
pjj(n)

Next, it will be shown how these results apply to the cases where the chain has different
periodicity and recurrent properties.

A.6.1.2 CMTCs

In the CTMCs case, the stationary probability vector is defined by

Π = [π0 π1 . . .]

πj = lim
t→∞

pj(t)

Like in the case of DTMCs, and given that all CTMCs are aperiodic by definition, when a
CTMC is irreducible and positive recurrent the following holds true:

1. The stationary probability vector exists and is unique, regardless of the initial conditions;

2. The stationary probability vector constitutes a probability distribution, thus
∑

j∈S πj = 1;

Given the continuity of time, the probability πj can be interpreted as the time proportion spent
in state j over all time.

By differentiating Eq. (A.23), we obtain the following differential equation for the state
probability distribution for CTMCs:

dΠ(t)

dt
= Π(0)eQtQ = Π(t)Q (A.28)

The steady-state is characterised by having a null variation of the state probability distri-
bution. It results that, for CTMC, the steady state values can be summarised by the following
equations:

ΠQ = 0∑
j∈S

πj = 1

πj ≥ 0

(A.29)

From the above equations, it results that the individual terms are given by

πj

 ∑
(k 6=j)∈S

qjk

 =
∑

(k 6=j)∈S

qkjπk (A.30)

Eq. (A.30) is referred to as the rate balance equation for state j, given that it balances the
inflow and outflow to state j.
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A.6.1.3 Embedded Markov Chains

Consider the evolution of a CTMC {X(t) : t ≥ 0} only at the time instants when a state change
occurs. The equivalent stochastic process {Xn : n ≥ 0}, where X0 is the initial state, and Xn

is the state after the nth change, is a DTMC.

Definition A.6.1. Given a CTMC {X(t) : t > 0}, the discrete time process {Xn : n ≥ 0},
where Xn denotes the state reached by the CTMC after n state transitions, is a DTMC called
the Embedded Markov Chain (EMC) of the CTMC.

Consider a CTMC with states i, j, k ∈ S. The time to jump from a state i to state j is
exponentially distributed and mutually independent. Plus, pii = 0 in a EMC, since we are
looking only at state changes. It results that the 1-step transition probabilities of the EMC
corresponding to the CTMC is given by

pij = 0, if i = j

pij =
qij∑
k 6=i qik

, if i 6= j
(A.31)

The CTMC and its EMC share the same communication classes, in particular, the CMTC is
irreducible and positive recurrent iff its EMC is irreducible and positive recurrent. As detailed
in Sec. A.3, an irreducible and positive recurrent DTMC has an unique stationary probability
vector Π = [π0 π1 . . .], with

ΠP = Π∑
j∈S

πj = 1

πj ≥ 0

Now, we can compute the relation between the stationary probability vector of the CMTC,
denoted here by Πc = [πc0 π

c
1 . . .], and the stationary probability vector of its EMC, denoted

by Πd = [πd0 π
d
1 . . .], which can be shown to be given by

πci =
πdimi∑
j∈S π

d
jmj

, (A.32)

where mj is the sojourn time of the CTMC state j which, when exponentially distributed, is
given by

mj =
1∑

k 6=j qjk
(A.33)

While πcj is the long-run time proportion that the CMTC spends in state j, πdj is the
equivalent for discrete time, i.e., the proportion in number of steps spent in state j.

Given the above results, it is clear that many properties of a CTMC can be computed from
the analysis of its corresponding EMC, using the DTMCs analysis techniques.

A.6.1.4 Special Cases

Periodic Case Since a CTMC cannot be periodic by definition, we will focus only on DTMCs.
When the DTMC is irreducible and positive recurrent, but not aperiodic, limn→∞ pjj(n) does
not exist. However, given that the DTMC is irreducible and periodic, all states have the same
period d. As such, the following limit exists

πj = lim
n→∞

(nd) =
d

vj
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Transient Case Since a DTMC, or a CMTC, spends 0 proportion time in transient states,
given a transient state j, its limiting probability πj will be 0.

Null Recurrent Case Null recurrent states appear only in infinite closed communication
classes. The expectation value of the number of steps take to return to transient state j after
leaving, vj , is infinite, and as such, its limiting probability, πj , is 0.

Non-Irreducible Case Given a non-irreducible MC, with two or more positive recurrent
classes, each class will have an unique limiting stationary probability vector. The overall prob-
ability vector will also be stationary, although not unique. Nevertheless, given an initial prob-
ability distribution, the limiting stationary probability still exists and is unique, as long as the
chain is aperiodic. We will show how to compute the stationary probability for these cases.

These cases are often seen as deadlock or live-lock analysis, since some states might never be
reached, depending on the initial probability distribution. Furthermore, these often correspond
to unrecoverable failures in the modelled system.

Consider a DTMC with n closed communication classes and m transient states. Let the set
of states be partitioned into n+ 1 sets:

S =

1, 2, . . . ,m,m+ 1, . . . ,m+ s1 + 1, . . . ,m+

n∑
j=1

si

 ,

where si is the number of states in the closed communication class i.

If the states are ordered such that the transient states appear first, followed by the closed
communication classes states in the order of the class number, the transition probability matrix
can be written as:

P =


T C1 C2 · · · Cn
0 P1 0 · · · 0
0 0 P2 0
...

...
. . .

...
0 0 0 · · · Pn

 ,
Matrix T represents the one-step transition probability between transient states, Ci repre-

sents the one-step transition probability between transient states and states belonging to the
closed communication class i, and Pi represents the one-step transition probability between
states of the closed communication class i. Note that matrices T and Ci are sub-stochastic
matrices, while Pi are stochastic matrices.

Recall that we are interested in computing the stationary limiting probability for a given
initial probability distribution. To do so, consider now a transition probability matrix P ∗,
obtained by considering that each closed communication classes is composed by a single state:

P ∗ =


T C1 C2 · · · Cn
0 I 0 · · · 0
0 0 I 0
...

...
. . .

...
0 0 0 · · · I

 ,

Matrix P ∗ models the same system as P disregarding transitions between states of the
same closed communication class. As such, P ∗ can be used to study the system behaviour until
absorption by one or more closed communication classes, allowing us to compute the probability
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of entering each closed communication class. Consider know the evolution of the chain for k
steps:

P ∗(k) = P ∗k =


T (k) C1(k) C2(k) · · · Cm(k)

0 I 0 · · · 0
0 0 I 0
...

...
. . .

...
0 0 0 · · · I

 ,
where

T (k) = T k

Ci(k) =

k−1∑
j=0

T jCi =

k−1∑
j=0

T j

Ci

k = 1, 2, . . .

(A.34)

It is clear that since T and Ci, for all i, are sub-stochastic matrices, all the elements of T (k)
and Ci(k) tend to zero as k goes to infinity. Furthermore, it can be shown that

F = lim
k→∞

k−1∑
j=0

T j = (I − T )−1 (A.35)

F =
[
f ij
]

is called the fundamental matrix, and f ij gives the expected number of times,
when starting in state i, state j is visited before absorption. Considering mj the mean sojourn
time in state j, the mean time before absorption when starting in a state i, bi, is given by

bi =

m∑
j=1

f ijmj

Considering the initial probability of being in state i, pi, the mean time before absorption
by one or more closed communication classes of the Markov Chain is given by

b =
m∑
j=1

(
m∑
i=1

pif ij

)
mj

Note that if the initial distribution contains only states which belong to closed communication
classes, the mean time before absorption will be zero.

From Eqs. (A.34) and (A.35) we obtain

C l =
[
clij
]

= lim
k→∞

k−1∑
j=0

T j

Cl = FCl, (A.36)

where clij gives the probability of reaching state j of the closed communication class l when
starting in transient state i (for the system modelled by P ∗).

We can now compute the long term probability of the original system by considering the
limiting stationary probability of each closed communication class, which exists and is unique
if the corresponding class is aperiodic. We will denote P i the stationary limiting probability
matrix associated with the communication class i, formed by si row vector copies of the class
limiting stationary probability (see Eq. (A.27)). The long term probability of reaching state j
of the closed communication class l, when starting in a transient state i is given by glij , where

Gl =
[
glij

]
= FC lP l (A.37)
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If closed communication class i is periodic, P i does not exist. However, if we are studying
a CMTC based on its EMC, we can still complete the stationary analysis for the CMTC by
using the limiting stationary probability of the corresponding closed communication class of the
CTMC.

A.6.2 Transient Analysis

The transient analysis is performed by observing the evolution of the Chapman-Kolmogorov
equations for both the DTMC and CTMC.

In the case of DTMCs it was shown that the state probability vector evolution is described
by

Π(n) = Π(0)Pn,

while for CTMC, it is described by
Π(t) = Π(0)eQt
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Appendix B

Petri Net Analysis

In this chapter we cover briefly the various analysis methods of Petri nets, based on the Cov-
erability Tree, which were implemented to complete this work. For other structural analysis
methods not based on the coverability tree, or for more details, see for instance [Murata, 1989;
Girault and Valk, 2003; Cassandras and Lafortune, 2008]. The algorithms described in Sections
B.1, B.2 and B.3 where implemented using C++, while the performance measures, described
in Section B.4, where computed using Matlab R©.

B.1 Coverability Tree

For the purposes of analysis, we will consider Generalised Stochastic Petri Nets, as defined in
Section 2.2. Recall that the state of a Petri net is given by the marking of the net, i.e., by the
number of tokens in each place. Given an initial state, one can obtain the coverability tree1,
by firing each enabled transition for all markings, as described in algorithm B.1.1 . In the
coverability tree, each node represents a different state (or a set of states) with arcs connecting
these nodes. Each arc represents a transition fired in the original Petri net. Recall also that a
stochastic transition is enabled only if no immediate transition is enabled. In Algorithm B.1.1
the symbol ω is used to denote “infinity” for an unbounded place, in the sense that ω + k = ω.

If the number of markings in the Petri net is finite, the coverability tree is denoted as
Reachability Graph. Many Petri net qualitative properties can be obtained through the analysis
of the coverability tree, some of which are detailed in the following sections.

B.1.1 Qualitative Properties

The following sections briefly details some of the most important structural properties used in
this work.

B.1.1.1 Boundedness

Definition B.1.1. A Petri net place pi ∈ P is called k-bounded, or k-safe, if mi(j) ≤ k for all
j, i.e., for all reachable states. A Petri net is k-bounded, or k-safe, if all its places are k-bounded.
One-safe places and Petri nets are denoted safe places and safe Petri nets, respectively.

Determining the boundedness of a Petri net is straightforward once the coverability tree is
obtained, since we have for each marking the number of tokens. Note that for unbounded places
we just know that the number of tokens is unbounded.

1Some authors use different meanings for coverability tree and/or different expressions, such as Reachability
Tree.
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Algorithm B.1.1: Coverability tree generation algorithm.

Input: GSPN, PN .
Output: Coverability tree, C.
begin1

Add a node to C corresponding to the initial marking M(0), mark it as the root2

node, and push it to the stack;
while stack is not empty do3

Pop a marking M from the stack and mark it as done;4

if no transition is enabled in marking M then5

Tag marking M as a deadlock and as tangible;6

else7

if marking M′ has immediate transitions enabled then8

Tag marking M′ as vanishing;9

else10

Tag marking M′ as tangible;11

end12

foreach enabled transition ti in marking M do13

Obtain the new marking, M′ by firing ti;14

if marking M′ was not already marked done then15

if On the path from the root node to M′ there exists a marking M′′16

such that m′j ≥ m′′j for all j, and M′ 6=M′′ then

Replace m′j by ω for each j. In this case, M′ is said to cover M′′;17

Add an arc from M to M′′, associated with ti;18

end19

Add a new node to C, corresponding to M′, and add an arc from M to20

M′, associated with ti;
Push marking M′ into the stack;21

end22

end23

end24

end25

end26
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B.1.1.2 Liveness and Deadlock

Definition B.1.2. Given a Petri net with initial state M0, a transition tj is said to be live if,
for all reachable states Mi, there is a firing sequence starting in Mi, such that tj is fired. A
Petri net is live if all its transitions are live.

Definition B.1.3. Given a Petri net, a deadlock state corresponds to a reachable state where
none of the transitions are fireable. A Petri net is deadlock-free if it contains no reachable
deadlock state.

As detailed in Algorithm B.1.1, the deadlock states are marked as so during the algorithm
execution.

B.2 Continuous Time Markov Chain

The main focus of this work on analysis is on bounded Petri nets. As such, the remainder of
this chapter is based on the coverability tree for bounded Petri nets, i.e., the reachability graph.

While the coverability tree allowed us to obtain some qualitative properties of the Petri net,
the equivalent CTMC will enable obtaining quantitative properties, in the sense of studying the
Petri net behaviour over time. As such, the goal is to obtain the equivalent CMTC in order to
use the analysis techniques described in Appendix A.

Obtaining the CTMC from the reachability graph consists mainly on removing all vanishing
states, as detailed in Algorithm B.2.1. Recall that a vanishing state is one which has immediate
transitions enabled, meaning that the CMTC will correspond to a graph where only tangible
states exist. The only issue here is when removing one vanishing state with two or more
immediate transitions, since the probability of each transition will depend on the weights and
rates of the enabled immediate and stochastic timed transitions, respectively, as shown in the
algorithm.

Having obtained the CTMC, one needs to compute the infinitesimal generator, Q, through
Algorithm B.2.2.

Although not included in Algorithm B.2.1 (for clarity sake), each stored arc has a list of
associated “original” Petri net transitions, which is important when computing the transitions
throughput.

B.3 Communication Classes

Finally, in order to fully use the analysis techniques described in Appendix A, one needs to
compute the classes of the CTMC and determine if they are recurrent and, for the corresponding
EMC, the class period. The algorithm used to compute the communication classes is based on
the Strong Connected Components, part of graph theory. A strong connected component in
graph theory is equivalent to a communication class in Markov chain theory. Furthermore, if a
class is recurrent, then the class is a closed communication class.

In order to compute both the communication classes and their periods simultaneously, one
implemented the algorithm SCC and periods described in [Ocasio, 2009], which is a modified
version of the original Tarjan algorithm [Tarjan, 1972] (modified to include the periods).

Note that the communication classes can be computed using as input the reachability graph
or the Markov chain (CTMC or EMC). If used with the Markov chain, some information will
not be available since only tangible states are considered. On the other hand, the period output
only makes sense if the EMC is used as input. In this work, the EMC was used as the algorithm
input.
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Algorithm B.2.1: Continuous Time Markov Chain generation algorithm.

Input: Reachability graph, R.
Output: Continuous Time Markov Chain.

begin1

Assign to all states an initial probability, pi, equal to zero if state i is not the initial2

state, and equal to one otherwise;
foreach vanishing state S in R do3

Let T ′ = {t′1, . . . , t′n} be the set of transitions associated with the output arcs of S;4

foreach output arc i, associated with transition t′i do5

Compute the transition firing probability, pti =
wi∑n
j=1wj6

end7

end8

foreach vanishing state S in R do9

Let T ′ = {t′1, . . . , t′n} be the set of transitions associated with the output arcs of S;10

if S has no input arcs then11

foreach output arc i, associated with transition t′i do12

Let S ′ be the state reached through t′i, p
′ its initial probability, and p the13

initial probability associated with state S;
p′ ← p′ + p ∗ pti;14

end15

Remove state S and all its output arcs;16

else17

foreach output arc i, associated with transition t′i do18

Let S ′ be the state reached through t′i, and T ′′ = {t′′1, . . . , t′′n} be the set of19

transitions associated with the input arcs of S;
foreach input arc j, associated with transition t′′j do20

Let S ′′ be the state input arc j connects from;21

if t′′j is immediate then22

Create an arc from state S ′′ to state S ′, associated with an23

immediate transition with firing probability ptj ∗ pti, equivalent to
firing t′′j and t′′i ;

else24

Let λj the the rate associated with transition t′′j ;25

Create an arc from state S ′′ to state S ′, associated with a26

stochastic transition with rate λj ∗ pti, equivalent to firing t′′j and t′′i ;

end27

Remove input arc j;28

end29

Remove output arc i;30

end31

Remove state S.32

end33

end34

end35
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Algorithm B.2.2: Computing the CTMC infinitesimal generator, Q.

Input: Continuous Time Markov Chain.
Output: Infinitesimal generator, Q;

begin1

Let S = {S1, . . . , Sn} be the set of states;2

foreach state Si do3

Let S be the set of m states connected through output arcs from state S, such4

that there are no duplicate states;
foreach state Sj ∈ S \ Si do5

qij =
∑

rates of all transitions associated to arcs connecting Si to Sj ;6

end7

qii = −
∑

j 6=i qij ;8

end9

end10

Once the communication classes are obtained, determining if each class is open or closed
is straightforward (recall one is considering only finite Markov chains). If all states in a given
class only have transitions to states of the same class, then that communication class is closed,
otherwise the communication class is open. All open communication classes are transient, while
the closed communication classes are recurrent. However, if there is more than one closed
communication class (reducible Markov chain), reaching that class depends on the initial state
(see Section A.6.1.4 for more details).

B.4 Performance Measures

Having the CTMC, the EMC and the communications classes, one can use the techniques
described in Appendix A to perform transient and/or stationary analysis of the chains. Those
results can then be used to computer performance measures of the corresponding Petri net
[Viswanadham and Narahari, 1992; Bause and Kritzinger, 2002]. The following sections detail
some of the performance measures which can be obtained.

In the following sections consider a GSPN with an associated EMC with s reachable tangible
states. As shown in Appendix A, πj is the stationary probability of the tangible state j, with
Mj corresponding to the Petri net marking associated with that state j.

B.4.1 Probability that a Condition Holds

The probability that a particular condition C holds is computed by considering the probability
of being in any state where the conditions is satisfied:

Pr (C) =
∑
j∈S1

πj

where S1 = {j ∈ {1, 2, . . . , s} : C is satisfied in Mj}.
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B.4.2 Probability of Having a Number of Tokens in a Place

The probability of having exactly k tokens in a place pi is computed by considering the proba-
bility of being in any state where place pi has exactly k tokens:

Pr (# (pi) = k) =
∑
j∈S2

πj

where S2 = {j ∈ {1, 2, . . . , s} : # (pi) = k in Mj}.

B.4.3 Expected Number of Tokens in a Place

The expected number off tokens in a place pi is computed by using the probability of having k
tokens in place pi for all possible number of tokens in that place:

E [# (pi)] =

K∑
k=1

Pr (# (pi))

where K is the maximum possible number of tokens in place pi for all reachable tangible
markings.

B.4.4 Transition Throughput Rate

The throughput of an exponential transition tj is computed by considering its firing rate over
the probability of all states where tj is enabled:

Tr (tj) =
∑
i∈S3

πiλj

where S3 = {i ∈ {1, 2, . . . , s} : tj is enabled in Mi}.
The throughput of an immediate transition tj can be computed by considering the through-

put of all exponential transitions which lead immediately to the firing of transition tj , i.e.,
without crossing any tangible state, together with the probability of firing transition tj among
all the enabled immediate transitions.
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