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STOCHASTIC TIMED DES 

•  Uncertainty arises in DES from unpredictable human actions, 
machine failures, sensor noise, etc 
•  The Untimed view accounted for “all possible behaviors”, but 
was limited to logical or qualitative performance analysis 
•  The Deterministic Timed view shed some light on the 
quantitative  performance regarding the dynamic behavior of 
DES, but deterministic clock structures only capture a single 
timed string of events (or states) 
•  We will now incorporate models of uncertainty that involve 
stochastic elements, so as to analyze quantitative  
performance and search for optimal behaviors 
•  The main effort will be directed towards developing a 
stochastic clock structure model for the input of our timed 
automata 
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BRIEF REVIEW OF STOCHASTIC PROCESSES 

•  Definition: A stochastic or random process X(ω ,t) is a collection 
of random variables indexed by t. The random variables are 
defined over a common probability space (Ω,E,P) with ω ∈Ω. 
The variable t ranges over some given set Τ⊆R. 

if ω is fixed, X(ω,t) is a deterministic time function called sample 
path or realization of the SP. 

heads 

tails 

0 

1 

X(ω) Ω

X(ω,1), X(ω,2), X(ω,3), X(ω,4), X(ω,5),...=0,1,1,0,0 sample path 

To simplify the notation, we will denote a SP by {X(t)} or X(t) 

if t is fixed, X(ω,t) is a random variable. 
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BRIEF REVIEW OF STOCHASTIC PROCESSES 
Classification concerning state space and time 

DISCRETE-STATE PROCESSES (or CHAINS): when the state 
space is defined over a finite or countable set 
CONTINUOUS-STATE PROCESSES: in the other cases 

DISCRETE-TIME PROCESSES: when the index variable t is 
defined over a finite or countable set – STOCHASTIC or RANDOM 
SEQUENCE Xk 
CONTINUOUS-TIME PROCESSES: in the other cases 
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To fully characterize a stochastic process we need to specify the joint 
cumulative distribution function (cdf). 

Given a random vector: 

BRIEF REVIEW OF STOCHASTIC PROCESSES 
Classification concerning statistical characteristics 

which can take values 

the joint cumulative distribution function (cdf) is given by 
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wide sense stationary process IFF

E[X(t)]=C   and   E[X(t)X(t+τ)]=g(τ)

BRIEF REVIEW OF STOCHASTIC PROCESSES 
Classification concerning statistical characteristics 

STATIONARY PROCESSES 
(strict sense)

independent process IFF

if all random variables are drawn from the same distribution we call it 
independent and identically distributed (iid) 
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MARKOV PROCESSES 

If the future states of a process are conditionally independent of the past 
history, given the present state (memoryless property), i.e.,  

the SP has the Markov property and is a Markov process. 

For Markov Chains (discrete state space) in discrete-time:  
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Memoryless property:
(M1) All past state information is irrelevant (no state memory 

needed)
(M2) How long the process has been in the current state is irrelevant 

(no state age memory needed)

SEMI-MARKOV PROCESSES
Constraint (M2) is relaxed

RENEWAL PROCESS – is a chain {N(t)} with state space {0,1,2,...} whose 
purpose is to count state transitions. The time intervals defined by successive 
state transitions are assumed to be independent and characterized by a common 
distribution, which may be arbitrary. Normally, N(0)=0. 

For DES, a renewal process counts the number of events that occur in the time 
interval ]0,t] 

MARKOV PROCESSES 
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The Stochastic Clock Structures (or Timing Structure) associated 
with an event set E is a set of distribution functions 

characterizing the stochastic clock sequences 

€ 

G = Gi : i ∈ E{ }

€ 

Vi = ν i,1,ν i,2,...{ },i ∈ ξ,ν i,k ∈ ℜ+,k =1,2,...

STOCHASTIC TIMED AUTOMATA 
Stochastic Clock Structures 

We will be concerned with iid clock sequences, which 
are independent of each other. Therefore, each {νi,k} is 
completely characterized by a distribution function 
Gi(t)=P[νi≤t] 
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Def.: A Stochastic Timed Automaton (STA) is a six-tuple: 

where 

€ 

ξ,χ,Γ, p, p0,G( )

€ 

ξ            is a countable event set
χ           is a countable state space
Γ(x)        is a set of feasible or enabled events, defined for all x ∈ χ ,
             with Γ(x)⊆ ξ

p(x' | x,e') is a state transition probability, defined ∀x,x'∈χ;e '∈ξ  
            and such that p(x ' | x,e') = 0  ∀e '∉Γ(x )

p0(x)     is the probability mass function (pmf) P[X0 = x],x ∈ χ,
            of the initial state X0

G = Gi : i ∈ ξ{ } is a stochastic clock structure

STOCHASTIC TIMED AUTOMATON 
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The STA generates a stochastic sequence {X0, X1, ...} through a transition 
mechanism (based on observations X=x, E’=e’): 

X’=x’ with probability p(x’;x,e’) 
Driven by a stochastic event sequence {E1,E2,...} generated through 

STOCHASTIC TIMED AUTOMATON 

With the stochastic clock values Yi, i∈ξ, defined by  

€ 

Yi
' =  

Yi −Y
* if (i ≠ E ')∧ i ∈ Γ(X)

ν i,Ni+1
if (i = E ')∨ i ∉ Γ(X)

 
 
 

      i ∈ Γ(X ')

Where the interevent time Y* is  
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And the event scores Ni , i∈ξ, defined by  

STOCHASTIC TIMED AUTOMATON 

Note that {νi,k} ~ Gi 

€ 

Ni
' =  

N i +1 if (i = E ')∨ i ∉ Γ(X)
N i if (i ≠ E ')∧ i ∈ Γ(X)

 
 
 

      i ∈ Γ(X ')

Also: 
X0 ~p0(x) 
Yi = νi,1, Ni = 1, if i ∈ Γ(X0) 
Yi undefined, Ni = 0, if i ∉ Γ(X0) 
€ 

T '= T +Y * 

In addition, event times are updated according to 
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STOCHASTIC TIMED AUTOMATON 
Generalized Semi-Markov Process 

  

€ 

ν1,1,ν1,2,...{ }
          
νm,1,νm,2,...{ }

STA 

A Generalized Semi-Markov Process is a stochastic process {X(t)} with 
state space χ, generated by a stochastic timed automaton (ξ,χ,Γ,p,p0,G). 

The Markovian aspect comes from 

X’=x’ with p(x’|x,e’) 

but note that the interevent times Y* have, in general, arbitrary distributions (SMP). 

However, unlike for SMP, the distribution of Y* is not given, but rather depends on the 
distributions Gi, and on the clock and score updating mechanisms (Generalized SMP) 
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P[X(t)=x] – probability of finding the DES modeled by the STA 
at state x at time t. 

Interevent time sequence {Y*} = {Y0
*, Y1

*, Y2
*,...} and (related) 

state holding times. 

Event sequence {Ek} = {E1,E2,...}  ⇒ P[Ek=i] or P[Ek=i|Xk=x] 

Score process Ni (t) – counting process for event i occurrences 
in the interval ]0,t] 

GSMP ANALYSIS 

Questions of Interest
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•  DES with a single event. 
•  N(t) counts the number of event occurences in ]0,t] (state space is 

{0,1,2,...})       Pn(t):=P[N(t)=n] 
•  Partitioning the time line into an arbitrary number of intervals ]tk-1,tk] of 

arbitrary lengths, as well as setting t0=0 and assuming N(0)=0, we define 
 N(tk-1,tk)=N(tk)-N(tk-1), k=1,2,... 

•  Assumptions 
(A1) at most one event can occur at any time instant 
(A2) N(t), N(t,t1), N(t1,t2),N(t2,t3),... are mutually independent for any 0≤t ≤t1 ≤t2 
(A3) P[N(tk-1,tk)=n]=P[N(s)=n], s= tk- tk-1, is independent of tk-1 and tk but may 

depend of tk-tk-1 – a form of stationarity 

Def.:  A process that satisfies (A2) is a process with  independent 
increments 

If (A2)+(A3) are satisfied, it is a process with stationary independent 
increments 

POISSON COUNTING PROCESS 

Counts the 
number of 
events 
occurring in 
the 
interval ]tk-1,tk] 
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By (A3): 
 P[N(t,t+s)=n]=P[N(s)=n]  (*) 

P[N(t+s)=0] = P[N(t)=0 and N(t,t+s)=0] 

By (A2): 
 P[N(t+s)=0] = P[N(t)=0].P[N(t,t+s)=0] 
 from (*)  P[N(t+s)=0]= P[N(t)=0].P[N(s)=0] 

Using the definition Pn(t):=P[N(t)=n] 
P0(t+s)= P0(t). P0(s) 

Using a well-known math lemma: 

POISSON COUNTING PROCESS 
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After some derivations: 
 Poisson distribution 

(probability of n events occurring in the time interval ]0,t]) 

Characterizes the SP {N(t)}, which counts event occurrences 
in ]0,t], under (A1)-(A3). 

 Mean and Variance 

λ Is the average rate at which events occur per unit time. 

POISSON DISTRIBUTION 
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Exponentially Distributed Interevent Times

Memoryless Property
Superposition of Poisson Processes

Residual Lifetime Paradox

PROPERTIES OF THE POISSON PROCESS 
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mean 1/λ  

variance 1/λ2

PROPERTIES OF THE POISSON PROCESS 
Exponentially Distributed Interevent Times 

Q.: How are interevent times distributed in a Poisson process? 

Let’s suppose that the (k-1)th event takes place at some random 
time Tk-1. Let Vk denote the interevent random time following this 
event, with cdf Gk(t) 

... But this is independent of tk-1. Therefore 

hence 
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This distribution is independent of the event age z and it is equal to the 
interevent distribution G(t)=P(V ≤ t) ⇒ memoryless property 

PROPERTIES OF THE POISSON PROCESS 
Memoryless 

Q.: How are residual interevent times distributed in a Poisson 
process? 

The event [V > z ] has already occurred 

What about Y, the distribution of the residual lifetimes? 

Every residual lifetime in a Poisson process is characterized by the exact same 
exponential distribution as the original lifetime, regardless of the event age z. 

Note that V = Y + z 

€ 

P (V ≤ z + t)∧ (V > z)[ ]
P(V > z)

=
P (z <V ≤ z + t)[ ]
1− P(V ≤ z)

=
1− e−λ(z+ t ) − (1− e−λz )

e−λz
=1− e−λt
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Theorem (memoryless property is unique to the exponential 
distribution): Let V be a positive random variable with a 
differentiable distribution function    . Then: 

is independent of z (i.e., it is memoryless) 

iff 

And, moreover, if                   , then 

PROPERTIES OF THE POISSON PROCESS 
Memoryless 
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The superposition of m independent Poisson processes with 
parameters λi is also a Poisson process with 

PROPERTIES OF THE POISSON PROCESS 
Superposition of Poisson Processes 

Considering now a DES with m > 1 events and assuming
•  each event sequence modeled as a Poisson process with parameter λi, i=1,...,m
•  these m Poisson processes are mutually independent 

Q.: Are the previous properties preserved in for a SP which is the 
superposition of m Poisson processes? In what form? 
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PROPERTIES OF THE POISSON PROCESS 

POISSON PROCESS
λ

EXPONENTIAL
INTEREVENT TIMES MEMORYLESS

PROPERTY
G(t)=H(t,z)
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•  Think on a bus station where buses arrive following a Poisson 
distribution with parameter λ (The average time of arrival is 1/ λ) 

•  If someone arrives at a bus stop at some random time instant, how 
long will he/she have to wait, on the average, until the next bus? 

PROPERTIES OF THE POISSON PROCESS 
Residual Lifetime Paradox 

Answer I
1/ 2λ minutes 

because the average time 
between two buses is 1/λ and 
he/she arrives randomly at any 
point in the interval 

But the residual lifetime is 
exponentially distributed with 
mean 1/λ, so on the average the 
traveller should wait 1/λ

Answer II

1/ λ minutes

based on the prior argument 
(memoryless property) 

However, the mean time since the 
last bus arrival is also 1/λ so 
the traveller should wait for 1/λ 
+ 1/λ =2/λ.
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Correct answer:

2/λ because the traveller arrives at a uniformly distributed 
random point in the time interval, therefore he/she is 
more likely to fall in a large interval than in a short one.

(see formal proof on Cassandras and Lafortune, 1999)

“Randomness always increases waiting”

PROPERTIES OF THE POISSON PROCESS 
Residual Lifetime Paradox 
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STA WITH POISSON CLOCK STRUCTURE 

Case 1: STA with 1 single event e always enabled

A Poisson process with parameter λ may be viewed as a GSMP generated by 
an STA 
where 
•  ξ={e}, 
•  χ={0,1,2,...} 
•  Γ(x)= ξ for all x 
•  p0(0)=1 
•  f(x,e)=x+1 for all x (in this case the transitions have all probability 1) 
•  clock structure  
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STA WITH POISSON CLOCK STRUCTURE 

Case 2: STA with m events and no constraints on Γ(x) and p (transitions may be 
deterministic or not)

A Poisson process may be viewed as a GSMP generated by an STA 
where 
•  ξ={e1,...,em}, 
•  χ={0,1,2,...} 
•  Γ(x) has no constraints (some events may be disabled in certain states) 
•  p0 has no constraints 
•  p(x’|x,e’) has no constraints (not all transitions have necessarily probability 1) 
•  clock structure                     (m independent Poisson 
processes)  

€ 

G = {Gi,i =1,...,m}   Gi(t) =1− e−λi t ,λi > 0
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Distribution of Interevent Times at state x:

€ 

G(t,x) = P Y *(x) ≤ t[ ] = P min
i∈Γ(x )

{Yi} ≤ t[ ] =1− e−Λ x( ) t

STA WITH POISSON CLOCK STRUCTURE 

€ 

Λ(x) = λi
i∈Γ(x )
∑

This is a generalization of          where we assumed  Γ(x)= ξ for all x 

Intuitively, if some event is occasionally disabled, when it is reenabled, its lifetime is 
simply taken to be some residual lifetime from the original Poisson clock sequence. 
This residual lifetime has the same distribution as a lifetime (memoryless property). 
The only effect of enabling and disabling events is that the Poisson parameter Λ(x) 
depends on the state. Therefore, interevent times are no longer identically distributed. 
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STA WITH POISSON CLOCK STRUCTURE 

Distribution of Triggering Event for a given state x:

Depends on the current state through 

€ 

Λ(x) = λi
i∈Γ(x )
∑

[Derivation in Cassandras & Lafortune book] 
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A GSMP with a Poisson clock structure is a Markov Chain with

€ 

p(x' | x) = p(x ' | x,i) λi
Λ(x)i∈Γ(x )

∑

STA WITH POISSON CLOCK STRUCTURE 

part of the GSMP definition 
(only depends on x) only depends on x 
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Generation of a sample path of a Markov Chain:

Given G = {λ1,..., λm}:

Step 1: With x known, evaluate the feasible event set Γ(x).

Step 2: For every event i ∈ Γ(x), sample from Gi(t) = 1 – e-λit to obtain a clock 

value yi.

Step 3: The triggering event is 

Step 4: The next state x’ is obtained by sampling from p(x’|x,e’).

Step 5: The next event time is given by 

STA WITH POISSON CLOCK STRUCTURE 
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STOCHASTIC PETRI NETS 

Def.:A Stochastic PN is a 6-tuple (P,T,A,w,x,F) where (P,T,A,w,x) is a marked PN, and 
F:R[x0]×T→ℜ is a function that associates to each transition t in each reachable 
marking x a random variable

Def.:A Generalized Stochastic PN is a 7-tuple (P,T=T0∪ TD,A,w,x,F,S) where (P,T,A,w,x) is a 

marked PN, F:R[x0]×TD→ℜ is a function that associates to each timed transition t ∈ TD in 

each reachable marking x a random variable. Each t ∈ T0 has zero firing time in all reachable 

x.

S is a set (possibly empty) of elements called random switches, which associate probability 

distributions to subsets of conflicting immediate transitions.
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EXPONENTIAL TIMED PETRI NETS 

For Exponential Timed PNs, in the two previous definitions 
F:R[x0]×T→ℜ is a function that associates to each transition 
tj ∈ TD in each reachable marking x an exponential random variable 
with rate λj(x).

The transitions in TD are known as exponential transitions and refer to λj(x) as the firing rate 
of tj in x.
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EXPONENTIAL TIMED PETRI NETS 

Theorem – The marking process of an exponential timed Petri net is a 
continuous time Markov Chain (CTMC).

State space of the equivalent CTMC: reachability set R[x0] of the exponential timed 
Petri net

Computation of the transition rate from state xi to state xj ≠ xi is given by 

Where Tij is the subset of TD of enabled transitions in xi such that the firing of any 
transition in Tij leaves the CTMC in xj . 

If xj = xi , 
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EXPONENTIAL TIMED PETRI NETS 

When there is conflict in state xi , if Ti is the set of enabled transitions in xi, the 
probability of firing tj ∈ Ti is: 

•  if Ti is composed by exponential transitions only:

•  if Ti includes one single immediate transition, this is the one that will fire
•  if Ti includes two or more immediate transition, a probability mass function will be 
specified over them by an element of S. The subset of immediate transitions plus the 
switching distribution is called a random switch.
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EXPONENTIAL TIMED PETRI NETS 

s1 

e1 f1 

r1 

s2 

e2 f2 

r2 

p1 p2 

Random swtiches p2+p1=1 

Example with two machines with 
resume policy (1) and discard policy 
(2), and random choice bewteen 
machines.

Probability of firing ei, i=1,2 
instead of fi, i=1,2, in state x: 
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GSPN AND EQUIVALENT CTMC 

To ensure the existence of an unique steady state probability vector          
for the marking process of the GSPN with s tangible markings, the 
following simplifying assumptions are made: 

1.  The GSPN is bounded, i.e., its reachability set is finite 
2.   Firing rates do not depend on time parameters, ensuring that the 

equivalent MC is homogeneous 
3.  The GSPN model is proper and deadlock-free, i.e., the initial marking is 

reachable with a non-zero probability from any marking in the 
reachability set and also there is no absorbing marking (can be lifted) 

€ 

ρ1,...,ρs( )
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EXAMPLE: GSPN AND EQUIVALENT CTMC 

t1 t2 

t3 

t4 

t6 

λ1 λ2 

q3 

q4 

t5 

p1 p2 p3 

p4 p5 

p6 

p.grasped(obj) p.ontable(obj) 

a.pickingup_obj 

a.carrying_obj 

a.depositing_obj 

a.observing_table 

sel_deposit_obj 

sel_carry_obj 

sel_deposit_obj 

sel_pickup_obj 

λ5 

q3 + q4 =1 
random switches 
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EXAMPLE: GSPN AND EQUIVALENT CTMC 

(1 1 1 0 0 0) 

(1 0 1 1 0 0) 

(1 0 1 0 0 1) (1 0 1 0 1 0) 

€ 

t1

t3 

t4 

Marking graph 

tangible 

tangible 

vanishing 

vanishing 

€ 

t2

t5 

t6 
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EXAMPLE: GSPN AND EQUIVALENT CTMC 

(1 1 1 0 0 0) 

(1 0 1 1 0 0) 

(1 0 1 0 0 1) (1 0 1 0 1 0) 

€ 

λ1
λ1 + λ2

€ 

λ2
λ1 + λ2

q3 

q4 

1 

1 

Embedded MC 
(EMC) 

tangible 

tangible 

vanishing 

vanishing 
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EXAMPLE: GSPN AND EQUIVALENT CTMC 

(1 1 1 0 0 0) 

(1 0 1 0 1 0) 
€ 

q3
λ1

λ1 + λ2 € 

λ2
λ1 + λ2

+ q4
λ1

λ1 + λ2
Reduced Embedded MC 

(REMC) 

tangible 

tangible 

1 

MDP: random switch probabilities can be manipulated to achieve optimal decision 
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GSPN, REMC AND PERFORMANCE MEASURES 

PNs of robot controller and world model must be connected in closed loop. 
Closed loop PN can be analyzed w.r.t., e.g., 

1.  Probability that a particular condition C holds 

2.  Probability that place pi has exactly  k tokens 

3.  Expected number of tokens in a place pi: 

€ 

Pr(C) = ρ j
j∈S1

∑ ,   S1 = j ∈ 1,...,s{ } :C is satisfied in x j{ }

€ 

Pr(pi,k) = ρ j
j∈S2

∑ ,   S2 = j ∈ 1,...,s{ } : x j (pi) = k{ }

€ 

ET[pi] = kPr(pi,k),   
k=1

K

∑

where K is the max number of tokens pi may contain in any reachable marking
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GSPN, REMC AND PERFORMANCE MEASURES cont’d 

5.  Throughput rate of an exponential transition tj: 

6.  Throughput rate of immediate transitions can be computed from those 
of the exponential transitions and from the structure of the model 

7.  Mean waiting time in a place pi: 

€ 

WAIT(pi) =
ET[pi]
TR(t j )

t j ∈IN (pi )
∑

=
ET[pi]
TR(t j )

t j ∈OUT ( pi )
∑

€ 

TR(t j ) = ρiλ(x i,t j )
i∈S3

∑ υ ij ,   S3 = i ∈ 1,...,s{ } : t j  enabled in x i{ }

where υ ij  is the probability that t j  fires among all enabled transitions in x i
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STOCHASTIC TIMED AUTOMATA 

Further reading  
•  Extensions of the GMSP 
•  Falko Bause, Pieter S Kritzinger, Stochastic Petri Nets - An 
Introduction to the Theory, Vieweg Advanced Studies in Computer 
Science, 2002 – pdf version 
•  N. Viswanadham, Y. Narahari, Performance Modeling of 
Automated Manufacturing Systems,Prentice-Hall, 1992 - more on 
modeling of manufacturing systems 

Acknowledgments to Manuel Lopes, who helped preparing 
some of the slides in this chapter, for some sessions of an ISR/
IST Reading Group on DES. 


