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Resumo: Há um interesse crescente em modelos que combinem planeamento, con-
trolo e aprendizagem para tomada de decisão. O objectivo destes métodos h́ıbridos é de
conservar caracteŕısticas das diferentes abordagens: a natureza deliberativa de planos
pré-programados, a natureza reactiva das poĺıticas de controlo, e a natureza adaptativa
de algoritmos de aprendizagem, que permitem abordar problemas com incerteza.

Neste trabalho escolhemos Sistemas de Eventos Discretos, e particularmente Autó-
matos de Tempo Estocástico, como base para a modelação, abordando problemas em
que as mudanças no estado são fruto da ocorrência de eventos. Assim, escolhemos
trabalhar em tempo cont́ınuo uma vez que a ocorrência dos eventos não apresenta, de
modo geral, uma periodicidade temporal.

Usamos Controlo por Supervisão como abordagem de planeamento para especificar
os comportamentos que é permitido a um agente ter, fornecendo restrições de planea-
mento em vez de planos pré-programados fixos. O controlo do sistema é feito definindo
as probabilidades de ocorrência de eventos controláveis, que se considera ocorrerem ime-
diatamente após a decisão; este tipo de eventos está associado, por exemplo, com o ińıcio
e fim da acção de um robot. Aprendizagem por Reforço é usada para optimizar a poĺıtica
de controlo, dentro dos limites impostos pelo supervisor.

Contribuições originais deste trabalho, para além da abordagem de modelação, in-
cluem as definições de observabilidade total e parcial para Autómatos de Tempo Es-
tocástico; a derivação das condições necessárias para a convergência de Aprendizagem
por Reforço, sob observabilidade total e parcial; e a derivação das equações de optimal-
idade para situações de observabilidade parcial, discussão da relação com Processos de
Decisão de Markov Parcialmente Observáveis e a extensão de um método usado para
resolver esse tipo de processos ao nosso sistema de eventos.

Resultados de simulação são apresentados para ilustrar a aplicabilidade do método
e os efeitos da observabilidade parcial.

Palavras-chave: Sistemas de Eventos Discretos; Autómatos de Tempo Estocático;
Controlo por Supervisão; Processos de Decisão Semi-Markov; Aprendizagem por Re-
forço; Observabilidade.





Planning, Learning and Control Under Uncertainty

Based on Discrete Event Systems and Reinforcement

Learning

Abstract: There is a growing interest in models that combine planning, control and
learning for decision making. The goal of these hybrid methods is to retain character-
istics from the different approaches: the deliberative nature of pre-programmed plans,
the reactive nature of control policies, and the adaptive nature of learning to be able to
tackle uncertainty.

In this work we choose Discrete Event Systems, and particularly Stochastic Time
Automata, as the basis for modeling, tackling problems where the changes in the state
are driven by the occurrence of events. For this reason, we work in continuous time
since the occurrence of these events does not generally show temporal periodicity.

We use Supervisory Control as an offline planning approach to specify the behaviors
that the agent is allowed to have, providing planning constraints rather than fixed pre-
programmed plans. The control of the system is made by defining the firing probabilities
of controllable events which are considered to fire immediately after the decision; this
kind of events is, e.g., associated with starting or stopping actions in a robot. Rein-
forcement Learning is used to optimize the control policy, within the bounds defined by
the supervisor.

Novel contributions of this work besides the modeling approach include definitions
of full and partial observability for Stochastic Timed Automata (STA); derivation of the
conditions on the parameters of the STA that ensure convergence of the reinforcement
learning algorithm under several observability conditions; and the derivation of opti-
mality equations under partial observability, discussion of the connection with Partially
Observable Markov Decision Processes (POMDP) and extension of a generic POMDP
method to work with our event-based system.

Simulation results are shown to illustrate the applicability of the presented method
and the effects of partial observability.

Keywords: Discrete Event Systems; Stochastic Timed Automata; Supervisory Con-
trol; Semi-Markov Decision Processes; Reinforcement Learning; Observability.
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TWO roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

Then took the other, as just as fair,
And having perhaps the better claim,
Because it was grassy and wanted wear;
Though as for that the passing there
Had worn them really about the same,

And both that morning equally lay
In leaves no step had trodden black.
Oh, I kept the first for another day!
Yet knowing how way leads on to way,
I doubted if I should ever come back.

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I?
I took the one less traveled by,
And that has made all the difference.

The Road Not Taken
Robert Frost, 1916
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Chapter 1

Introduction

1.1 Motivation

The use of autonomous robots or software agents to solve complex problems has become
commonplace, with their applicability ranging from the traditional manufacturing robots
to web-based autonomous programs. We increasingly start to rely on them to perform
tasks that would otherwise be tedious, dangerous or simply impossible for a human
and their increased autonomy requires that the three main functions of such agents –
perception, reasoning and action – keep up with the needs of the challenging scenarios
we set them to work in.

In this work we are concerned mainly with the reasoning aspect of an agent: based
on the input the agent gets from his sensors, it chooses from the different available
actions so that the task is accomplished. In this context, a plan is simply a sequence
of actions to achieve the said task. The representation of agent plans can be made
using different approaches (LaValle, 2006). On the extreme sides of the spectrum, the
basic planning problem assumes that a plan can be represented as a sequence of pre-
programmed actions and, on the other side, that it is no more than a policy function
that maps states into actions, with the agent reacting conditionally to the state that it
is in.

A pre-programmed plan, which can be generated by well studied classic AI methods
(Russell and Norvig, 2003), is ill-equipped to deal with uncertainty in the sensors or
in the effects of the actions. In this sense, the reactive representation of a conditional
policy seems a more well suited approach to an uncertain environment, since it allows
for sudden deviations of the ideal plan to be dealt with. On the other hand, the reac-
tive representation becomes dependent on the ability to successfully identify the state
in which the agent is, which in certain instances could prove to be a hindrance, bring-
ing to mind the common expression ”stick to the plan”. In the framework of Partially
Observable Markov Decision Processes (POMDPs), (Kaelbling et al., 1998) , this prob-
lem is circumvented by making the plan dependent on a probability distribution over
the possible states and not the states themselves, but computing the optimal plan for
a POMDP is an intractable problem and POMDP solvers are mostly offline methods,

1
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with the plans being computed prior to execution.

Learning can be useful to adjust original plans to the particular features of the world
where the robot evolves. If the basic planning problem is extended so as to consider
decision points in the plan where one of multiple actions are chosen, the best among
the conflicting actions can be learned over time. Similarly, the optimal policy can be
learned over time for each of the states reachable by the robot, taking into account robot
action uncertainties. A popular solution for the latter approach is to use reinforcement
learning algorithms (Sutton and Barto, 1998).

Recently, there has been an increasing interest in combining the purely deliberative
approach, of which classic AI planning is a good example, the reactive control approach,
with the use of conditional policies to decide how to act, and the use of learning algo-
rithms to improve over pre-programmed plans or to adapt to system changes. In fact,
hybrid approaches consisting of combining all these different paradigms are, in practice,
widely used to solve decision problems, from low level motor control to high level strat-
egy control, but they have been usually obtained in ad-hoc ways that are suited to the
problem one wishes to solve but are not easily extendable to other kinds of problems.
Besides, since the many of the individual algorithms used for planning, learning and
control have been studied extensively for a couple of decades, it is only natural that the
interest shifts to the problem of effectively combining these different approaches in a way
that retains certain features from each of them to produce an hybrid systematic method.

Another important question regarding the decision problem is when to decide, which
is closely related to the way the state changes occur in the system we are considering.
Often in situations that require decision making, it is not necessary to analyze the
state of the system at each moment but only at key instants in time where an important
event happened. In fact, some systems can be modeled with their dynamics being driven
not by the time but by the occurrence of said events. Automata and Petri Nets, for
example, are two of this sort of models generally called Discrete Event System (DES)
models (Cassandras and Lafortune, 2007). The rationale for decision then becomes that,
if the state change is restricted to certain moments in time when those events occur,
then often it is only at those instants that the agent needs to check if its current action
is adequate or if another one is needed.

In these event-based models, an observability problem arises when the agent is not
able to observe some of the events the system produces. Additionally, the same event
might be associated to different state changes, which causes another observability prob-
lem, closer to the one addressed by models such as POMDPs.

Related to these event-based models, where the driver is the occurrence of events,
is the question of whether time is considered a continuous or discrete quantity. In fact,
although the state changes themselves are driven by which events happened at a certain
state, the fact that they do not occur in equally spaced intervals of time might be of
critical importance to certain tasks. For example, if the task of a robot is to minimize
the time it spends on a certain state since due to energetic constraints, then it becomes
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important that the cost function it aims to minimize includes a term that depends
exactly on the time it spent on that state.

1.2 Objective

The main objective of this thesis is to provide a method for combining:

• A deliberative planning approach, that allows for pre-programmed plans to be
provided to the agent in a well formalized way. Ideally, the representation of these
plans should be natural and easily understandable by the designer of the agent, or
at least obtained from an intermediate representation, in which the designer writes
the system specifications, that is natural and easily understandable. The rationale
is that a-priori plans should not only be the ones possibly optimized offline by the
agent itself, but they might be related to constraints that the designer wants to
force on the agent for the problem at hand. A possible application is when a
generic robot with a set of possible behaviors is set on a new environment possibly
to learn how to act in this new environment, but the designer wants to ensure
there are certain sequence of actions it will never try, for safety reasons. Another
possible use is to restrict the set of behaviors of the agent by removing the ones
the designer knows not make sense to use in certain states. In this sense, it is our
goal to introduce pre-programmed plans not so much as pre-determined sequences
of actions but as restrictions of the behavior space – instead of telling the agent
to do a certain sequence, we aim to use planning to tell him which sequences he
should not do, effectively supervising the agent behavior.

• A reactive control approach, which simply provides the agent with the adequate
action for a given state. The goal is for the conditional plans induced by this
control component to live only in the behavior trajectory space allowed by the
planning module.

• A learning approach, which optimizes the control policy based on some reward/cost
measure. Again, the optimization is supposed to be done within the boundaries
of the set confined by the planning module.

Additionally, we are also concerned with using models that work on top of an event-
based approach. Considering we are interested in obtaining a method that is well suited
mainly for high level control, most of the applications will only require decisions to be
made in specific instants in time, where a key event has happened. In fact, in this sort of
abstraction it is common to have discrete states and the decisions only need to be made
when the system makes a jump from one state to the other. Furthermore, assuming
the state changes are dependent on the occurrence of events and not time allows for the
controller to react independently of changes in the rate at which the system is producing
events and changing state.
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Finally, it is our goal to use a continuous time assumption. Explicitly considering
time is important for two reasons: the cost functions to optimize are often time depen-
dent and, on the other hand, although the changes in the system state are driven by
the occurrence of events, it is quite common for some of the events to occur driven by
some temporal process. The number of costumers in a queue, e.g., is a state variable
driven by arrivals, departures and services, and in that sense it is temporally abstract.
Nevertheless, the underlying processes of occurrence of each of the events are driven by
time.

1.3 Approach

For a DES view only concerned with the untimed (or logical) behavior of the system, Su-
pervisory Control (SC), as introduced in (Ramadge and Wonham, 1987), is an adequate
method to steer a plan designed to accomplish the specifications. Stochastic Timed Au-
tomata (Glynn, 1989) and Petri nets cover the stochastic (possibly timed) view of DES,
which enables modeling uncertain action effects and uncertainty about the robot state.
When endowed with controllable actions and under particular conditions, Stochastic
Timed Automata are equivalent to Semi-Markov Decision Processes (SMDPs) or even
MDPs (Puterman, 1994).

MDPs have been a top choice in the literature to address the problems of sequential
decision making under uncertainty in a robotic setup. Solving model-free MDPs can
be achieved by the application of reinforcement learning (RL) techniques (Sutton and
Barto, 1998) that allow the robot to have no prior knowledge about the environment
(apart from its state space and the available actions), learning the optimal course of ac-
tion from experience. Q-learning (Watkins, 1989) is one of the most popular algorithms
to address the RL problem. Semi-Markov Decision Processes (SMDP) are also addressed
in (Puterman, 1994) and RL algorithms for such systems can be found in (Bradtke and
Duff, 1995). SMDPs are particularly relevant when time can not be considered discrete.

In this thesis, we model the environment as a Stochastic Timed Automata generating
a Generalized Markov Decision Process. We extend the STA with controllable events
and combine supervisory control of DES and RL to combine a specifications-based ap-
proach to the supervision of robot plan execution with a policy controller which uses
a RL algorithm to learn the optimal policy over time for the behaviors enabled by the
supervisor. Since our method is event-based by design, we chose to consider continuous
time because the triggering of events is in general asynchronous. To handle continuous
time, we use a Q-learning algorithm extended for SMDPs. We presented this approach
in (Neto and Lima, 2008).

Combining RL based controllers with supervision has been addressed before, though
not too often. Furthermore, the methods that do exist are not usually concerned with
the systematic integration of specifications or a priori planning knowledge with the
learning based controller, which is one of the goals of our work.
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Additionally, we consider that some events that occur in the environment cannot be
observed by the supervisor and by the controller (leading to partial state observability)
and that the effects of the observable events are in general non-deterministic (thus
modeling uncertain action effects). This poses an additional problem of building an
adequate observer to support the decision of the supervisor and controller systems. We
build a deterministic observer of the environment based on the methods described in
(Cassandras and Lafortune, 2007) and use it to obtain the state estimate the RL-based
controller requires. We discuss the conditions necessary for the process to maintain a
semi-Markovian property on the states of the observer.

We also address the situation where the effects of the occurrence of an event are un-
certain and how that leads to an observability problem since the state is not univocally
known. We use a probabilistic DES as an observer and obtain new optimality equa-
tions based on the distributed state of the probabilistic observer which, in their form,
will be proven to be quite similar to the equivalent optimality equations for POMDPs
(Kaelbling et al., 1998). We present the modified optimality equations and describe how
to adapt a generic POMDP solver to our problem.

1.4 Contributions

The key contributions of this thesis are:

• The cornerstone contribution is a novel approach to combining deliberative
planning concepts, reactive control and learning by using supervisory
control of discrete event systems to provide loosely specified planning
options over which a reinforcement learning based controller can opti-
mize. Building this model was paramount to providing the conditions to obtain
specific theoretical and practical results, and it can be used as a starting point to
other work sharing the same philosophy.

• The second contribution is the definition of full observability for a system
based on a controllable stochastic timed automata, from which the agent
can only directly see the events produced, and the proof of a result describing the
necessary and sufficient conditions for full observability.

• We also show how, under full observability, the model relates to a semi-Markov
decision process and present the conditions that the firing of events needs
to follow in order to ensure the convergence of the modified Q-learning
algorithm, proving that the algorithm does indeed converge. The novel
aspect of this result is the fact that all the parameters are associated with events,
which induces some particular aspects in the optimality equations.

• Under partial observability, we use a known technique to construct an observer
given by a finite state automaton, with our contribution being a result showing
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that the states of the observer, which are associated with parts of the
original STA, can be proven to still provide a semi-Markov process
which can be used for learning. We show that this happens if the transition
to the sub-automaton associated with an observer state is made always to the same
state of the original STA. In fact, since each sub-automaton of the STA under a
fixed control policy can be thought of as a Markov chain, it can be said that the
condition for use of the Q-learning algorithms requires that each of these Markov
chains always has the same initial condition.

• Finally, still under partial observability, we derive the optimality equations
for the system when the observer is a probabilistic system and show
how we can modify a generic POMDP algorithm to solve our event
based problem.

1.5 Thesis Structure

The thesis is structured as follows:

Chapter 2 covers the basic frameworks and models that support the work done in this
thesis. It starts by describing Finite Automata, Supervisory Control of Discrete
Event Systems and Stochastic Timed Automata, and some of the linguistic prop-
erties of those models. On the subject of Markov Decision Processes, it presents
the supporting framework, describes optimality equations and ways to solve them
using dynamic programming or reinforcement learning; it explores convergence
properties in further detail for the extension of Markov Decision Processes to con-
tinuous time. It closes by describing the framework of Partially Observable Markov
Decision Processes and going through the optimality equations for the model.

Chapter 3 reviews the most significant literature in the fields related to this thesis,
particularly new results in Supervisory Control of Discrete Event Systems, rein-
forcement learning algorithms in Semi-Markov Decision Processes, combination
of supervision with reinforcement learning and recent ways to provide supervisor
specifications.

Chapter 4 starts by describing the supporting event-based model for the system we
want to control – Stochastic Timed Automata – and introduces some extensions
of the basic model to allow events to be classified according to the time it takes
for them to fire and their controllability. An observer model is presented and the
conditions which the system must meet to achieve full observability are derived.
A supervisor and an adaptive controller are presented and optimality equations
are derived for the controller, as well as theoretical results that explain under
which conditions the update rule of the controller will converge. A case study is
described and simulation results presented.



1.5. THESIS STRUCTURE 7

Chapter 5 continues the work on the framework presented in Chapter 4 but the full ob-
servability assumptions are dropped. A way to construct a deterministic observer
is shown and some results are derived explaining how each state of the observer
can be associated with a part of the system behavior, a semi-Markov subchain of
the system. The conditions that the observer states must meet to ensure they are
also semi-Markovian are derived. The case study from Chapter 4 is extended to
include partial observability and the new results are discussed.

Chapter 6 explores a partial observability situation but where the observer is not
deterministic. The model for the probabilistic observer is presented and the opti-
mality equations derived. It is show the probabilistic observer induces equations
similar to the ones for POMDPs presented in Chapter 2 and a way to modify a
generic POMDP solver to this problem is described.

Chapter 7 reviews the thesis by highlighting the main results and contributions and
closes by discussing several directions that could be taken to extend this work, in
the future.

Readers should start by Chapter 2 unless they are familiar with the concepts pre-
sented there. Chapter 3 provides an overview on several of the fields related to this work
but is not essential to understand the concepts presented in the thesis. In Chapter 4
the main modelling approach of the thesis framework is presented and Chapters 5 and
6 are critically dependent on it. Chapter 6 mentions some results from Chapter 5 but
the chapters can be read independently.





Chapter 2

Background

2.1 Discrete Event Systems

Discrete Event Systems (DES) share the characteristic of having discrete state spaces
and their dynamics being driven by events, rather than time. They can be inherently
discrete or an abstraction of an hybrid system, where both continuous and discrete
dynamics rule the system changes.

The concept of event is that of an instantaneous occurrence that causes the system
to change its state. Typically, a set of events E can be interpreted as an alphabet and,
in that case, a language over that alphabet describes the behavior of the system. Usual
operations on languages, such as concatenation or Kleene closure, can be applied here.
For more references on the operations on languages a possible source is (Hopcroft et
al., 2000).

There are several formalisms that can be used to model these kind of systems – the
motivation to use these representations is to express behaviors, which with a language
representation would origin infinite sets, in a finite and compact way. This is not al-
ways possible and the degree of applicability of each of these discrete event modeling
formalisms depends on the complexity of the system being represented.

On the logical level, the field of Formal Language Theory that stemmed from the
hierarchical definitions of Noam Chomsky (Chomsky, 1955), classifies the languages
according to their expressive power. The different DES modeling formalisms can then
be classified according to the expressive power of the languages they generate1.

Particularly, the simplest class of languages in this hierarchy is the class of Regular
Languages, R, and it corresponds to the languages generated by Finite-State Automata
(FSA). Petri nets are another kind of formalism, which has more expressive power than

1Strictly speaking, languages are said to be generated by Grammars. Automata take strings of a
language as inputs and are said to accept or recognize the language, if they classify the inputs, e.g.,
giving a yes/no answer to each input string, or transduce it, if they translate their input language to
another. Moore and Mealy automata are of this later kind.

In DES theory, however, since automata can also provide a way to express the production rules asso-
ciated to grammars, a common abuse of terminology is to consider automata to be language generators.
We follow this terminology throughout the thesis.

9
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FSA, thus possibly generating languages not in the R class.

2.1.1 Finite State Automata

Modeling DES using the complete description of the possible behaviors is at least tedious.
Several formal models are frequently used, that correspond to different levels of language
complexity, to represent the system in a more compact way. In particular, systems
whose behaviors can be described by regular languages can be represented by Finite
State Automata (FSA), (Cassandras and Lafortune, 2007). A Finite State Automaton
is a tuple G = (X,E, f,Γ, x0, XM) where:

• X represents a finite state space.
• E represents a finite event set.
• f : X × E → X is a possibly partial function representing the state transitions.

This function can be extended to strings (sequences of events) in the following
way:

f(x, ε) = x

f(x, se) = f(f(x, s), e) for s ∈ E∗, e ∈ E

• Γ : X → 2E is the set of enabled events in state x.
• x0 is the initial state of the system.
• XM ⊆ X is a set of marked states.

where ε represents an empty string and E∗ the Kleene Closure of E, that is, the set of
all finite strings of elements of E, including ε. Again, this function is only defined for
the strings that the automaton recognizes.

The complete language generated by the automaton denotes all the possible paths
that can occur starting from the initial state, that is:

L(G) = {s ∈ E∗ : f(x0, s) is defined }

Similarly, the set of goal behaviors for the automaton defines the language marked by
the automaton:

LM(G) = {s ∈ L(G) : f(x0, s) ∈ XM}
With the definition presented above, the FSA is said to be a Deterministic FSA

(DFA). Although the FSA defined previously is considered a generator, there is no
definition of the rules that define the generation of events. This is different from, for
example, assuming that all events have the same probability of occurring in a given
state, which says that we know what is the generating mechanism but no event is more
likely to happen than other.

Two important concepts are those of accessibility and co-accessibility.

Accessibility A state is said to be accessible if it can be reached by some path (in other
words, some string in L(G)) starting from the initial state. The operation Ac(G)
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takes the accessible part of the automaton G, which is useful since it eliminates
states that will never be visited starting from x0.

The Ac operation preserves the languages generated and marked by the automa-
ton, so when working with automata it is usual to assume the automaton is ac-
cessible, G = Ac(G). We make that assumption throughout the thesis.

Co-accessibility A state is said to be co-accessible if starting from that state, it is
possible to reach some marked state. Similarly, the CoAc(G) operation takes only
the co-accessible part of the automaton G. States that are not co-accessible are not
desirable since they prevent the automaton from reaching one of the goal states.

The CoAc operation shrinks the behavior of the system, possibly removing some
of the strings in L(G). However, it preserves LM(G). The automaton is said to
be co-accessible if G = CoAc(G), or in other words, the prefixes of all strings in
LM(G) belong to L(G) 2.

Co-accessibilty is also useful to model deadlocks, a non marked state from where
the automaton cannot leave, or livelocks, a set of states where the automaton
shows dynamic behavior but from where it is not possible to reach a marked state.
More generally, an automaton is said to be blocking if:

LM(G) ⊂ L(G)

where the inclusion is strict.

Accessibility and Co-accessibility induce, as seen, two unary operations on automata.
Also of interest are binary operations to compose automata. Particularly, the product
and the parallel composition.

Product: Given two automata

G1 = (X1, E1,Γ1, f1, x01, XM1)

G2 = (X2, E2,Γ2, f2, x02, XM2)

the product G1 ×G2 is an automaton

(X1 ×X2, E1 ∩ E2,Γ1×2, f1×2, (x01, x02), XM1 ×XM2)

where

f1×2((x1, x2), σ) =

{
(f1(x1, σ), f2(x2, σ)) if σ ∈ Γ1(x1) ∩ Γ2(x2),

undefined otherwise.

and
Γ1×2(x1, x2) = Γ1(x1) ∩ Γ2(x2)

2The operation of taking all the prefixes of a given language is called prefix closure and is usually
denoted (·). In that sense, a co-accessible automaton has L(G) = LM (G).
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Parallel Composition: Given two automata G1 = (X1, E1,Γ1, f1, x01, XM1) and G2 =
(X2, E2,Γ2, f2, x02, XM2), the parallel composition G1‖G2 is an automaton

(X1 ×X2, E1 ∪ E2,Γ1‖2, f1‖2, (x01, x02), XM1 ×XM2)

where

f1‖2((x1, x2), σ) =


(f1(x1, σ), f2(x2, σ)) if σ ∈ Γ1(x1) ∩ Γ2(x2),

(f1(x1, σ), x2) if σ ∈ Γ1(x1) \ E2,

(x1, f2(x2, σ)) if σ ∈ Γ2(x2) \ E1,

undefined otherwise.

and
Γ1‖2(x1, x2) = (Γ1(x1) ∩ Γ2(x2)) ∪ (Γ1(x1) \ E2) ∪ (Γ2(x2) \ E1)

The product of automata corresponds to identifying the behavior shared by both
automata, and synchronizes the automata in those events. On the other hand, the par-
allel composition synchronizes the automata in the events that they share, and does not
constrain the events that they do not, with them being executed whenever possible.

It is possible to define a Non-deterministic FSA (NFA) as a tuple Gnd = (X,E ∪
{ε}, fnd,Γ, x0, XM) where:

• X represents a finite state space
• E ∪ {ε} represents a finite event set with ε denoting an empty string. The tran-

sitions labeled with the empty string can be thought of as changes that are not
possible to be detected.
• fnd : X × E ∪ {ε} → 2X is a possibly partial function with fnd(x, e) representing

the states in X that can be reached from x by action of event e. Note that e might
also be the empty string. This function might also be extended to strings:

fnd(x, se) = {z : z ∈ fnd(y, e), y ∈ fnd(x, s)}
• Γ : X → 2E is the set of enabled events in state x.
• x0 is the initial state of the system, which in the case of a NFA might be a subset

of X.
• XM ⊆ X is a set of marked states.

The languages generated and marked by a NFA are:

L(Gnd) = {s ∈ E∗ : ∃y∈x0f(y, s) is defined }
LM(Gnd) = {s ∈ L(Gnd) : ∃y∈x0f(y, s) ∩XM 6= ∅}

Since the objective of the systems we intend to study will be given by a mechanism
different than goal states, particularly the use of reward functions and reinforcement
learning algorithms, we will drop marked states set XM from the definition of the au-
tomata we use.
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Figure 2.1: Supervisory Control block diagram.

2.1.2 Supervisory Control

In order to control a system modeled as an FSA, the event set is partitioned in a
controllable event set EC and an uncontrollable event set EUC such that E = EC ∪EUC ,
EC ∩ EUC = ∅. A supervisor is then defined as a function:

S : L(G)→ 2E

where L represents the language generated by the G. The supervisor basically chooses
a set of events to enable, for each string generated by the system. For a system starting
at state x0 and after string s has occurred, the set of enabled events is given by S(s) ∩
Γ(f(x0, s)). Figure 2.1 shows the block diagram for this kind of systems.

It is important to note that the supervisor, in order to be admissible, is not allowed
to disable uncontrollable events:

∀s∈L(G)EUC ∩ Γ(f(x0, s)) ⊆ S(s)

The control model can be further elaborated by adding a notion of partial observ-
ability. It is important to note that, in DES, we are interested in the study of how
the occurrence of events affects the behavior of the system and, implicitly, even in fully
observable models the actual states of the system are assumed not to be observable
directly – the system outputs strings of a given language and it is to that language
that the supervisor or any observer will have access. At first sight, this would place
DES apart from state based models, e.g. the Markov Decision Processes (MDP) we will
address further ahead, where the state is accessible directly. Nevertheless, it is possible
to consider a direct observation of the state of the system as a particular kind of event
that univocally identifies the state to which the system changed.

If we consider that:

∀xi∈X∃ei∈E The system outputs ei every time it reaches xi

then all an observer needs to be able to estimate the state of the system is the last event
in the output string. Observing the event string:

e1, e2, e3, · · ·
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is equivalent to directly observing the trace:

x1, x2, x3, · · ·

In this work we consider the more general case where generally there are no events
that univocally identify each state, but it is important to keep this connection in mind
in order to better bridge this sort of models with the aforementioned MDPs.

In the general case, the event set will be partitioned in two other disjoint sets E =
EO ∪ EUO , EO ∩ EUO = ∅ where EO represents the set of observable events and EUO
the set of unobservable events. In this case, it is possible to build another automaton,
called an observer automaton, that keeps track of an estimate of the state space of the
original automaton, but based solely on EO. The observer is a FSA defined as a tuple
Gobs = (Xobs, E, fobs,Γobs, x0,obs, XM,obs) with Xobs ⊆ 2X \ ∅ and fobs : Xobs × E → Xobs

being a deterministic transition function. An algorithm for constructing Gobs can be
found in (Cassandras and Lafortune, 2007).

Note that the states of the observer are nothing more than subsets of the state space
X of the original automaton, i.e., the estimates of the observer correspond to the states
in which the original automaton might be in, at a given time.

A projection function P : E∗ → E∗O is associated with the original event set and
the observable one (or rather, the respective Kleene closures). It essentially erases the
unobservable events from a string.
The overall block diagram is represented in Figure 2.2.

P(s)

s

P

SP

G

SP(s)

Figure 2.2: Supervisory Control block diagram under partial observation.

The supervisor is now defined over the projection of the language generated by G:

SP : P [L(G)]→ 2E

This new supervisor will only change its control action after the occurrence of an ob-
servable event, and for the same reason if two strings have the same projection it will
issue the same control action. This has to be taken into account when designing the
supervisor.
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The behavior of the supervised system can also be represented by a language, usually
denoted by L(S/G), and in some cases generated by a FSA. We focus particularly on
finite state systems, whose restricted and unrestricted behaviors mark regular languages,
and can be represented by FSA. If supervisor S is realized by an FSA R, which we assume
to have an event set ER such that ER ⊂ EG, then the closed loop controlled system
can be interpreted as the parallel composition of the system and the automaton G‖R.
Such a supervisor will always enable events e such that e ∈ EG \ ER, by definition of
parallel composition, but even if e 6∈ ΓG(x) for some state x ∈ X, there is no harm
in enabling unfeasible events since they will simply never happen. This fact allows for
the supervisors to only need to focus on the part of the system behavior they want to
restrict and not have to mimic the entire dynamics of the system.

The controllability theorems (under full or partial observability) for supervisory con-
trol systems can be found in (Cassandras and Lafortune, 2007; Wonham, 1997).

2.1.3 Modular Supervisory Control

A useful way of constructing supervisors is to have not a single automaton controlling
the system but several supervisors in parallel. This method, explained in a block dia-
gram in Figure 2.3 is called in (Cassandras and Lafortune, 2007) Modular Supervisory
Control(MSC). The modular supervisor is defined as a function SmodP : P [L(G)]→ 2E

such that:

SmodP (s) =
n⋂
i=1

SiP (s)

Essentially, the only behaviors that the system is allowed to have are those that all the
supervisors agree on and, for that reason, we can also say that:

L(SmodP/G) =
n⋂
i=1

L(SiP/G)

If we assume that each of the supervisor functions SiP realized by a FSA Ri, then
another interpretation for MSC is that the system is being controlled by the supervisor
induced by the parallel composition of all the automata:

R1‖···‖n = R1‖ · · · ‖Rn

and the system in closed loop can be interpreted as:

Gclosed = G‖R1‖···‖n = G‖R1‖ · · · ‖Rn

Modular Supervisory Control provides a practical way to not only construct an overall
supervisor that is the combination of several specifications, each one focusing on a
different aspect of the system that they want to control, but it is also a good way to
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Figure 2.3: Modular Supervisory Control block diagram under partial observation.

save memory. If |Xi| is the number of states of automaton Ri, then the total number of
states that the modular supervisor needs is:

n∑
i=1

|Xi|

since they are stored in parallel. On the other hand, if we note that the state space of
R1‖···‖n is, by the definition of parallel composition, potentially equal to X1 × · · · ×Xn,
then the total number of states needed is potentially equal to:

n∏
i=1

|Xi|

Which shows how the modular approach is much more economic than the explicit con-
struction of an equivalent non-modular supervisor.

2.1.4 Stochastic Timed Automata

As opposed to the previously defined automata, which did not consider time, Stochastic
Timed Automaton (STA) (Glynn, 1989) include the notion of (continuous) time associ-
ated with each transition. They can be defined as a tuple (X,E,Γ, p, p0, T ) where:

• X represents a state space.
• E represents an event set.
• Γ : X → 2E is the set of enabled events in state x
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• p : X × E ×X → [0, 1] is a transition function defined as:

p(x′|x, e) = P [Xk+1 = x′|Xk = x,Ek = e]

The function is possibly partial, not defined for events e /∈ Γ(x). The indices
k, k + 1, . . . are associated with the moments in time where some event occurs.
• p0(x) is a probability distribution over X that represents the knowledge about the

initial state of the system, P [X0 = x].
• T = {Te : e ∈ E} is a stochastic clock structure (see (Cassandras and Lafor-

tune, 2007)) for the event lifetimes. Essentially it associates to each event e a
stochastic clock sequence {Ve,t} = {Ve,1, Ve,2, . . . }, which is independent and iden-
tically distributed. The index t represents, for each event, the moments in time
where the event e either became active, e 6∈ Γ(x) ∧ e ∈ Γ(x′), or was triggered.

The STA defined like this is clearly a generator automaton, with the occurrence of
events in a given state being driven by the stochastic clock structure and the probability
distributions associated with it.

The Markovian property of this system is related to the fact that the state transitions
only depend on the current state and the event fired. However, the event lifetimes have
arbitrary distributions and, as mentioned above, if an event is active in some state and
remains active in the next state without being triggered, its residual lifetime depends
not only on the time it has been active in the current state, but also for how long it has
been active previously.

Supervisory Control can in fact be applied to systems modeled by STAs, when fo-
cusing on the logical behavior of the system, thus ignoring the probabilistic components
of the model.

2.2 Markov Decision Processes

Most research on Reinforcement Learning is built on the formalism of Markov Decision
Processes (Bellman, 1957; Bertsekas, 1983; Howard, 1960; Puterman, 1994), or MDPs.
MDPs can be defined as a tuple (X,A, p, r) where:

• A is an action set.
• X is a state space.
• p : X×A×X −→ [0, 1] is a transition function defined as a probability distribution

over the states. Hence, we have p(x′|a, x) = P [Xk+1 = x′|Xk = x,Ak = a]. Xk+1

is a random variable representing the state of the process at time k + 1, Xk the
state at time t and Ak the action taken after observing state xk.
• r : X × A −→ R is a reward function representing the expected value of the next

reward, given the current state x and action a: r(x, a) = E [Rk|Xk = x,Ak = a].
In this context Rk is a random variable representing the immediate payoff of the
environment to the agent at time k.
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This formalism assumes a discretization of time, with decisions being taken at each
time step.

The fact that there are no time dependences either on p or on r is due to the sta-
tionarity (by definition) of the MDP. Although this is not stated directly, reinforcement
learning algorithms without a generalization mechanism are usually designed to work
on finite MDPs, that is, MDPs in which both the state and the action spaces are finite.
So, unless clearly stated otherwise, the term MDP will refer to a finite Markov decision
process.

The task of deciding which action to choose in each state is done by a policy function.
Generally, a policy is a collection of probability distributions, one for each trace of the
the process – π(xk, ak−1, xk−1, ak−2, . . . ) ∈ PD(A) – defining the probability that each
action will be chosen for that particular trace of the system. However, there is no
need to consider other than Markovian policies because the MDP itself is Markovian by
construction – it is sufficient to define the policy for each state of the MDP.

A policy can also be thought as a projection transforming the MDP in to an induced
discrete-time Markov chain. The interesting thing with this idea is that the Markov
chains theoretic paraphernalia becomes available and can act as a performance measure
for the current policy. In (Bhulai, 2002) the two frameworks are related and the re-
sults applied to fields traditionally related to Markov chains such as control of queuing
systems.

Optimality Concepts

The goal of an agent living in an environment that can be modeled as a Markov Decision
Process is to maximize the expected reward over time, which on itself aggregates a
myriad of formulations. The most common criteria are:

Finite-horizon model: in this scenario the agent tries to maximize the sum of rewards
for the following M steps:

E

{
M∑
k=0

r(xk, ak)

∣∣∣∣x0 = x, π

}

The objective is to find the best action, considering there are only M more steps
in which to collect rewards.

Infinite-horizon discounted reward model: in this scenario the goal of the agent
is to maximize reward at the long-run but favoring short-term actions:

E

{ ∞∑
k=0

γtr(xk, ak)

∣∣∣∣x0 = x, π

}
, γ ∈ [0, 1[

The discount factor γ regulates the degree of interest of the agent: a γ close to 1
gives similar importance to short-term actions and long-term ones; a γ close to 0
favors short-term actions.
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Average reward model: in this model the idea is to find actions that maximize av-
erage reward on the long-run:

lim
M→∞

E

{
1

M

M∑
k=0

r(xk, ak)

∣∣∣∣x0 = x, π

}

This model makes no distinction between policies which take reward in the initial
phases from others that shoot for the long-run rewards.

The first criterion could be used to model systems where there is a hard deadline and
the task has to be finished in M steps. In reinforcement learning, usually the adopted
model is the Infinite-horizon discounted reward model, probably not only because of its
characteristics but because it bounds the sum.

A fundamental concept of algorithms for solving MDPs is the state value function,
which is nothing more than the expected reward (in some reward model) for some state,
given the agent is following some policy:

V π(x) = E

{ ∞∑
k=0

γkr(xk, ak)

∣∣∣∣x0 = x, π

}
(2.1)

Similarly, the expected reward given the agent takes action a in state x and following
policy π could also be defined:

Qπ(x, a) = E

{ ∞∑
k=0

γkr(xk, ak)

∣∣∣∣x0 = x, a0 = a, π

}
(2.2)

This function is usually know as Q-function and the corresponding values as Q-values.

From Equation (2.1) a relation can be derived, which will act as the base of much of
the ideas behind dynamic programming and reinforcement learning algorithms to solve
MDPs.

V π(x) = E

{ ∞∑
k=0

γkr(xk, ak)

∣∣∣∣x0 = x, π

}

= E

{
r(x0, a0) + γ

∞∑
k=1

γk−1r(xk, ak)

∣∣∣∣x0 = x, π

}

=
∑
a

π(x, a)

[
r(x, a) + γ

∑
y∈X

p(y|a, x)E

{ ∞∑
k=0

γkr(xk, ak)

∣∣∣∣x0 = y, π

}]

=
∑
a

π(x, a)

[
r(x, a) + γ

∑
y∈X

p(y|a, x)V π(y)

]
(2.3)
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Note that the term π(x, a) is used to represent the probability of taking action a in state
x. In some situations, the term π(x) will be used to represent the action selected by
policy π. Generally, this a probabilistic outcome, except for deterministic policies where
π can be thought as π : x→ A.

The resulting equation, called the Bellman equation, has a unique solution for each
policy which is the state value function for that policy (Howard, 1960).

As previously stated, the goal of solving a MDP is usually to find a policy that
guarantees a maximal reward, with some given reward criterion. Using state values, a
policy π′ is said to dominate a policy π if and only if, for every x in the state space,
V π′(x) > V π(x). An optimal policy is one which is undominated in the sense that no
other can expect to do better, in any state. An optimal policy π∗ is always guaranteed to
exist3 and sometimes even more than one, although they share the same value function,
which can be defined as:

V ∗(x) = max
π

V π(x) , ∀x∈X (2.4)

It can be show (Puterman, 1994) that there is always at least one undominated deter-
ministic policy that satisfies the previous relationship. Knowing that, we obtain the
Bellman optimality equation:

V ∗(x) = max
a

[
r(x, a) + γ

∑
y∈X

p(y|a, x)V ∗(y)

]
(2.5)

or in terms of the Q-values:

Q∗(x, a) = r(x, a) + γ
∑
y∈X

p(y|a, x)

[
max
b∈A

Q∗(y, b)
]

(2.6)

3This can be proven by construction, choosing at each state the action that maximizes V for that
state and discarding the rest of the policy. On the other hand, a maximum value of V always exists in
the infinite-horizon discounted reward model due to γ < 1.
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2.2.1 Dynamic Programming

Solving MDPs has always been closely tied to the idea of dynamic programming4, which
was introduced by (Bellman, 1957) as a possible solution to a wide variety of problems.
From then on, a lot of research has been done in that area and extensive treatments of
the subject can be found in texts like (Bertsekas, 1987; Bertsekas and Tsitsiklis, 1996;
Ross, 1983). An interesting approach is the one of (Cassandras and Lafortune, 2007)
which relates dynamic programming with other methods for controlling discrete event
systems. It has been also widely used in optimal control applications.

Two classical dynamic programming methods for MDPs are value iteration and policy
iteration.

Value Iteration

As stated previously, a way of finding an optimal policy is to compute the optimal value
function. Value iteration is an algorithm to determine such function, which can be
proved to converge to the optimal values of V . The core of the algorithm is:

Vk+1(x) = max
a

[
r(x, a) + γ

∑
y∈X

p(y|a, x)Vk(y)

]
(2.7)

Note that the expression was obtained by turning the Bellman optimality Equation
(2.5) into an update rule. An important result about value iteration is that it is guar-
anteed to find an optimal greedy policy in a finite number of steps, even though the
optimal value function may not have converged – in fact, usually the optimal policy is
found long before the value function has converged. In (Bertsekas, 1987) those questions
are discussed, along with some convergence proofs.

One thing lacking in the definition of the algorithm is the termination rule – it is
not obvious when the algorithm should stop. A typical stopping condition bounds the
performance as a function of the Bellman residual of the current value-function. That
is the approach taken by (Sutton and Barto, 1998) in their description of the algorithm

4The term reinforcement learning can be associated with the body of methods intended to compute
policies that maximize a given expected long term reward criterion, dealing with the problems of delayed
credit assignment and how to back-propagate such reward signals. In this sense, dynamic programming
can be thought of as a kind of reinforcement learning.

Similarly, classical reinforcement learning algorithms can be thought of as following a dynamic pro-
gramming approach that uses stochastic approximation techniques and sampled paths of the system
to learn the intended policies – in (Bertsekas and Tsitsiklis, 1996) they are known as neuro-dynamic
programming.

So, the border between the two terms is not always distinct and most of the times they are inter-
changeable, but throughout this thesis we generally refer to algorithms that use stochastic approxima-
tion techniques, and are generally done online, as reinforcement learning, and consider that the term
dynamic programming refers to the more traditional algorithms that are generally done offline and
require a model of the system. The chosen terminology does not reflect any fundamental considerations
about what names are more appropriate to each situation but rather a pragmatical choice of succinctly
distinguish between two different approaches for the same problem.
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and it states that if:
max
x∈X
|Vk+1(x)− Vk(x)| < ε

then

∀x∈X |Vk+1(x)− V ∗(x)| < 2εγ

1− γ
Another stopping criterion, which may lead the algorithm to stop some iterations earlier,
is discussed in (Puterman, 1994).

Although the algorithm assumes a full sweep through the state space before passing
to the next iteration, the assignments of V do not need to be done through succes-
sive sweeps. Asynchronous dynamic programming algorithms, originally proposed by
(Bertsekas, 1982; Bertsekas, 1983) who also called them distributed dynamic program-
ming algorithms, back up the values of the states in an indefinite order and, in fact,
the value of a state can be backed up several times before the value of another one
gets backed up even once. The condition for convergence is that all states are backed
up infinitely often. These algorithms were further discussed in (Bertsekas and Tsitsik-
lis, 1989).

Policy Iteration

Another way of finding an optimal policy in a finite MDP is by manipulating the policy
directly rather than finding it through the state values. A simple algorithm for doing
that is based on the idea of alternating two different steps: a policy evaluation step
plus a policy improvement step. Since there is a finite number of deterministic policies,
the algorithm must converge to the optimal policy in a finite number of steps of policy
iteration. However, the policy evaluation step is itself an iterative procedure but starting
it with the value from the previous policy evaluation step generally increases the speed
of convergence.

In the policy evaluation step, the state values corresponding to the starting policy
are computed based on an iterative expression which, similarly to value iteration, is
taken from the Bellman equation, although this time not for the optimal values:

V π
k+1(x) =

∑
a

π(x, a)

[
r(x, a) + γ

∑
y∈X

p(y|a, x)V π
k (y)

]
(2.8)

The discussion of when to stop the algorithm is the same as for value iteration. A differ-
ent option is to use the Bellman equation directly and solve a set of linear equations to
find the value function corresponding to the policy being used. This could not be done so
easily for value iteration because the equations are not linear (due to the max operator).

The policy improvement step is accomplished by choosing the action that maximizes
the recently updated value function at each state:

π(x) = arg max
a

[
r(x, a) + γ

∑
y∈X

p(y|a, x)V π(y)

]
(2.9)
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Considering that the number of deterministic policies over a finite MDP is also finite
(in fact the number of policies is equal to |A||X|), and knowing the policy improve-
ment step always strictly improves the policy, there is a bound in the total number of
iterations.

Convergence of Dynamic Programming

Looking at the Bellman Optimality equation, we can define an operator L over functions
of type v : X → R as:

(Lv)(x) = max
a

[
r(x, a) + γ

∑
y∈X

p(y|a, x)v(y)

]

With this in mind, the Bellman equation can be rewritten as:

Lv = v

A solution to the Bellman equation is guaranteed to exist and be unique by the Banach
Fixed Point Theorem, if L is a contraction mapping, which can be proved to be true for
space of value functions with the ‖ · ‖∞ norm.

Both the policy value iteration algorithm and the policy improvement step of policy
iteration end up being just variations on the application of the previous result. A more
detailed explanation can be seen in (Puterman, 1994).

2.2.2 Learning with Model-free methods

The dynamic programming methods presented in the previous section are intended to
learn optimal value functions (and from them find optimal policies) in the presence of
a model of the system. In reinforcement learning, generally it is assumed the model is
unknown and, in this situation, two approaches can be pursued. A model-based approach
tries to learn the model explicitly and then uses methods like dynamic programming to
compute the optimal policy with respect to the estimate of the model. On the other
hand, a model-free approach concentrates on learning the state value function (or the
Q-value function) directly and obtaining the optimal policy from these estimates. Two
popular model-free reinforcement learning methods are Q-learning and Sarsa, which will
be summarily described.

Figure 2.4 shows the agent/environment loop for reinforcement learning systems.

Q-learning: off-policy control

The Q-learning method, proposed by (Watkins, 1989), is perhaps the most popular and
widely used form of reinforcement learning, mainly due to the ease of implementation.
It is an off-policy method which learns optimal Q-values, rather than state-values, and
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Figure 2.4: Reinforcement learning block diagram.

simultaneously determines an optimal policy for the MDP. The update rule for Q-
learning is:

Qk+1(xk, ak) = Qk(xk, ak) + αk
(
rk + γmax

b∈A
Qk(xk+1, b)−Qk(xk, ak)

)
(2.10)

which is based on the idea that rk + γmaxb∈AQk(xk+1, b) is a better approximation
for Q∗(xk, ak) than Qk(xk, ak). In (Watkins and Dayan, 1992) the method is proven to
converge to the Q-values for the optimal policy, Q∗, if two convergence conditions are
met:

1. Every state-action pair has to be visited infinitely often.

2. α must decay over time such that
∑∞

k=0 αk =∞ and
∑∞

k=0 αk
2 <∞.

Q-learning is in fact a particular case of a broader range of algorithms known as
stochastic approximation algorithms. In fact, the convergence conditions are general
convergence conditions of stochastic approximations theorems, which are used as an
alternative proof to (Watkins, 1989) by (Jaakkola et al., 1994). A detailed discussion
on stochastic approximation can be read in (Kushner and Yin, 2003).

Sarsa: on-policy control

Sarsa was first introduced by (Rummery and Niranjan, 1994) as an on-policy method for
learning the optimal policy while controlling the MDP. In this situation, the algorithm
behaves according to the same policy which is being improved and, so, the update rule
is as follows:

Qk+1(xk, ak) = Qk(xk, ak) + αk
(
rk + γQk(xk+1, ak+1)−Qk(xk, ak)

)
(2.11)

The method relies on information about the variables xk, ak, rk, xk+1, ak+1 and that
explains the origin of the name Sarsa (the state is commonly represented as s instead
of x), introduced by (Sutton, 1996).
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Convergence results can be seen in (Singh et al., 2000b) and, basically, require that
each state-action pair is visited infinitely often and that the policy being used converges
to a greedy policy5. Sarsa is another instance of a stochastic approximation algorithm,
and the convergence proof cited uses a similar theorem to the proof of Q-learning.

2.2.3 Exploration vs Exploitation

The methods presented previously, when used for learning and control, all share a com-
mon characteristic: for the algorithm to converge to the optimal policy, all the possible
combinations of state and action have to visited infinitely often. This condition allows
the convergence to avoid being stuck on sub-optimal policies.

With an off-policy method this is always achieved in the limit by using soft behavior
policies, meaning that no action has a 0 probability of being chosen. On-policy meth-
ods, on the other hand, require that the policy itself converges to a greedy one, while
performing exploration.

In both situations, the dilemma of the learning method is whether to focus on using
the already acquired information for control or trying to get new information, which
could lead to better policies and a better control. The bottom line is: reinforcement
learning algorithms have to act while learning.

A simple option for balancing exploration and exploitation is to have the behavior
policy be a mixture of an exploration policy and an exploitation policy as stated by:

Πbehavior = Γ · Πexplore + (1− Γ) · Πexploit (2.12)

where 0 < Γ < 1 is a parameter which can be adjusted to allow more exploration or
more exploitation. For example, on-policy methods just have to make Πexploit a greedy
policy and modify so the parameter so that Γ→ 0 and, in the end, the remaining policy
is greedy and is optimal because the corresponding values would also have converged to
the optimal ones.

For off-policy methods, the general balancing expression can also be used and Γ may
or not be modified, according to the specific needs of the algorithm. This and other
considerations regarding exploration are surveyed in (Thrun, 1992).

ε-greedy policies

This kind of policies fit in the general description of Equation (2.12) and are basically
a mixture of a greedy policy (for exploitation) and a uniform policy (for exploration).
The parameter ε can be made arbitrarily small and drive the convergence to a greedy

5The exact kind of policies needed for the convergence to occur are denominated GLIE policies,
which stands for Greedy in the Limit with Infinite Exploration. A policy is said to be GLIE if it satisfies
the mentioned conditions of visiting each state-action pair infinitely often plus and additional condition:

In the limit, the learning policy is greedy w.r.t. the Q-function with probability 1
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(and optimal) policy. Equation (2.13) describes such a policy.

π(x, a) =


ε

|A| if a is a greedy action,

1− ε+
ε

|A| otherwise.
(2.13)

Softmax policies

Although ε-greedy policies are widely used in reinforcement learning, they have the
disadvantage of giving equal weights to the non-greedy actions. Actually, some of them
could be performing incredibly better than others, although they are not greedy. A way
to avoid this problem is to use an utility function over the actions to better distinguish
between them. This kind of methods, called softmax, still give the highest probability
to the greedy action but do not treat all the others the same way.

In the reinforcement learning context, the Q-function seems like a natural utility
to use. The most common softmax method used in reinforcement learning relies on a
Boltzmann distribution and controls the focus on exploration through a temperature
parameter τ > 0, as defined in Equation (2.14).

π(x, a) =
eQ(x,a)/τ∑
b∈A e

Q(x,b)/τ
(2.14)

Similarly to ε-greedy policies, when τ → 0 the policy becomes greedy making the
method adequate for the use with on-policy algorithms.

2.2.4 Semi-Markov Decision Processes

Semi-Markov Decision Process (SMDP) (Howard, 1963; Puterman, 1994) can be con-
sidered an extension of MDPs to continuous time and, besides the quantities defined
previously, it introduces:

F (t|x, a) = P [Y < t|X = x,A = a]

which represents the probability of a state change occurring in less than time t, given the
system was in state x and chose action a. Additionally, instead of the reward function
r(x, a), two functions are considered:

• κ : X ×A −→ R is defined as the expected immediate reward the agent gets from
executing action a in state x.
• µ : X × A −→ R is defined as the expected reward rate the agent gets from

executing action a for as long as he stays in state x.

As in MDPs, the objective for infinite-horizon discounted problems, in SMDPs, can
be written as:

V π(x) = E

{ ∞∑
k=0

e−βσk
[
κ(xk, ak) +

∫ σk+1

σk

e−β(τ−σk)µ(xk, ak)dτ

] ∣∣∣∣x0 = x, π

}
(2.15)
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where π is a policy that assigns actions to states, σ0, σ1, · · · represent the times where
the state of the system changes and a new action is chosen and β is the discount factor.
The corresponding Bellman equation for policy π can also be derived (Puterman, 1994):

V π(x) = E

{ ∞∑
k=0

e−βσkr(xk, ak)

∣∣∣∣x0 = x, π

}

=
∑
b∈A

π(x, b)

[
r(x, b) + E

{
e−βτV π(x1)

∣∣∣∣π}]

=
∑
b∈A

π(x, b)

[
r(x, b) +

∑
y∈X

(∫ ∞
0

e−βτH(dτ, y|x, b)
)
V π(y)

] (2.16)

where H(dt, x′|x, a) = F (dt|x, a)p(x′|x, a) represents the probability of moving from
state x to state x′ in less than t time, after having taken action a. The notation F (dt|x, a)
represents a time differential and, if the density associated with the distribution F exists,
F (dt|x, a) = f(t|x, a)dt. Additionally:

r(x, a) = κ(x, a) +

∫ ∞
0

[∫ τ

0

e−βtµ(x, a)dt

]
F (dτ |x, a)

= κ(x, a) + µ(x, a)

∫ ∞
0

1

β
(1− e−βτ )F (dτ |x, a)

(2.17)

and in terms of Q-values:

Q∗(x, a) = r(x, a) +
∑
y∈X

M(y|x, a) max
b∈Ax

Q∗(y, b) (2.18)

where

M(y|x, a) =

∫ ∞
0

e−βτH(dτ, y|x, a)

An important assumption on the model, that will ensure the convergence of both
the dynamic programming and Q-learning algorithms, is that fact that, in any interval
of finite length, the probability of infinite state transitions occurring is zero. This is
discussed in (Puterman, 1994) and can be expressed in the following way:

Assumption 2.2.1. There exist ε > 0 and δ > 0 such that

F (δ|x, a) < 1− ε
∀x∈X and ∀a∈A, where F (δ|x, a) =

∑
y∈X H(t, y|x, a).

Under the conditions of Assumption 2.2.1, Equation (2.18) will also have a unique
solution. In fact, the optimal Q-function is a fixed point of the operator H, defined for
functions of type q : X × A→ R as:

(Hq)(x, a) = r(x, a) +
∑
y∈X

M(x, a, y) max
b∈Ay

q(y, b) (2.19)
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and this operator is guaranteed to have a unique fixed point since it is a contraction
mapping in the sup-norm:

‖Hq1 −Hq2‖∞ =

= max
x,a

∣∣∣∣∣∑
y∈X

M(x, a, y)

(
max
b∈Ay

q1(y, b)− max
b′∈Ay

q2(y, b′)
)∣∣∣∣∣ ≤

≤ max
x,a

∑
y∈X

M(x, a, y) ·max
z,b
|q1(z, b)− q2(z, b)| =

= max
x,a

∑
y∈X

M(x, a, y) · ‖q1 − q2‖∞

It remains to show that maxx,a
∑

y∈XM(x, a, y) is strictly bounded by 1. This con-
dition is met because of the Assumption 2.2.1, in the following way:

max
x,a

∑
y∈X

M(x, a, y) =

= max
x,a

∑
y∈X

∫ ∞
0

e−βtH(dt, y|x, a) =

= max
x,a

∫ ∞
0

e−βtF (dt|x, a) =

= max
x,a

[∫ δ

0

e−βtF (dt|x, a) +

∫ ∞
δ

e−βtF (dt|x, a)

]
≤

≤ max
x,a

[∫ δ

0

F (dt|x, a) + e−βδ
∫ ∞
δ

F (dt|x, a)

]
=

= max
x,a

[
F (δ|x, a) + e−βδ(1− F (δ|x, a))

]
and from Assumption 2.2.1

max
x,a

∑
y∈X

M(x, a, y) ≤

≤ e−βδ + (1− ε)(1− e−βδ) < 1

If we set γ∗ = e−βδ + (1− ε)(1− e−βδ), we have:

‖Hq1 −Hq1‖∞ ≤ γ∗ ‖q1 − q2‖∞
with 0 ≤ γ∗ < 1, which proves that operator H is, in fact a contraction mapping in the
sup-norm.

The fact that the operator defined in Equation (2.19) is indeed a contraction map-
ping in the sup-norm can be used to prove the convergence of the modified Q-learning
update rule for SMDPs.
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The optimal Q-function can be estimated using a stochastic approximation strategy
similarly to the MDP case. We apply the modified Q-learning rule described on (Bradtke
and Duff, 1995) for SMDPs:

Qk+1(xk, ak) = (1− αk)Qk(xk, ak) + αkQ̃k+1(xk, ak) (2.20)

with

Q̃k+1(xk, ak) = rk + e−βτk max
b∈Axk+1

Qk(xk+1, b)

rk = κk +
1− e−βτk

β
µk

where Axk+1
represents the subset of actions from which the algorithm can choose when

it reaches state xk+1, and τk the time it takes to change from state xk to state xk+1.
Note that, besides a state, an action, a successor state and a reward (xk, ak, rk, xk+1),

the experience tuples for the SMDP case also include the time elapsed between those
states, which implicitly samples the distribution F (t|xk, ak) associated with the state-
action pair (xk, ak). For this reason, in the SMDP case, the experienced samples used
in each step of the modified Q-learning algorithm are (x, a, rk, τ, x

′).

The convergence of the update rule from Equation (2.20) can be proven using the
following stochastic approximation theorem:

Theorem 2.2.1. The random process {∆k} taking values in Rn and defined as

∆k+1(x) = (1− αk(x))∆k(x) + βk(x)Fk(x)

converges to zero with probability 1 under the following assumptions:

• x ∈ X where X is finite.

• ∑k αk(x) =∞ and
∑

k α
2
k(x) <∞;

• ∑k βk(x) =∞ and
∑

k β
2
k(x) <∞;

• E{βk(x)|Fk} ≤ E{αk(x)|Fk} uniformly over x with probability 1;

• ‖E{Fk(x)|Fk}‖W ≤ γ‖∆k‖W , with 0 < γ < 1;

• var{Fk(x)|Fk} ≤ C(1 + ‖∆k‖2
W ), for C > 0.

Where Fk refers to the past history of the system up to k and ‖ · ‖W denotes some
weighted maximum norm.

Proof. See (Jaakkola et al., 1994).

In fact, this theorem is more powerful than what is needed to prove the convergence
of Q-learning. A simpler lemma can instead be used:
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Lemma 2.2.2. The random process {∆k} taking values in Rn and defined as

∆k+1(x) = (1− αk(x))∆k(x) + αk(x)Fk(x)

converges to zero with probability 1 under the following assumptions:

• x ∈ X where X is finite.

• 0 ≤ αk(x) ≤ 1,
∑

k αk(x) =∞ and
∑

k α
2
k(x) <∞;

• ‖E{Fk(x)|Fk}‖W ≤ γ‖∆k‖W , with 0 < γ < 1;

• var{Fk(x)|Fk} ≤ C(1 + ‖∆k‖2
W ), for C > 0.

Where Fk refers to the past history of the system up to t and ‖·‖W denotes some weighted
maximum norm.

Proof. Make βk(x) = αk(x) for every x and every t and apply Theorem 2.2.1.

These stochastic approximation results stem from a broader theorem supported in an
Ordinary Differential Equations (ODE) method. A thorough discussion of the connec-
tions between these results and their implications in learning can be seen in (Melo, 2007).
Applying them will allow us to prove the update rule from Equation (2.20) will in fact
converge with probability one, to the optimal Q-function (in the discounted formula-
tion). This can be written as a theorem:

Theorem 2.2.3. Given a finite SMDP (X,A,H, k, c) with discount rate β, the Q-
learning sequence {Qk}, given by the update rule:

Qk+1(xk, ak) = (1− αk(xk, ak))Qk(xk, ak) + αk(xk, ak)

(
rk + e−βτk max

b∈Axk+1

Qk(xk+1, b)

)
with

rk = κk +
1− e−βτk

β
µk

converges with probability 1 to the optimal Q-function if:

• Assumption 2.2.1 holds.

• 0 ≤ αk(xk, ak) ≤ 1,
∑

k αk(xk, ak) =∞ and
∑

k α
2
k(xk, ak) <∞;

• kk and ck are bounded.

Proof. We start by noting that the notation xk+1 is equivalent to the continuous time-
based notation xt+tk if we consider decision epochs. In that case, n : R+ → N is a
function that matches the continuous time values to the decision epochs, for some run
of the algorithm: in essence, if n(t) = k and the next state change occurs after τk, then
n(t+ τk) = k + 1.
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We now define:
∆k(xk, ak) = Qk(xt, ak)−Q∗(xk, ak)

and
Fk(xk, ak) = rk + e−βτk max

b∈Axk+1

Qk(xk+1, b)−Q∗(xk, ak)

and subtracting Q∗(xk, ak) from both sides of the update rule equation we get:

Qk+1(xk, ak)−Q∗(xk, ak) =(1− αk(xk, ak))Qk(xk, ak)+

+ αk(xk, ak)

(
rk + e−βτk max

b∈Axk+1

Qk(xk+1, b)

)
−Q∗(xk, ak)

∆k+1(xk, ak) =(1− αk(xk, ak))∆k(xk, ak) + αk(xk, ak)Fk(xk, ak)

The update rule now reduces to the form presented in Lemma 2.2.2. It remains to be
shown that the conditions required by that result are met for this case. The first two
conditions trivially hold by assumption, so the last two conditions must be verified.

• E{Fk(xk, ak)|Fk} = E{rk(τk)|Fk} + E{e−βτk maxb∈Ay Qk(y, b)|Fk} − Q∗(xk, ak).
From Equation (2.17) we know that:

E{rk|Fk} = E

{
κk + µk

∫ ∞
0

1

β
(1− e−βδ)F (dδ|x, a)Fk

}
= E{κk|Fk}+ E{µk|Fk}

∫ ∞
0

1

β
(1− e−βδ)F (dδ|x, a)

= κ(xk, ak) + µ(xk, ak)

∫ ∞
0

1

β
(1− e−βδ)F (dδ|x, a)

And again from Equation (2.17) we can write:

E{rk|Fk} = κ(xk, ak) + µ(xk, ak)

∫ ∞
0

1

β
(1− e−βδ)F (dδ|x, a)

= r(xk, ak)

As for the expected value of successor state, following a greedy policy, we can
write:

E{e−βτk max
b∈Axk+1

Qk(xk+1, b)} =
∑
y∈X

∫ ∞
0

e−βδ max
b∈Ay

Qk(y, b)H(dδ, y|xk, ak)

=
∑
y∈X

M(xk, ak, y) max
b∈Ay

Qk(y, b)

and from this we can see that E{Fk(xk, ak)|Fk} = (HQk)(xk, ak) − Q∗(xk, ak).
Using the fact that the optimal function is a fixed point of the operator H, as seen
before, we have:

E{Fk(xk, ak)|Fk} = (HQk)(xk, ak)− (HQ∗)(xk, ak)
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and it follows that:

‖E{Fk(xk, ak)|Fk}‖∞ ≤ γ∗‖Qk(xk, ak)−Q∗(xk, ak)‖ = γ∗‖∆k(xk, ak)‖∞
proving the condition holds, since it was shown before how to obtain γ∗ and that
this value would always be strictly inferior to 1, as long as we are within the
conditions of Assumption 2.2.1, which is achieved by assumption.

• As for the variance condition

var{Fk(xk, ak)|Fk} =

= E

{(
rk + e−βτk max

b∈Ay
Qk(y, b)−Q∗(xk, ak)− (HQk)(xk, ak) + (HQ∗)(xk, ak)

)2

|Fk
}

=

= E

{(
rk + e−βτk max

b∈Ay
Qk(y, b)− (HQk)(xk, ak)

)2

|Fk
}

=

= var{rk + e−βτk max
b∈Ay

Qk(y, b)|Fk}

Considering we assume the rewards µk and κk to be bounded, so will be rk
6, and

that will make the last condition of the theorem hold, which concludes the proof.

A similar proof was first presented in Ronald Parr’s PhD thesis (Parr, 1998a). In our
proof we did not rely on the factorization of function H(t, y|x, a) = p(y|x, a)F (t|x, a)
since, as it will be shown in Chapter 4, that is not always the case for the model proposed.
Additionally, although strictly not in the proof, we have described how Assumption
2.2.1 guarantees that Bellman operator is contractive and not just a short map7. We
closely followed the proofs in (Jaakkola et al., 1994) and (Melo, 2007) for discrete-time
Q-learning.

2.2.5 Partially Observable Markov Decision Processes

MDPs and SMDPs, as described previously, assume that it is possible to have a complete
access to the state of the system at each decision point. While for some applications
this approach might suffice, it is not always possible to have a complete and unequivocal
knowledge about the state of the system and generally it is only possible to try to

6In fact, even if the time between decisions is very large, the discount factor guarantees that the
part of the reward due to µk remains bounded.

lim
τ→∞

κ+
1− e−βτ

β
µ = κ+

µ

β

7A short map, weak contraction or non-expansive map is one that satisfies a Lipschitz condition with
K = 1. See Appendix A.



2.2. MARKOV DECISION PROCESSES 33
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Figure 2.5: Agent acting in a POMDP

estimate it from specific signals that hint on what the state might be. The framework of
Partially Observable Markov Decision Processes (POMDP) (Aström, 1965; Aoki, 1965;
Sondik, 1971; Kaelbling et al., 1998) models this sort of problem where the state is not
directly accessible, even though there is still an underlying Markovian process regulating
the dynamics of the system.

POMDPs can be defined as a tuple (X,A,O, p, pO, r) where X,A, p and r have the
same meaning as in MDPs and:

• O is an observation set.
• pO : O ×X × A −→ [0, 1] is an observation model defined as a probability distri-

bution over the observations. Hence, we have

pO(o|x, a) = P [Ok+1 = o|Xk+1 = x,Ak = a]

where Xk+1 is a random variable (r.v.) representing the state of the process at
time k + 1, Ok+1 is a r.v. that represents the observation made at time k + 1 and
Ak is an r.v. representing the action taken at time k.

An agent acting in an environment modeled as a POMDP does not have a direct
access to the state of the system. Instead, it only receives observation signals from the
set O and has to base his decision of what action to take in the history of actions and
observations. The underlying process is still Markovian but the observations themselves,
in the general case, do not provide a Markov signal that the agent can use to support
the dynamic programming algorithms (or in a stochastic approximation based version,
the reinforcement learning algorithms) that were accessible directly in a MDP setting.
Figure 2.5 shows how an agent receives signals and interacts with the environment, in
a POMDP.

Even though the observations are not Markovian and there is no direct access to the
state, it is possible to construct an infinite-space MDP from the POMDP, which will
support the derivation of optimality equations. A key concept in this transformation is
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that of belief, which is nothing more than a probability distribution over the states of
the POMDP. Put another way, the belief at instant k is:

bk(x) = P [Xk = x|Fk]
for each state in X. Fk represents the history of the process up to instant k.

The belief can be updated from another belief and the model parameters using Bayes’
rule.

bao(y) =
1

η
pO(o|y, a)

∑
x∈X

p(y|x, a)b(x) (2.21)

where η is a normalizing constant, also given by:

η =
∑
y∈X

pO(o|y, a)
∑
x∈X

p(y|x, a)b(x)

The belief can be thought off as a vector, for some ordering of state X that defines
the index associated with each state, and because it is a probability distribution over
the states the belief space will be a subset of [0, 1]N with N = |X|. Particularly, it will
be a simplex ∆N living in that hypercube:

∆N =

{
b ∈ RN |

N∑
i=0

bi = 1

}
This simplex will be the state space for the infinite-state MDP associated with the

POMDP. The transition function, which we will denote as p∆ to differentiate from the
POMDP one, is given by:

p∆(b′|b, a) =
∑
o∈O

P [B′ = b′|B = b, A = a,O = o] P [O = o|A = a,B = b]

=
∑
o∈O

1{bao}(b′)
∑
y∈X

pO(o|y, a)
∑
x∈X

p(y|x, a)b(x)

where 1{bao} is an indicator function with {bao} being a singleton including the belief
obtained by updating b after executing a and observing o, using Equation (2.21). Finally,
a reward function for the infinite-state MDP can also be obtained, with:

r∆(b, a) =
∑
x∈X

b(x)r(x, a)

and the MDP will be the tuple (∆N , A, p∆, r∆).

As in finite state MDPs, a policy over the beliefs can be defined and a Bellman
equation derived, as in Section 2.2.

V π(b) = E

{ ∞∑
k=0

γkr∆(bk, ak)

∣∣∣∣b0 = b, π

}

=
∑
a

π(b, a)

[
r∆(b, a) + γ

∫
∆N

p∆(b|a, b′)V π(b′)db′
] (2.22)
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And the corresponding optimal equation given by:

V ∗(b) = max
a

[
r∆(b, a) + γ

∫
∆N

p∆(b|a, b′)V ∗(b′)db′
]

(2.23)

Since a policy in the infinite-state MDP is a map over a non-countable state space, it
is clear that computing the policy for every belief is generally not possible. However, the
MDP associated with the POMDP has specific properties that will allow for methods to
find solutions for the optimal equation using value iterations algorithms. The optimality
equation can also be written as:

V ∗(b) = max
a

[
r∆(b, a) + γ

∑
o∈O

pO(o|a, b)V ∗(bao)
]

(2.24)

where bao is given by the bayesian update rule of Equation (2.21).

If instead of considering the planning problem over an infinite horizon, we consider
the finite horizon one, it can be shown (Sondik, 1971; Smallwood and Sondik, 1973; Cas-
sandra, 1998) that every n-step value function is piecewise linear and convex (PWLC)
and the infinite horizon value function can be arbitrarily approximated by a PWLC
function. Essentially, every intermediate n-step value function can be given by:

Vn(b) = max
α∈An

b · α (2.25)

with the number of vectors in An being finite for every finite horizon value function.
In fact, if we consider the immediate decision problem, the number of vectors will be
limited to the number of actions.

V ∗0 (b) = max
a∈A

b · ra

where ra(i) = r(xi, a) for the same ordering of X used in the beliefs. Essentially,
A0 = {ra}A and each belief will have an optimal action which is the one corresponding
to the vector α that maximizes the value function at that particular belief. In gen-
eral, if the problem has a more extensive planning horizon, the number of vectors will
still be bounded by all the possible action-observation sequences in that horizon. Since
the planning horizon is finite, the action set is finite and the observation set is finite
the number of vectors will also be finite. The policy-tree representation explained in
(Kaelbling et al., 1998) reflects this idea of finite planning options in a finite horizon,
and relates it to the finite nature of the vector set and the PWLC aspect of the optimal
value function in that finite horizon.

Following the derivation described in (Spaan, 2006), Equation (2.24) can be combined
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with Equation (2.25) and the expression for the belief update to obtain:

Vn+1(b) = max
a

[
r∆(b, a) + γ

∑
o∈O

pO(o|a, b) max
α∈An

bao · α
]

= max
a

[
b · ra + γ

∑
o∈O

pO(o|a, b) max
α∈An

bao · α
]

= max
a

[
b · ra + γ

∑
o∈O

max
α∈An

∑
y∈X

pO(o|y, a)
∑
x∈X

p(y|x, a)b(x)α(y)

] (2.26)

and so we can say that

Vn+1(b) = max
a

[
b · ra + γ

∑
o∈O

max
{giao}i

b · giao
]

(2.27)

with
giao(x) =

∑
y∈X

p(o|y, a) p(y|x, a)αi(y) (2.28)

for every vector αi ∈ An.
Finally, since maxj b ·aj = b ·arg maxj b ·αj, we can define a backup function for each

belief point given by:
backup(b) = arg max

{gba}a∈A
b · gba (2.29)

with
gba = ra + γ

∑
o∈O

arg max
{giao}i

b · giao (2.30)

The backup vector for belief b essentially represents the hyperplane that maximizes
the value function for that belief, after having received information from taking action
a and receiving observation o. Essentially, the inner product of the backup and the
corresponding belief will give the value of Vn+1 at that belief point:

Vn+1(b) = b · backup(b)

Considering the finite horizon value functions are PWLC as discussed before, and
can be described by a finite number of vectors, the challenge in constructing a value
iteration algorithm for POMDPs consists in determining the regions that share the same
maximizing vector. Once a region is determined, every belief point inside that region
will produce the same backup(b) vector. A belief point b is called a witness point for the
region where backup(b) is the maximizing vector. There is a large body of work on exact
algorithms to solve POMDPs. Some algorithms focus on identifying the regions for each
step of the algorithm, such as (Sondik, 1971)’s One-Pass algorithm, (Cheng, 1989)’s
Linear Support algorithm or the popular Witness algorithm (Littman, 1994).

Alternatively, other algorithms focus on spanning a set of possible vectors and then
prune useless ones. The idea of pruning is that, in most problems, not all vectors
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corresponding to a given action strategy (or policy tree in the representation used by
(Kaelbling et al., 1998)) will ever be the maximizing vector in some region of the belief
space. For this reason, there is no need to take these vectors into account when cal-
culating all the possible gao vectors at a given step of the algorithm or, consequently,
performing the backup operation. Vectors that are not associated with any region
of the belief space are said to be dominated. Examples of prunning algorithms include
(Monahan, 1982)’s Enumeration algorithm, which was also mentioned in (Sondik, 1971),
and Incremental Prunning (Cassandra et al., 1997).

Apart from exact algorithms, it is also possible to approximate the dynamic pro-
gramming operator and obtain approximate methods that generally have the advantage
of being faster and/or performing better for larger state space. An approach to approx-
imate dynamic programming for POMDPs is that of (Lovejoy, 1991) or more recently
the following works of (Pineau et al., 2003; Spaan and Vlassis, 2004).

2.3 Summary

In this chapter, we described the basic frameworks and models that support the work
in this thesis.

We started by addressing Discrete Event Systems in general and particularly the
model of Finite State Automata, as well as some common operations on automata such
as the product and parallel composition. The classical framework of Supervisory Control
of DES, proposed by (Ramadge and Wonham, 1984), was then described. The key idea
of this theory is that there are events in a system that can be enabled/disabled by a
supervisor, which can steer the behavior of the system, by keeping it bounded within
the limits imposed by the supervisor’s specifications. We also considered the addition of
time to DES models and described Stochastic Timed Automata, where the occurrence of
event is governed by time cumulative distribution functions associated with each event.

We then described Markov Decision Processes (Puterman, 1994), which are the sup-
port model for most of the reinforcement learning work, and the optimality equations
associated with MDPs. Two classical dynamic programming algorithms were presented,
as well as two on-line reinforcement learning ones. Furthermore, the extension of MDPs
to continuous time, Semi-Markov Decision Processes, was described and the modified
optimality equations were presented. A more detailed discussion on the convergence of
learning methods was made for SMDPs.

Still in the field of Markov Decision Processes (Kaelbling et al., 1998), the chapter
closes by making an overview of Partially Observable MDPs and their associate opti-
mality equations. The idea is that the state is no longer accessible by the agent who,
instead, receives observations that, according to an observation model, can provide in-
formation about the state of the system. The concept of belief, a probability distribution
over the states of the system, becomes a key concept and the optimality equations are
written in terms of the belief.





Chapter 3

Related Work

3.1 Supervisory Control of Discrete Event Systems

The problem of controlling Discrete Event Systems, i.e. ensuring that the sequence
of events produced by a given system is within specifications, had been addressed by
different methods up until the introduction of Supervisory Control in (Ramadge and
Wonham, 1984) – a consequence of the thesis work presented in (Ramadge, 1983) and
whose ideas had been previously mentioned in (Ramadge and Wonham, 1982b; Ramadge
and Wonham, 1982a) – but a systematic theory of DES supervisions was missing. With
the results briefly described in Section 2.1.2 and extensively described in (Cassandras
and Lafortune, 2007) or (Wonham, 1997), an effective theory of control of DES was
introduced.

The kind of control mechanism implemented by SC is one that, as described pre-
viously, ensures that the possible behaviors, or event strings, generated by the system
are within specifications. This makes it an ideal choice to use in this work since it is
our goal to combine a controller that effectively chooses the best action possible at any
given time with another controller that limits the behaviors to a given subset. It is not
the goal of this work to extend the research on Supervisory Control but rather to use
its results as a tool to achieve a kind of offline planning that does not specify full plans
(although it can do so) but rather planning options for the controller to optimize. The
main results of SC are described in (Cassandras and Lafortune, 2007) in detail.

Extending the initial SC idea, in (Wonham and Ramadge, 1988; Lin and Wonham,
1990) the control of a DES was considered in a decentralized way, as shown in Figure
3.1 which essentially corresponds to saying the decentralized supervisor function is the
conjunction of all the individual supervisors:

Sdec(s) =
n⋂
i=1

Si(Pi(s))

This idea has been further developed in (Rudie and Wonham, 1992) and the fundamen-
tal work on Decentralized Supervisory Control (DecSC) surveyed by the same author in
(Rudie, 2002). The fundamental difference from DecSC to MSC, as described in Section

39
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Figure 3.1: Decentralized Supervisory Control block diagram.

2.1.3 is the fact that in the decentralized approach each supervisor can observe a differ-
ent set of events, and that is exactly what makes DecSC a more challenging problem –
how to design and combine supervisors in a way that they can compensate each other’s
observability faults.

In (Yoo and Lafortune, 2000; Yoo and Lafortune, 2002b) a different way to combine
the individual supervisors is explored – instead of a conjunctive approach they admit
the supervisors might be combined by union instead of intersection, which corresponds
to:

Sdec(s) =
n⋃
i=1

Si(Pi(s))

if all the supervisors are combined by union. The conjunctive architecture corresponds
to focusing on a set of events to enable, meaning that all the supervisors have to agree on
the events to enable, while the disjunctive architecture focuses instead on which events
to disable, meaning that all the supervisors must disable the same events for them not
to be a part of Sdec(s).

In (Yoo and Lafortune, 2004) this idea is further explored based on the work pre-
sented in (Yoo and Lafortune, 2002a), and the logic functions used to combine the super-
visors are assumed to be more complex, particularly allowing for conditional decisions
where one supervisor might enable (or disable) an event if none of the others enables (or
disables) it. Furthermore, it is shown that the more general conditional architecture can
achieve a larger class of languages by appropriate choice of the combination function.

Our work in this thesis can also be extended to explicitly consider decentralized
supervisors and controllers, and such an extension will necessarily be closely tied to the
previously mentioned works on DecSC.
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Other extensions of the DecSC approach include that of (Rudie et al., 2003), where
an agent P function does not allow him access to a certain set of unobservable events
but it can be informed about their occurrence by the other agents through a direct com-
munication function, or the work of (Moor and Raisch, 2002) where discrete supervisors
are used to control continuous processes modeled as Ordinary Differential Equations.

3.1.1 Probabilistic Supervisory Control

After the introduction of the Supervisory Control framework, and eventually its de-
centralized version, some authors extended it by considering supervisors that were not
deterministic, i.e., with the enabling and disabling of events being governed by some
stochastic process rather than deterministic rules (usually represented, or realized, by a
FSA).

In (Hennet, 1993), the SC approach is applied to the control of Semi-Markov Chains
(SMC), bearing resemblance to the work done in this thesis. The author’s idea was to
create a Semi-Markov Decision Process (SMDP) where the actions consist of removing
specific transitions from the underlying chain in order to prevent it from reaching unde-
sirable/unsafe states. It is still very much rooted in SC since it aims not to find optimal
paths within the chain but to obtain a supervised chain that is not susceptible to reach
specific forbidden states. Figure 3.2 explains the idea graphically.

One of the differences from this approach to our own is that our adaptive part of
the system is intended to find the optimal path in the supervised DES we are trying
to control. The other difference is that we explicitly consider the notion of event and
assume that all information about the system state has to be extracted from the string
of events produced by the system since there is no notion of a direct access to the state
in our formulation1.

In the same year, (Lawford and Wonham, 1993) introduced another extension to the
SC formalism meant to control Probabilistic Discrete Event Systems (PDES), which are
similar to STA in form but where the events are not generated by a clock structure but
by a matrix of emission probabilities, i.e., there is no explicit notion of time in such
models (see Chapter 6 for further reference on PDES). This work has been continued in
(Kumar and Garg, 1998; Kumar and Garg, 2001; Postma and Lawford, 2004) and was
recently summarized in (Pantelic et al., 2009). The main idea is that not only is the
system modeled by a PDES but the supervisor itself issues probabilistic control actions,
with events being enabled or disabled according to a given probability measure.

With deterministic supervisors like the ones detailed in (Cassandras and Lafortune,
2007) and briefly described in Section 2.1.2, the supervisor function S : L(G) → 2E

attributes to each possible string generated by the system a subset of the event set E

1Of course, it is always possible to consider events that univocally identify the state that has been
reached, and in a way this is what happens if we try to model a classical MDP as described in Section
2.2 with an event-based model.
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Figure 3.2: Supervisory Control of a Markov Chain.
The initial state is {1}, the forbidden states are {4, 5} and the controllable arcs are
{(1, 2), (1, 3), (2, 3), (2, 4), (3, 1), (3, 5)}. There are several solutions that respect the
safety constraints but the proposed one optimizes the cost of cutting arcs, for some

cost function.

of events to enable. Put another way, if we define a function:

V : L(G)→ [0, 1]E

that essentially does V (s)(e) = P [ Enabling event e after string s ], we have:

V (s)(e) =

{
1 e ∈ S(s)

0 otherwise

In the case of a probabilistic supervisor, this function changes to:

V (s)(e) =

{
1 e ∈ Euc
x(s)(e) otherwise, with x(s)(e) ∈ [0, 1]

Essentially, the only events that are always enabled w.p.1 are uncontrollable ones, or
the supervisor would not be admissible. The others are enabled with probability given
by x(s)(e) and so, for the same string produced by the system, the enabling of a given
event is not deterministic.

In our approach we assume deterministic supervisors but, nevertheless, it would be
possible to combine a probabilistic supervisor with our controllers. The challenges arise
from that fact that, as it will be shown in Chapter 4, the action sets for the controller
depend on the supervisor action and if the supervisor action is not deterministic not
only do the action sets change with the state of the supervisor but they might also be
different for the same state of the supervisor, creating an additional source of uncertainty
that the controller would have to deal with. In either case, since the class of languages
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achieved by a probabilistic supervisor is different than that of a deterministic one, it
would be particularly interesting to study such combination of probabilistic supervisor
and reinforcement learning based controller, although that is out of the scope of this
work.

In Chapter 6, we use PDES not as a model of the system of the supervisor, but as
the supporting model for a probabilistic observer.

3.1.2 Learning Supervisors

An interesting combination of SC of DES and reinforcement learning is the one that
was introduced in (Yamasaki and Ushio, 2003) and further consolidated in (Yamasaki
and Ushio, 2005). The key idea of that work is to construct optimal supervisors using
reinforcement learning, with the reward function being associated with enabling or dis-
abling events. The advantage of such procedure is that the specifications of a supervisor
can then be relegated to defining cost measures for the construction of the supervisor,
which in some situations might prove less tedious than describing the full supervisor
function.

In (Yamasaki et al., 2005) the approach is combined with the language measure
introduced in (Wang and Ray, 2002; Ray, 2005) and it is show how such a language
measure is associated with a Bellman equation, with a supervisor being the optimal
solution of the equation. The authors apply the approach to a dining philosophers
example.

This approach has been studied further on several publications that deal with other
extensions of the basic Supervisory Control framework, (Yamasaki and Ushio, 2008;
Kajiwara and Yamasaki, 2009; Kajiwara and Yamasaki, June 2010), but these were all
published in a japanese conference and are only available in japanese.

3.2 Temporal Abstraction in Reinforcement Learn-

ing

Although the SMDP model had been previously defined by some time (Howard, 1963;
Puterman, 1994), the need for methods that extended reinforcement learning to include
temporally abstract actions stemmed several approaches that, by their own nature,
would be supported on SMDPs. Three of these approaches are particularly meaningful:
learning with Hierarchies of Machines (Parr, 1998b; Parr, 1998a; Parr and Russel, 1998),
the options framework (Sutton et al., 1999; Precup, 2000) and learning with the Max-Q
decomposition (Dietterich, 2000).

In first approach, (Parr and Russel, 1998), the idea was to introduce hierarchical
learning by defining subtasks with a non-deterministic finite state controller, called a
Hierarchical Abstract Machine (HAMs). This approach shares some features with our
work since it is the point of the HAM to provide a partial policy at each state, restricting
the original choice of actions of the underlying MDP to the ones allowed by the substask
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being done at the moment. The actions from the associated MDP are often referred to
as primitive actions and, depending on the level of the hierarchy, a HAM can have as
options the execution of a given action or the execution of another HAM corresponding
to some subtask of the problem.

On a formal level, a HAM is not much different from a NFA and one of the distinctive
parts of the use of the machines for reinforcement learning lies on the interpretation of
each state. Essentially, there can be 4 different kinds of states:

Action Executes an action on the environment.

Call Calls another machine as a subroutine.

Choice Chooses the next state according to some policy.

Stop Stops the execution of the current machine and returns to the level of Call state
that caused it to start.

The decision points correspond to Choice states and it is the available choices at
each one of these states that will provide the actions for a learning algorithm. And
example of modeling with HAMs can be seen in Figure 3.3.

Based on this setup, the authors propose a reinforcement learning update rule re-
ferred to as HAM-Q :

Q(x,m, c)← (1− α)Q(x,m, c) + α (rc + γcV (x′,m′))

where x, x′ ∈ X are states of the environment, m,m′ ∈M are states of the machine and
c is the decision made at the choice point corresponding to state m of the HAM. This
rule is only applied at decision points but the rewards and discount factors need to be
update for every change in the environment, with rc ← rc + γcr and γc ← γγc.

With the environment modeled as an MDP and the addition of a HAM to the deci-
sion process, the resulting constrained process with decisions restricted to choice states
can be proved to be an SMDP and the rule defined by HAM-Q, under the regular con-
ditions on the evolution of α, can be proved to make the value function converge to
the optimal value w.p.1, as show on (Parr, 1998a). Note that value obtained by the
algorithm is generally not optimal from the point of view of an unconstrained system,
but it does in fact obtain the best possible decisions when then policy is being partially
specified by a HAM.

Another approach to introduce hierarchical learning and temporal abstraction in
MDPs are the options concept (Sutton et al., 1999; Precup, 2000). The idea is for the
programmer to define subtasks by specifying the policy that must be followed while
executing such subtasks. These subtasks, called options can be formally defined as a
tuple o = (I, π, β) where:

• I ∈ X is an initiation set such that the option o can only be initiated if the system
is in a state belonging to I.



3.2. TEMPORAL ABSTRACTION IN REINFORCEMENT LEARNING 45

A2

Choose

A1

A3
Call

Subtask

A5

Choose

A2

A4

A4Choose

A6

A7

Stop

Start

Start

Figure 3.3: Example of a Hierarchical Abstract Machine.
The decisions are made in specific states and the policy to determine which choice to

take can be obtained using reinforcement learning.

• π : X×A→ [0, 1] is a policy to be followed whenever the agent is executing option
o.

• β : X × [0, 1] is a stochastic termination condition. At each state, if option o is
being executed, it might be terminated with probability β(s).

The simplest kind of options are individual primitive actions, such that the option
will terminate after exactly one time step, corresponding to the duration of the associ-
ated action. Figure 3.4 shows the differences between the decision over options and over
primitive actions. In (Precup, 2000) it is shown that an MDP endowed with a fixed set
of options is in fact an SMDP, for which optimality equations can be written as shown
in Chapter 2. A Q-learning update rule for the induced SMDP is:

Q(x, o)← (1− α)Q(x, o) + α (r + γk max
o′∈Ox′

Q(x′, o′))

where x, x′ ∈ X are states of the system and o, o′ ∈ O are options. Note that k
corresponds to the duration of option o as perceived by the learner; since the termination
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Primitive 
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Figure 3.4: Decision making using options.
After an option is started, a new decision after the terminating condition says that the
option being run stop. While executing an option, primitive actions are determined by

the associated policy.

function is stochastic this duration is not fixed, which is exactly what happens with the
actions in an SMDP as defined in Section 2.2.4. The state dependent option set is given
by:

Ox′ = {o ∈ O : x′ ∈ Io}
Additional work on options by the same authors include the possibility of interrupting
an option by some mean not part of the termination condition and learning the policy
associated with a given option, called intra-option learning. Furthermore, (Stolle and
Precup, 2002) proposed a method for identifying possible options/subtasks based on
empirical state visitation counts and (Wolfe and Singh, 2006) studied how the frame-
work of Predictive State Representations (PSRs) could be extended to systems where
the decisions consisted of options, and for this reason having a variable duration.

A third approach to implement temporal abstraction and hierarchical learning is
that taken by (Dietterich, 1998; Dietterich, 2000). In this approach, each subtask is de-
fined in terms of a termination predicate and additionally there is an associated reward
function. A hierarchy of tasks is defined by a graph called the MaxQ graph in which
the actions available to perform a certain task can either be primitive actions or other
subtasks. The termination predicate for a given subtask will consist of a set of states.
Figure 3.5 schematizes a hierarchical MaxQ graph. Each task has, for a given state of
the environment, the choice between the associated subtasks which might be primitive
actions, in the lower level of the hierarchy. Also, it is important to note that not only
there are individual value functions for each of the subtasks but they also depend on
the caller parent task. In the example of Figure 3.5 both subtasks S1 and S5 have
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Figure 3.5: MaxQ hierarchical graph for subtasks.
A task can have as subtasks primitive actions or other tasks and will rely on their

value functions to compute its own.

the primitive action PA5 as a possible choice of action and there are separate value
functions for when PA5 is called from either one of the parent tasks.

In all 3 approaches described here the underlying process is a discrete time MDP
and the variable duration of each option/subtask origins in the hierarchical nature of the
problem. It would be possible to apply these approaches to continuous time MDPs and
SMDPs with some modifications but, as they are, even though the resulting process in
hierarchical decision is an SMDP, it still has discrete time, which reflects in the discount
factor for each option/subtask being given by a power of γ.

On the other hand, in our model continuous time is an assumption from the start
that stems from the event-based nature of the model and even without any kind of
supervision or eventual hierarchical decomposition that could be considered, the system
is already not fully markovian. For this reason, the update rule that we use is similar
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to both Equation (2.20) and the ones presented here but the discount factor varies with
continuous time.

3.3 Reinforcement Learning under Supervision

Combining RL based controllers with supervision has been addressed before, though
not too often. The works cited in the previous section achieve some supervision by
the definition of subtasks and the available primitive actions in a given subtask. This
hierarchical approach is already a way to introduce a priori knowledge and limit the
number of actions that are available to the agent at any given time, according to the
state of the system.

Another approach, proposed in (Rosenstein and Barto, 2004), extends the actor-
critic model for reinforcement learning (Sutton and Barto, 1998) by using a supervisor
to provide a choice of action and an error signal for the learner. Figure 3.6 shows the
block diagram of the approach: This approach has been applied in simulation to the

Actor

MDP

Supervisor

Critic

Action 
Combination State

Reward

Bellman Error

Supervisor Action

Actor Action

Action Error–

Action
State

Figure 3.6: Supervised Actor-Critic reinforcement learning.

control of a robotic arm. Other methods use classical control approaches to restrict the
possible actions in each state, typically in systems with continuous states and actions,
such as in (Perkins and Barto, 2003) Lyapunov functions or (Morimoto and Doya, 2005)
with robust control algorithms.

In (Gabel and Riedmiller, 2008), Reinforcement Learning methods are used for solv-
ing Decentralized-MDPs, and the actions of each of the agents have dependencies on the
other agents, so in a sense the entire agent collective acts as a supervisor for each of the
individual agents. A dependency graph illustrates those dependencies. Additionally, if
the action set for agent i is represented as Ai with:

Ai = {αi1, · · · , αiki}
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then each agent is assumed to work with an action set Ari where:

Ari = Ai ∩ {α0}

where α0 represents an idling action. The idling action is the only one that is always
available to each agent, and the one necessarily chosen if none of the others is enabled.

Including idling actions is also an important part of our work, which is particularly
relevant when the changes in the environment are considered to be dependent not only
on the actions of the agent but on other parallel environmental processes, that might
be due to the presence of other agents or intrinsic to the system – sometimes the best
thing to do is waiting for something to happen.

3.4 Extensions to POMDPs

3.4.1 Partially Observable Semi-Markov Decision Processes

Although the amount of literature on POMDPs is extensive and has been increasing fast
in the last years, particularly with extensions that explicitly consider the presence of
several agents and decentralized approaches like Partially Observable Stochastic Games
(POSG) (Hansen et al., 2004) or Decentralized POMDPs (Dec-POMDPs) (Bernstein
et al., 2000; Nair et al., 2003; Oliehoek et al., 2008), there are not many addressing
continuous time semi-markov problems under partial observability.

In (Mahadevan, 1998), the author explains the basic formalism of Partially Observ-
able Semi-Markov Decision Processes (POSMDPs) as an extension of SMDPs (Puterman,
1994) to partially observable problems endowed with an observation model and hints
about the possible applications of such framework to distinct areas such as robotics,
manufacturing or biological and cognitive behavior modeling. The transition parame-
ters in this model are the same as in SMDPs, as detailed in Section 2.2.4, but the belief
update is slightly more complex than the one described by Equation (2.21) if we also
take as an observational input the time between a state and its successor.

Knowing it took τ time under the effect of action a to leave state x will influence
the belief in the following way:

baτ (x) =
f(τ |x, a)b(x)∑
x∈X f(τ |x, a)b(x)

(3.1)

where f(τ |x, a) = dF (t|x,a)
dt
|t=τ . Note that this belief refers to the state of the system

before the transition as occurred.
The belief about the state of the system after the transition and after having observed

o will then be given by the same expression of Equation (2.21) but with the previous
belief being given by baτ instead of b, i.e.:

baτo(y) =
1

η
pO(o|y, a)

∑
x∈X

p(y|x, a)baτ (x) (3.2)
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where η is a normalizing constant, also given by:

η =
∑
y∈X

pO(o|y, a)
∑
x∈X

p(y|x, a)baτ (x)

Put another way, we can write:

baτo(y) =
1

η′
pO(o|y, a)

∑
x∈X

p(y|x, a)f(τ |x, a)b(x) (3.3)

where η′ is a normalizing constant.
Applications of the POSMDP model include (Mahadevan and Khaleeli, 1999) with

planning for robust mobile robot navigation or more recently (Jung and Pedram, 2006),
which used POSMDPs to develop a Stochastic Dynamic Thermal Management (DTM)
technique that aims on regulating voltage and frequency in Very Large Scale Integration
(VLSI) circuits in order to minimize power dissipation and on-chip temperature. In
(Yu, 2006) approximate methods to solve POSMDPs are proposed.

In general, it is possible to adapt the equations underlying most POMDP solvers to
work in a semi-markov situation. In Chapter 6 we derive the equations and propose a
generic solver for a system that bears some resemblance to a POSMDP but where the
transition parameters and the time between states are dependent on events, which will
allow the equations to take distinctive aspects w.r.t. the POMDP ones.

3.4.2 Mixed Observability Markov Decision Processes

In POMDPs it is assumed that the only way to have access to an estimate about the
state is through the beliefs, which are update based on actions taken and observations
made. If, however, we assume there are state variables which are not subject to partial
observability and can be directly accessed by the agent, the process can be defined as a
Mixed Observability Markov Decision Process (MOMDP), which is the approach taken
in the recent work by (Ong et al., 2009).

If we assume the state of such a process can be factorized by a set of fully observable
and a set of partially observable state variables, withX = Xp×Xf , whereXp corresponds
to the partially observable state variables and Xf to the fully observable ones, then it
will only make sense to maintain a belief about the partially observable factor of the
full state, which we will represent by bp.

In Chapter 4 we saw that the value function of a POMDP could be represented by
a set of vectors, which for a n-step horizon planning yields:

Vn(b) = max
α∈An

b · α

What is proposed in (Ong et al., 2009) by the MOMDP model is that the value function
is represented not by a set of vectors but by several ones, one for each of the states in
Xf . The value function is then given by:

Vn(xf , bp) = max
α∈An(xf )

bp · α
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where An(xf ) represents the set of vectors corresponding to state xf .
In our work we independently derived, in Chapter 6, a similar expression that comes

from the fact that we use a supervisor to constraint the behavior of the system, and the
agent always has full access to the state of the supervisor. In that sense, the supervisor
state acts as the Xf and the system state acts as Xp in the MOMDP model. In our case,
the transition functions from the supervisor and system are also completely separable,
which slightly simplifies the optimality equations.

3.5 Beyond Specifications with Automata

Throughout this thesis we use several kinds of finite automata to model different aspects
of the system, ranging from the assumptions about the underlying model of the envi-
ronment to the agent’s modules that observe its output to produce an estimate of the
state, and that supervise the system, restricting the possible behaviors of the agent in
the environment. From a modeling perspective, finite automata are powerful enough to
model systems that produce regular languages which are often adequate for a large num-
ber of decision-theoretic applications. Nevertheless, even though there are composition
operations like the ones described in Section 2.1.1 which allow for parallel representation
of different aspects of the system, automata are not always the more expressive option
from the point of view of the agent’s designer.

A popular option for modeling DES that not only has a higher expressive power,
being able to represent a broader class of languages than finite automata in finite space,
but usually provides a more intuitive way for programmers to model systems are Petri
Nets (PN) (Petri, 1966; Cassandras and Lafortune, 2007). Particularly, a Marked Or-
dinary Petri Net (MOPN), (Murata, 1989; Cassandras and Lafortune, 2007), can be
defined as a tuple PN = (P, T, I, O,m0) where:

• P is a finite set of places.

• T is a finite set of transitions.

• I ⊂ P × T is a set of input arcs from places to transitions.

• O ⊂ P × T is a set of output arcs from transitions to places.

• m0 is an initial marking.

The state of the MOPN is represented by a quantity called a marking such that at
some time k, the marking is a function m : P → N0 that associates a natural number,
called the number of tokens, to each of the places of the MOPN2. The initial marking
is given by m0 and the dynamics of the MOPN are regulated by the transitions: each
transition removes tokens from input places and adds tokens to output places. Much
of the expressive power of MOPNs comes from the fact that state is represented in

2For some ordering of P the marking can also be represented in vector form.
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a distributed way, which is particularly useful in problems where there are parallel
processes, and the fact that it is possible to add a counter to each place, making the
graphical representation of typical counting problems like birth-death Markov Chains
finite.

Another useful extensions of PNs are Generalized Stochastic Petri Nets (GSPNs),
(Murata, 1989) which add the possibility of having both transitions that occur imme-
diately and others that take an amount of time regulated by cumulative distribution
functions (cdfs). Strictly speaking, in the case of GSPNs the time a non-immediate
transition takes to fire is regulated by a Poisson Process and the cdfs are exponen-
tial, which makes the system modeled by a GSPN completely markovian. GSPNs are
strongly connected to the model of STAs presented in Section 2.1.4 as both model the
same kind of stochastic process, under certain conditions.

Recently, in (Costelha and Lima, 2008; Costelha and Lima, 2010) MOPNs and
GSPNs have been used to model robotic tasks. The authors take a hierarchical ap-
proach to modeling based on 4 levels as represented in Figure 3.7. All the levels of the

3. Modelling Single-Robot Tasks using Petri Nets

The base framework used throughout this work was developed aiming at:

Modularity - fostering the reuse of developed components;

Design - providing an intuitive, and possibly graphical, task design solution;

Analysis - providing means to analyse a robotic task both before and after its execution;

Execution - keeping the models suitable for execution, taking into account that its implemen-
tation would have to follow the framework theoretical foundations.

To achieve these goals, a Petri net based solution was developed, using four different layers,
as depicted in Figure 4.

Fig. 4. Models Hierarchy.

Each layer is formed by a set of Petri net models which represent different granularity levels,
being the Environment layer the bottom one, and the Organisation layer the top one. The
meaning of each layer is as follows:

Environment Layer Petri net models at this level represent changes made by other agents
(such as other robots) or even physics (such as the braking of a free rolling ball);

Action Executor Layer At this level we find Petri net models of the actions, representing
the changes performed in the environment by these actions, and the conditions under
which these changes can occur;

Action Coordinator Layer Here lies the Petri net based task plan models, which basically
consist of compositions of actions;

Organisation Layer This layer is where higher decision models appear, such as goal selection,
thus consisting of compositions of Action Coordinator Layer models.

As can be seen in Figure 4, all models are used in the analysis process, but only the two higher
layers and, partially, the Action Executor layer models will be used for execution. This will
be further explained in the following sections. Note that, currently, we have not implemented
the Organisation layer yet.

3.1 Environment Layer
To better understand how the Environment models are designed, consider a free rolling ball.
In this case, due to friction on the floor, it is expected that the ball will stop after some time.
To model this process using a GSPN model under our framework, we must first discretise it,
such that we can describe it through the use of logic predicates. In this example, we could

consider that the ball could be moving fast, slowly or be stopped, and that the ball will, with
time, pass from the fastest movement to the stopped state. With this discretisation, we can
model the free ball movement with the Petri net model depicted in Figure 5.

Fig. 5. Petri net model of a moving ball.

If, for instance, one also wanted to model the fact that some other agent could increase the
ball speed, we could add transitions in the opposite direction, albeit with different associated
rates, considering the probability of that occurrence. Furthermore, it is also possible to include
several transitions with different rates associated with the same state change, as in the example
depicted in Figure 6. In this example, the rate at which the ball slows down depends on the
weather conditions.

Fig. 6. Petri net model of a moving ball considering thee weather conditions.

3.2 Action Executor Layer
Each action Petri net model is a GSPN which represents how the action impacts the environ-
ment and under which conditions. As such, each action model consists on a set of transitions
representing the environment changes, which can be associated to the success or failure of
the action, following the rules described in Definition 3.1. The general model of an action is
depicted in Figure 7.

Definition 3.1. A Petri net model of an action is a GSPN, where:

1. P = PE ∪ PR contains only predicate places, where

Figure 3.7: Hierarchical representation of robotic task modeling with Petri Nets.
As proposed in (Costelha and Lima, 2010) (reproduced with permission from the

author). Each of the levels is modeled using Petri Nets.

hierarchy are used for analysis of the controlled system but the execution is done only
using some parts of the model. This approach could easily be combined with ours as
long as the petri nets used have a finite number of markings, which makes them equiv-
alent to STA. Although this is not strictly the case, roughly speaking the PNs used for
Execution correspond to our Controller and Supervisor models that will be defined in
Chapter 4 and ultimately, since GSPNs with finite markings have the same expressive
power as STAs, it is possible to translate from one to the other, which makes combining
the use of PNs with our work fairly straightforward. Particularly, although in (Costelha
and Lima, 2010) the focus is on modeling, analysis and execution and not the synthesis
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of PN plans, a possible approach is to associate decisions to immediate transitions where
there is a conflict solved probabilistically, generally called random switches, which is very
similar to what we do in this work, as will be explained in Chapter 4 – if the probabilities
of a random switch can be controlled by the agent, it is possible to use reinforcement
learning to obtain them. Alternatively, and considering weights can be associated to PN
arcs, controlling the weights of some of the transitions is another way to define actions
whose choice can also be optimized using reinforcement learning methods.

Another interesting aspect of the modeling approach by the same authors is the
explicit modeling of multi robot tasks, particularly how to use PNs to model commu-
nication between different robots, in order to enable coordination and synchronization
between them. Figure 3.8 shows different models for a communication action. An ex-
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(c) Full communication model with probabilistic
time and failures.

!"#$%!&

'"()%!&

!"#$"%

&"'"()"%

!*!+(("!!

!*,-./+'"

'*!+(("!!

(d) Separate view of the full communication model.

Figure 4.10: Explicit communication models.

(a) General send communication action. (b) General receiving communication action.

Figure 4.11: General communication action models.

the models depicted in Fig. 4.12. Here a counter place is used to establish that a robot is running
a receiving action. By using that counter as an enabling place of the successful communication
transitions in the sender communication action, one guarantees that the communication is
successful only if both the sender and receiver are running the corresponding communication
actions. Note that this place is called a counter since its number of tokens represents the number
of receiving actions running. Nevertheless, since these communication action models are used to
model explicit robot to robot communication, it is expected that the designed tasks guarantee
that only one receiving communication action of a kind is running at any given time, which can
be checked during the analysis phase.

Definition 4.3.1. A full sending communication action is a GSPN with the structure shown in
Fig. 4.12a, where <msg> represents the exchanged information, Rs denotes the sending robot,
and Rr denotes the receiving robot.

Definition 4.3.2. A full receiving communication action is a GSPN with the structure shown
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Figure 3.8: Communication models in robotic task modeling with Petri Nets.
As proposed in (Costelha and Lima, 2010) (reproduced with permission from the

author).

tension to our work to a distributed multi agent case will necessarily have to rely on
coordination and communication events, for which the approach taken in (Costelha and
Lima, 2010) is quite suitable.

Another recent approach to model specification focuses particularly on the supervisor
and how can it be constructed from a specification language closer to natural language.
In (Lacerda and Lima, 2008), the authors choose Linear Temporal Logic (LTL) as a
starting point to constructing a supervisor represented by a DFA. If we denote by Π a set
of propositional symbols and LLTL(Π) the set of LTL formulas over Π, whose definition
is explained more thoroughly in (Lacerda and Lima, 2008), the for two formulas ϕ, ψ ∈
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LLTL(Π), there are 5 temporal operators that can be defined:

Next (X): ϕX meaning that ϕ will be true until the next state.

Until (U): ϕUψ meaning that ϕ will always be true until ψ becomes true.

Releases (R): ϕUψ meaning that ψ must always be true until ϕ becomes true (or
”releases” ψ).

Eventually (F): Fψ meaning that sometime in a future state ψ will be true. Essen-
tially an abbreviation for trueUψ

Always (G): Gψ meaning that ψ will be true in all future states. Essentially an
abbreviation for falseRψ.

With these operators as well as the extension of the usual propositional logic ones to
a temporal setting, LTL offers a powerful way to express complex specifications in a
compact way. In (Lacerda and Lima, 2008), after specifications are made using LTL,
they are used to build a Büchi Automaton (BA) and finally it is explained how this kind
of automaton can be used for supervision, particularly since BA are equivalent to NFA
and these always have a deterministic equivalent.

3.6 Summary

In this chapter we reviewed literature from several areas that are strongly connected to
the work of this thesis.

Supervisory Control of Discrete Event Systems: In this section we briefly men-
tioned the key works on Supervisory Control since its introduction by (Ramadge
and Wonham, 1984). Particularly, in more recent years, the work of (Yoo and
Lafortune, 2004) establishes new ways to combine supervisor actions. Probabilis-
tic Supervisory Control is an extension of the initial SC framework that has had
some development, initially in the control of Markov Chains by (Hennet, 1993),
and more recently through the use of Probabilistic Discrete Event Systems to im-
plement probabilistic supervisors by (Pantelic et al., 2009) after a line of work
beginning in (Lawford and Wonham, 1993).

Using reinforcement learning to compute optimal supervisors for a given sys-
tem, according to a language measure, is a recent approach studied initially in
(Yamasaki and Ushio, 2005) and further developed in following works.

Temporal Abstraction in Reinforcement Learning: This section is closely related
to learning in Semi-Markov Decision Processes and mainly addresses 3 different
ways to implement temporally abstract actions in MDPs: learning with Hierar-
chical Machines (Parr, 1998a), learning with options (Sutton et al., 1999) and the
Max-Q decomposition(Dietterich, 1998). Each of these approaches creates a dis-
crete time SMDP by abstracting over an MDP. We arrived similar results for our
framework but in continuous time and starting from an event-based system.
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Reinforcement Learning under Supervision: Combining a reinforcement learning
algorithm with a supervisor has been done in different areas, usually having specific
applications in mind. (Rosenstein and Barto, 2004) propose a Supervised Actor-
Critic architecture, while the works (Perkins and Barto, 2003) and (Morimoto
and Doya, 2005) are closely related to using classical control results to supervise
reinforcement learning. In (Gabel and Riedmiller, 2008), a multi-agent scenario is
studied where actions are restricted through dependencies from other agents.

Extensions to POMDPs: The extension of POMDPs to continuous time is explored
by (Mahadevan, 1998), whose results are closely related to the equations we derive
in Chapter 6, although the fact that our framework is event-based gives it unique
properties. Some applications of POSMDPs are reffered. The recent framework
of Mixed Observability Markov Decision Processes, (Ong et al., 2009), studies
situations where the state spaces can be factored in a fully observable part and a
partially observable one. Our framework in Chapter 6 includes mixed observability
since the state of the supervisor is always fully observable.

Beyond Specifications with Automata: Novel ways to model the system and pro-
vide specifications to a supervisor are reviewed in this section. (Costelha and
Lima, 2010) uses Petri Nets to model robotic tasks while in (Lacerda and Lima,
2008) Linear Temporal Logic is used as a language for supervisor specification.

Additionally to the work mentioned, there has been an increasing trend in studying
models and methods that integrate planning, learning and control. Particularly, the
1st International Workshop on Hybrid Control of Autonomous Systems, (Ferrein et al.,
2009), was dedicated exactly to this theme.





Chapter 4

Full Event Observability

When choosing the sequence of actions for an agent, a major drawback of pre-programmed
plans is the fact that they are not prepared to deal with unforeseen changes in the en-
vironment. Additionally, usually there is a need for complete environment models in
order to be able to compute plans a priori. Reinforcement learning, and particularly
model-free reinforcement learning, addresses this issue by having the agent compute an
optimal value function, from which a policy can be obtained, while interacting with the
environment. Unfortunately, the convergence speed of such methods is not always fast
enough to grant good results in a reasonable time. Furthermore, value functions are not
the most intuitive way for a programmer to represent a priori knowledge or to include
safety restrictions to the agent’s decision making process.

Ideally, a hybrid controller that provides the agent with pre-programmed planning
alternatives while letting it optimize the plans by interacting with the environment can
achieve a middle ground between both ends of the spectrum and obtain better results.
In fact, supervising the action choices at each decision moment effectively reduces the
space in which an optimal policy needs to be searched. Furthermore, such approach
provides a close link between the agent and the programmer through the supervisor –
there is a high practical value in integrating the knowledge about unsafe or undesired
paths into the system from the start, and not having to wait for the agent to find out
about their undesirability.

Our goal is to provide a systematic way to combine the supervisory control approach,
which we can use to provide weakly specified pre-programmed plans, with Q-learning,
which implements the adaptive nature of the framework, for a continuous-time system
under partial observability. For that we integrate several components as represented in
Figure 4.1.
Block G represents the uncontrolled system, including the model for the effects of the
robot’s actions, Obs provides an observer which transforms the strings of events gen-
erated by the system in a state based representation to be used by the learner, Sup
supervises the control process, providing the action restrictions to the controller ac-
cording to specifications, and RL is a Reinforcement Learning based controller, which
optimizes the behavior of the system using policy π. P simply represents the projection
which filters the events that are observable by the robot.
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Sup

G

Obs
P(s)

xS

xO
RL

a

S(s)

Ps

P(s)

Figure 4.1: Supervised event-based Q-learning block diagram.

For analysis or simulation purposes, it is important to know the model of the under-
lying system and the type of stochastic process that it describes. On the other hand, for
action execution purposes, the actual complete model of G does not need to be known.
Both the controller and supervisor act based on the events that the environment gener-
ates, without a direct access to its state.

4.1 Environment Model

We assume the discrete event process we are trying to control is a Stochastic Process
known as Generalized Semi-Markov Process (GSMP) (Glynn, 1989) and, so, can be
identified by a STA, as defined in Section 2.1.4. We consider some extensions to the
STA formalism:

• E = EU ∪ET , with EU ∩ET = ∅ and ET 6= ∅. The names ET and EU come from
timed and untimed, respectively.
• Xrs ⊂ X, with Xrs 6= X, is the set of states x for which Γ(x) ∩ EU 6= ∅.
• The events in ET have an associated stochastic clock structure, T = {Ti : i ∈ ET}.
• The events in EU have no time associated with them and are considered to fire

immediately.
• prs : Xrs × EU → [0, 1] is generally a partial function defined only for the events

active in state x. When all events are in EU ,
∑

i∈Γ(x)∩EU prs(x, i) = 1 but if

there are active timed events in Γ(x) and
∑

i∈Γ(x)∩EU prs(x, i) < 1, the remaining

probability mass corresponds to waiting for one of the timed events to happen1.

We call this kind of automaton a Generalized Stochastic Timed Automaton (GSTA)
to emphasize the fact that it has both timed and immediate (untimed) transitions.

1The index rs derives from the designation random switch, commonly used in stochastic petri nets
and which applies to markings which enable immediate transitions.
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In general, the automaton that identifies the GSMP of the system is the result of
a parallel composition (Cassandras and Lafortune, 2007) of several smaller automata.
These represent different aspects of the system and, as defined by the parallel composi-
tion operation (see Section 2.1.2), range from being fully synchronized with every event
to running in parallel without any relation with each other, all depending on the E sets
of each STA.

4.1.1 Inputs

We introduce controllable events EC , with EC ∈ E and denote the GSTA with control-
lable events as a Controllable GSTA (C-GSTA). As in Section 2.1.2, we assume there is
a supervisor function defined over the language generated by the system G:

S : L(G)→ 2E

We assume the supervisor to be admissible and will refer to S as a supervisor pol-
icy and S(s) as a supervisor action. The set of active events under supervision is
ΓS(x, s) = Γ(x) ∩ S(s), when the system is in state x and has, so far, output string s.
We will further elaborate on properties of the supervisor in Section 4.3 but for now it is
sufficient to assume it exists and is admissible.

Additionally, we consider that, for events that are both in EC and EU , and for
that reason occur immediately after a state change, it is possible to control directly the
function prs. We define:

π : L(G)× EA → [0, 1]

where EA = EC ∩ EU .
Note that, just as the supervisor function, this one depends on the string generated

by the system, meaning that it is a dynamic map which can provide different values for
the same state of the system, depending on the history represented by s. In any case, π
is generally a partial function defined only for the immediate controllable events which
are enabled by the supervisor for a given string, i.e. ΓS(x, s)∩EA, noting that the other
controllable and immediate events are not enabled due to supervisory restrictions. We
refer to π as the controller policy.

Equivalently, we can assume the controller itself chooses an event from ΓS(x, s)∩EA,
using the policy π, and passes that event to the system. This one event, which we will
denote as a and refer to as the controller action, despite being immediate might not
be the one to fire due to the possible existence of other immediate events that are not
controllable, i.e. events in ΓS(x, s)∩ (EU \EC). The function prs for a, will be given by:

prs(x, a) = 1−
∑

e∈(ΓS(x,s)∩(EU\EC))

prs(x, e) (4.1)

Events in EA can be interpreted, in a robotics setting, as commands that start
or stop a given behavior of the robot. In fact, even though such commands do not
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occur immediately in reality, their time scale is usually several degrees smaller than
that of the actual behaviors. It is usually these kind of events that we are interested in
controlling or, put another way, the objective of an agent modeled using this approach
is to determine when to start and when to stop behaviors internally. For this reason,
unless stated otherwise, we make a small simplification to the model and assume that
all controllable events are immediate, EC ⊆ EU and, consequently, EA = EC .

Nevertheless, this simplification is mostly a modeling choice and the majority of the
results we present do not depend on it and could easily be extended or modified to
address the most general case. We will explicitly state so if a result depends on the fact
that all controllable events are immediate.

Additionally, the most common case where some events are immediate but uncon-
trollable is when they correspond to start/stop commands of other robots, and although
it is not a rule, for a single robot case it is common that EC = EA = EU .

Finally, it is not mandatory for the controller to actively pick an event in EA at each
decision point. In fact, a possible decision might be to wait for the occurrence of an
uncontrollable event, i.e, choosing an idling action or εa. Nevertheless, it is important
that an idling action does not lead to a situation where the system has no other option
but to stay indefinitely in the same state. For a system in state x and after having
generated string s we must have:

ΓS(x, s) \ EA 6= ∅ (4.2)

Both the controller and supervisor have generally been defined over the language
generated by the system. In practice, this does not scale well and we will additional
restrictions further ahead. Particularly, we will only consider supervisors that can be
represented by a finite number of states and will re-define the controller to depend not
on the language generated by the system, which in general has an infinite number of
strings, but on the product of the observed state of the system and the state of the
supervisor –since both state spaces are finite by assumption, so will the controller.

In Table 4.1 we summarize our interpretation of what each kind of events represent
in the environment, which we maintain throughout the thesis.

4.1.2 Transitions

The transitions in this model are driven by two different aspects: which event will fire
in a given state and, knowing that, which state will the system jump to. Figure 4.2
schematizes this two aspects. The first aspect is associated with the probability that a
given event will fire in state x, that is p(e|x), or, considering the effects of the controller
and supervisor actions, p(e|x, S, a). For states in Xrs this quantity is easily derived. We
have:

p(e|x, S, a) =


prs(x, e) e ∈ ΓS(x, s) ∩ (EU \ EC)

1−∑i∈(ΓS(x,s)∩(EU\EC)) prs(x, i) e = a ∧ e ∈ ΓS(x, s)

0 otherwise

(4.3)
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Timed Untimed

Controllable All timed events were as-
sumed to be uncontrollable. • Start/Stop commands of

the agent.

Uncontrollable • Effects of agent’s actions.

• Effects of external pro-
cesses.

• Start/Stop commands of
other agents.

• Immediate effects of ex-
ternal processes.

• Observations.

Table 4.1: Semantics of the different kinds of events.
In our modeling we assumed the correspondence of events to processes in the environ-
ment was given by this table but, nevertheless, most of the results are general enough
to allow other interpretations.

In Equation (4.3) we are assuming that a is not the idling action. If we do have
a = εa, the system will behave as if x 6∈ Xrs and will look at the time structure
associated with the events in ET to determine the next event to fire. Essentially, we
need to determine p(e|x, S, εa) = P [E = e|X = x, S], for all events in ET that are active
in state x and after occurrence of string s, and we start by pointing out that writing
E = e is equivalent to:

Ye ≤ min
j∈(ΓS(x,s)∩ET )

j 6=e
{Yj}

where Yj is a random variable corresponding to the next potential firing time of event
j2. Essentially we are saying that the firing time of event e must be smaller than that
of other events in ET . We now define a random variable We representing the minimum
firing time of any event other than e.

We = min
j∈(ΓS(x,s)∩ET )

j 6=e
{Yj}

and we have that P [E = e|X = x] = P [Ye ≤ W ] and applying the rule of total

2Strictly speaking, Ye is a different random variable every time the system reaches a state x which
is dependent on the time event e has been active before the system reached that state, called the age of
event e. For simplicity of notation, we do not explicitly write the dependence of the random variables
Yj on the age of the events when the system reaches x since we will introduce restrictions to the model
that allow us to abstract from that additional memory variable, but it is important to note that, in
general and unless stated otherwise, every time we write Ye there is an implicit dependency on the age
of e.
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x1

x2

x3

e1: p(e1|x1)

e2: p(e2|x1)

p(x2|e1,x1)

p(x3|e1,x1)

p(x3|e2,x1)p(x1|e2,x1)

(a) Not considering the efects of controller actions.

x1

x2

x3

e1: p(e1|x1,a1)

e2: p(e2|x1,a2)

p(x2|e1,x1)

p(x3|e1,x1)

p(x3|e2,x1)
p(x1|e2,x1)

e1: p(e1|x1,a2)
e2: p(e2|x1,a1)

a1

a2

(b) Considering the effects of controller actions.

Figure 4.2: Diagram of the STA model parameters.

probability:

P [Ye ≤ W ] =

∫ ∞
0

P [Ye ≤ W |W = t] · dFW (t)

Assuming the firing times between different events are independent, it can be proven
that:

FWe(t) = 1−
∏

j∈(ΓS(x,s)∩ET )
j 6=e

(1− P [Yj ≤ t])

and so, we obtain:

p(e|x, S, εa) =

∫ ∞
0

P [Ye ≤ We|We = t] · dFWe(t) (4.4)

Also of importance is determining the joint probability of moving to state x within
a time frame of t. First, we define a random variable Y ∗ describing the next interevent
time.

Y ∗ = min
j∈(ΓS(x,s)∩ET )

{Yj}

Note that it is similar to We except that it takes into consideration all events. Now we
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have3:

H(t, x′|x, S, εa) = P [Y ∗ ≤ t,Xk+1 = x′|Xk = x, S, εa]

=
∑

e∈ΓS(x,s)∩ET
P [Y ∗ ≤ t,Xk+1 = x′|E = e,Xk = x, S, εa] P [E = e|Xk = x, S, εa]

=
∑

e∈ΓS(x,s)∩ET
P [Y ∗ ≤ t|E = e] P [Xk+1 = x′|Xk = x,E = e] P [E = e|Xk = x, S, εa]

=
∑

e∈ΓS(x,s)∩ET
P [Y ∗ ≤ t|E = e] p(x′|x, e) p(e|x, S, εa)

Since the event is conditioned to be e, the firing time will be only dependent on e
and P [Y ∗ ≤ t|E = e] = P [Ye ≤ t]. We have:

H(t, x′|x, S, εa) =
∑

e∈ΓS(x,s)∩ET
P [Ye ≤ t] p(x′|x, e) p(e|x, S, εa) (4.5)

If we condition the probability to an event e, we have:

H(t, x′|x, e) = P [Y ∗ ≤ t,Xk+1 = x′|Xk = x,Ek = e]

= P [Y ∗ ≤ t|Ek = e]P [Xk+1 = x′|Xk = x,Ek = e]

= P [Ye ≤ t] p(x′|x, e) (4.6)

and consequently:

H(t, x′|x, S, εa) =
∑

e∈ΓS(x,s)∩ET
H(t, x′|x, e) p(e|x, S, εa) (4.7)

respecting the law of total probability.

The problem with the previous expressions is that, at each state, the residual firing
times Ye may be different because the corresponding events might have been enabled
for a long time already before the system reached that state, i.e. the age of the event
is not necessarily known. Considering we intend to use a reinforcement learning based
controller, it is crucial that, at least when an event fires and the state changes, the
system does not need additional memory other than the state to which it changed.
That way, even though time is continuous, it might be possible to end up with a process
similar to SMDPs, described in Section 2.2.4. To accomplish that we need to make an
assumption about the system:

Assumption 4.1.1. We will assume one of the two simplifications:

i. At each state, a reset is made to the firing times of every event, i.e., the age of all
events is assumed to be reset to zero at every state change.

3Note that although Y ∗ is not dependent on the state itself, it does depend on the ages of all the
events in ΓS(x, s) but, again, we will not explicitly write this dependancy.
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OR

ii. The occurrence of a number of events in a given interval can be modeled as a
Poisson process (we can say we have a Poisson clock structure).

Note that the second assumption is a special case of the first but one that, due to the
nature of Poisson processes, transforms the Generalized Semi Markov Decision Process
induced by the C-GSTA in a Continuous Time Markov Decision Process (CTMDP).

Clock resets

In this case the residual times at some state always follow the same distribution, since
there is no bias due to the time an event has already been active. So, Equation (4.4)
can be rewritten as :

p(e|x, S, εa) =

∫ ∞
0

Fe(y) · dFWe(y) (4.8)

where Fe represents the firing time distribution of event e, assumed to be the same for
every state.

We also have:

FWe(t) = 1−
∏

j∈ΓS(x,s)
j 6=e

(1− Fj(t)) (4.9)

On the joint probability of a state and a time interval, from Equations (4.5) and
(4.8) we have:

H(t, x′|x, S, εa) =
∑

e∈ΓS(x,s)

Fe(t) p(x
′|x, e)

∫ ∞
0

Fe(y)dFWe(y) (4.10)

and

H(t, x′|x, e) = Fe(t) p(x
′|x, e) (4.11)

Poisson clock structure

With a Poisson clock structure, all the firing times will be distributed according to an
exponential distribution, i.e., the distributions Fe(t) will be given by:

Fe(t) = 1− e−λe t

In this situation we have:

FWe(t) = 1− e−Λe(x,s) t

with Λ(x, s) =
∑

j∈ΓS(x,s)∩ET λj and Λe(x, s) = Λ(x, s)− λe (only for e ∈ ΓS(x, s)∩ET ).
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On the other hand the memoryless property allows us to simplify P [Ye ≤ We|We = y]
simply to Fe(y) and we have:

p(e|x, S, εa) =

∫ ∞
0

(1− e−λey) · Λe(x, s) · e−Λe(x,s) ydy

=
λe

Λ(x, s)

As for the joint probability, we have:

H(t, x′|x, S, εa) =
∑

e∈ΓS(x,s)∩ET
(1− e−λet)p(x′|x, e) λe

Λ(x, s) (4.12)

and

H(t, x′|x, e) = (1− e−λet)p(x′|x, e) (4.13)

The Poisson clock structure effectively removes the need to have a memory of the
time elapsed, with the event firing distributions depending solely on the state of the pro-
cess. As mentioned previously, in this case we end up with a Continuous-Time Markov
Decision Process (CTMDP) (Howard, 1960; Bertsekas, 1987), also known as a controlled
Continuous-Time Markov Chain.

4.2 Observer Model

So far, since we only described the environment model, no assumptions were made about
the observability of the system. In this chapter, we will assume it is fully observable
w.r.t. the system state and what remains to be determined are the implications on
the model parameters of such an assumption. First, it is important to note that the
output of the system is a string of events and the other blocks described in Figure 4.1
do not have a direct access to the state of the system but, instead, must be able to
either directly work on the string of events or use it to obtain an estimate of the state.
Particularly, what we want from an observer of the system is to be able to obtain an
exact state estimation from the event string output.

Let us represent the observer by a function

O : P (L(G))→ X̂

where X̂ denotes the space of state estimations. We define full observability w.r.t. the
state as:

Definition 4.2.1. An STA, G, is said to be fully observable w.r.t. to the state if it
is possible to construct a state estimation set X̂, a function O : P (L(G)) → X̂ and a
bijection b : X → X̂ such that for every s ∈ L(G) and x ∈ X, if s is a possible trace
from x0 to x then (b−1 ◦O)(P (s)) = x. Particularly (b−1 ◦O)(ε) = x0
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Essentially, there are two necessary (and sufficient) conditions that will guarantee
full observability:

• An observer must be able to distinguish between different strings.

• The same string of events must not potentially lead the system to different states.

The first condition is met if there are no unobservable events and the second one is
met if the transition function p is deterministic. Figures 4.3 and 4.4 show how if these
conditions are not met the observer has not way of distinguishing between two different
states.

x1

x2 x4

e1
x3

e2 e3 - unobservable event

x1

x2

e1
x3

e2

P

Observed String:System Path:

e1 e2

e1 e2

Figure 4.3: Breaking full observability from the existence of unobservable events.

This is expressed in the following theorem:

Theorem 4.2.1. An STA, G, is fully observable w.r.t. the state iff:

1. Euo = ∅
2. ∃x0∈X p0(x0) = 1

3. ∀x∈X∀e∈Γ(x)∃x′∈X p(x′|x, e) = 1

Proof. We start by noting that conditions 2 and 3 are equivalent to having a transition
function f : X × E → X as for FSA defined in Section 2.1.1. In fact, another way
of stating conditions 2 and 3 is to say that the underlying transitions of the STA are
regulated by a deterministic FSA. Additionally, we note that since all the events are
assumed to be observable the projection of the language generated by the system is
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3e2

P

Observed String:System Path:
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e1 e2 e3

4

e3: p(5| e3,3)

e3: p(4|e3,3)

1

2
5

e1
3e2

4

e3: p(5| e3,3)

e3: p(4|e3,3)

Figure 4.4: Breaking full observability from ambiguity in the events effects.

the language itself, i.e., P (L(G)) = L(G). We will now construct X̂ such that it is
isomorphic with X by some bijection b. Since b has an inverse by construction, if we
set:

O(P (s)) = (b ◦ f)(x0, P (s))

and considering x = f(x0, s), we have:

(b−1 ◦O)(P (s)) = f(x0, s) = x

showing that the presented conditions are sufficient to ensure full observability in the
terms of Definition 4.2.1.

To show they are also necessary conditions, we will see what happens if any of them
is broken. We assume the system is indeed fully observable w.r.t. the state:

• Euo 6= ∅. So let us assume that, after outputing string s, the system has reached a
state x such that Γ(x) ∩Euo 6= ∅, i.e. a state that has active unobservable events.
If the next event to fire is e such that e ∈ Euo and considering there is a x′ 6= x
such that x′ = f(x, e), we have that it is possible that after s′ = se the system is
in state x′.
Since the system is fully observable, (b−1 ◦O)(P (s)) = x and (b−1 ◦O)(P (s′)) = x′

for some observer function O and some bijection b. But considering P (s) = P (s′)
because e is unobservable, we have that

x = (b−1 ◦O)(P (s)) = (b−1 ◦O)(P (s′)) = x′
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which is impossible since we already know x 6= x′.

• ¬(∃x0∈X p0(x0) = 1). In that case, there are at least two states x01 and x02 that
have initial non-null probability. We will have that O(ε) = b(x01) since P (ε) = ε.
But we could as easily write O(ε) = b(x02), which means that b(x01) = b(x02) and
since x01 6= x02 the function b cannot be a bijection.

• ¬(∀x∈X∀e∈Γ(x)∃x′∈X p(x′|x, e) = 1). Similarly to the initial state condition, let us
take a state x and an event e such that there are x′1 and x′2 with x′1 6= x′2 and
for which 0 < p(x′1|x, e) < 1 and 0 < p(x′2|x, e) < 1, which are known to exist
by assumption. We will have that O(P (se)) = b(x′1) but we could as easily write
O(P (se)) = b(x′2), which means that b(x′1) = b(x′2) and since x′1 6= x′2 the function
b cannot be a bijection.

It is necessary that all conditions are satisfied for the system to be fully observable,
which concludes the proof.

It is important to note that the firing of events is still regulated by a stochastic
process and, for this reason, the system is not deterministic, which is reflected on the
quantities p(e|x, S, a).

We saw that the easiest way to construct an observer for a fully observable STA is
to make use of the transition function f and some bijection. In fact, on fully observable
systems g(s) = f(x0, s) is isomorphic of O(s) and a good way to construct an observer
is simply to use a deterministic FSA:

Obs = (X̂, E, fO,ΓO, x̂0)

where X̂ = b(X) and particularly x̂0 = b(x0), for some bijection, and fO(x̂, e) = (b ◦
f)(b−1(x̂), e) which is extended to strings in the usual way.

In fact, this observer automaton recognizes the same language that is generated by
the system, and takes the events generated by G as inputs and sends the state estimate
as an output. The state estimate can then be used by a controller to aid the decision
process, as shown in Figure 4.1, which is particularly relevant if the controller relies
on a state-based representation like the reinforcement learning algorithms we use. It is
also important to note that, since we are assuming G to have a finite state space, the
observer automaton Obs will also have a finite state space – the language generated by
G and recognized by Obs is regular.

4.3 Supervisor Model

In general, considering the presence of unobservable events, a supervisor will be defined
by a function:

S : P (L(G))→ 2E
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but since we are assuming full observability, the projection P will simply be an identity
function and we have:

S : L(G)→ 2E

We assume this supervisor to be admissible, as defined in Section 2.1.2. Ideally, it
will also be constructed according to the theorems defined in (Cassandras and Lafor-
tune, 2007) to avoid leading the system to unintended locks. Nevertheless, in this work
we are concerned particularly with integrating the supervisor and adaptive controller
together and will, for the most part, assume the supervisors are also well specified.

We know by assumption that the language generated by G is regular and the system
has a finite state space. However, this does not guarantee that the language generated
by the supervised system, L(S/G), is also regular. However, since this will be the case
if the supervisor is itself realized by a FSA, we will make the following assumption:

Assumption 4.3.1. L(S/G) is regular, and S can be realized by a FSA.

Still, the realization of the supervisor could be done using other techniques as long
as they respect the condition of keeping the language regular. However, the overall state
of the supervised now depends not only on the state of G but also of Sup and, for this
reason, having a state based representation for the supervisor is also important for the
controller to use. We use FSAs as the realization for our supervisors:

Sup = (XS, ES, fSup,ΓSup, x
S
0 )

Some of the functions previously defined in terms of the output string can, then, be
redefined in terms of the supervisor state. Particularly, we have that:

ΓS(x, s) = ΓS(x, xS) and S(s) = S(xS)

with xS = fSup(xS0 , s).
We also have that ΓS(x, xS) = ΓG‖Sup(x, xS) or ΓS(x, xS) = ΓG×Sup(x, xS), de-

pending on the composition operation we are using. Typically, even if we use parallel
composition, the event set over which the supervisor works will still be a subset of the
event set of the system, ES ⊂ E, and we will have:

ΓS(x, xS) = (ΓG(x) ∩ ΓSup(xS)) ∪ (ΓG(x) \ ES)

= ΓG(x) ∩ (ΓSup(xS) ∪ E \ ES)

Since the controller does not have a direct access to the state of the system and it
relies on the observer for a state estimate, the state space on which a reinforcement
learning algorithm works will be a subset of the cartesian product of X̂ and XS.

We extend the notation referring to the system state to include the state of the
supervisor and, unless it is unambiguous whether we are talking about the supervised
or unsupervised system, will begin to denote the state of the system as xG and we will
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have that x = (xG, xS). Similarly, if we denote the state of the observer as x̂G we will
have that the state estimate of the supervised system will be denoted as x̂ = (x̂G, xS)
(note that the controller has a direct access to the state of the supervisor so its estimate
is the exact state).

We can now redefine a lot of the quantities defined in Section 4.1 in terms of the
extended state, which is particularly useful to avoid cluttered notation. The probability
of an event firing given a control action and supervisor action still only depends on the
state of G.

p(e|x, S, a) = pG(e|xG, S, a)

The transition probability depends on both the system state and the supervisor state:

p(x′|x, e) = pG(xG
′|xG, e)pSup(xS

′|xS, e)
and under the assumptions of full observability and representation of the supervisor by
a deterministic FSA 4 :

f(x, e) = (fG(xG, e), fSup(xS, e))

Unless stated otherwise, we will assume that generally we are talking about the
augmented state representation of the supervised system, or its observer estimate. We
will also drop the explicit cartesian product notation from the argument of ΓS to write
simply ΓS(x) = ΓS(xG, xS), but we will maintain the subscript to emphasize we are
dealing with the supervised system.

4.4 Controller Model

Rewards

The objective of the controller is to choose an action at each decision moment so that
the performance of the robot is optimized, according to some reward function. So, it
is only natural that the reward function needs to be defined previously. We define the
rewards in a similar way to Section 2.2.4, except that they depend on events directly
and not on actions:

• κ : X×E×X −→ R is defined as the expected immediate5 reward the agent gets
after moving from state x to state x′ due to the firing of event e.
• µ : X −→ R is defined as the expected reward rate the agent gets for as long as

he stays in state x.

Note how this formulation differs from the one of Section 2.2.4 essentially due to the
fact that the rewards depend on the events and not the actions, and events occur at the

4In reality, fG and fSup might not be defined for some of the events, which also depends on the
type of composition we are considering. The expression for the transition function can then easily be
adapted accordingly as described in Section 2.1.1

5Also known as lump reward/cost, and we will use the two terms interchangeably.
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end of a transition from x to x′ and not at the beginning. For this reason, the agent
receives the immediate reward at the end of the transition and, on the other hand, it
would break causality to have rate c depend on an event that has not occurred so it
only depends on the state the system is in during the entire transition from x to x′.

The actual state space over which the rewards are defined depends strongly on the
way those rewards are interpreted. If we consider them to be supplied directly by the
environment, than there is a dependence on the actual state of G, possibly augmented
by the state of the supervisor, xS. If, on the other hand, we consider they are obtained by
some process posterior to the observation, and are thus subject to the same observational
constraints of the controller, it is more natural to define them in terms of the observer
state, x̂; we will use this last interpretation. Note that under full observability there is a
bijection between X and X̂ induced by the observer and so it is equivalent using either
of the interpretations.

Although κ depends on the state for which the system moves to, we can redefine it
to only depend on the state from which it starts and the event that fired, by doing:

κ(x, e) =
∑
y∈X

p(y|x, e)κ(x, e, y)

In any case, in our formulation of the reward scheme this immediate reward is only
received at the end of transition.

4.4.1 Optimality Equations

Having defined the rewards, we can now obtain equations for the expected discounted
reward, much like what was done for SMDPs in Section 2.2.4. The objective is, as before,
to obtain a value for each state that reflects how much we can expected to obtain if we
start in such a state.

V S,π(x) = E

{ ∞∑
k=0

e−βσk
[
e−βτkκ(xk, ek) +

∫ τk

0

e−βtµ(xk, ek)dt

] ∣∣∣∣x0 = x, S, π

}
(4.14)

where S is the supervisor policy and π is the controller policy, τk represents the sojourn
time in for state xk and β is the discount factor. Additionally, we have σ0 = 0 and
σk =

∑k−1
i=0 τk for k > 06.

Similarly to Section 2.2.4, we can write:

r(x, e) =

∫ ∞
0

e−βτk(x, e) +
1− e−βτ

β
c(x, e) F (dτ |x, e) (4.15)

6And consequently τk = σk+1 − σk.
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The Bellman equation for controller policy π and supervisor policy S can be written
as:

V S,π(x) = E

{ ∞∑
k=0

e−βσkr(xk, ek)

∣∣∣∣x0 = x, S, π

}

=
∑

e∈ΓS(x)

p(e|x, S, π)E

{[
r(x, e) + e−βτV S,π(xk+1)

∣∣∣∣π}]

=
∑

e∈ΓS(x)

p(e|x, S, π)

[
r(x, e) +

∑
y∈X

(∫ ∞
0

e−βτH(dτ, y|x, e)
)
V S,π(y)

] (4.16)

where H(t, x′|x, e) = Fe(t)p(x
′|x, e) represents the probability of moving from state x

to state x′ in less than t time, knowing that the change state change happened due to
event e, as defined in Equation (4.11). We can define γe =

∫∞
0
e−βτF (dτ |x, e) and end

up with the following expression for the Bellman equation:

V S,π(x) =
∑

e∈ΓS(x)

p(e|x, S, π)

[
r(x, e) + γe

∑
y∈X

p(y|e, x)V S,π(y)

]
(4.17)

which is quite similar to Equation (2.3), with the difference that we are adding over
events instead of actions and it is as if each of the events has an independent discount
factor given by γe.

During these derivations no restriction was made on the nature of the transition
probabilities, although the observability conditions of Theorem 4.2.1 require that:

∀x∈X∀e∈Γ(x)∃x′∈X p(x′|x, e) = 1

However, if the controller did have a direct access to the state instead of through the
strings of events generated by the system, then there would be no need to impose
such conditions – the observability question is a problem of the observer and not the
controller who only requires an correct state estimate but is not concerned with the way
this estimate was obtained, and for that reason we always left the term p(y|e, x) in the
equations instead of restricting the sum right away to the only state y ∈ X that, under
observability and a for given x ∈ X and e ∈ ΓS(x), verifies p(y|x, e) = 1.

We will continue to leave the transition arbitrarily distributed in the optimality
expressions, particularly because it will be of use in other chapters, but if we combined
Equation 4.17 with the condition of Theorem 4.2.1 on the transition probabilities, we
would get:

V S,π(x) =
∑

e∈ΓS(x)

p(e|x, S, π)
[
r(x, e) + γeV

S,π(f(x, e))
]

= rπ,S(x, e) +
∑

e∈ΓS(x)

γe p(e|x, S, π)V S,π(f(x, e))
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with rπ,S(x, e) =
∑

e∈ΓS(x) p(e|x, S, π)r(x, e). We can see from this equation that the
successor state is not determined by a policy because the event that will fire is unknown
from the start, even though the transitions w.r.t. the events are deterministic under full
observability.

It is important to underline where the supervisor and controller influence the state
value function, on the previous equation. In fact, their effect is patent in the events over
which we are summing and on the quantities p(e|x, S, π), which can be defined based
on Equation (4.4):

p(e|x, S, π) =
∑
a∈Ax

π(a, x)p(e|x, S, a) (4.18)

with

Ax =

{
ΓS(x) ∩ EA ΓS(x) \ EA = ∅
(ΓS(x) ∩ EA) ∪ {εa} otherwise

The optimality equation can be written as:

V S,∗(x) = max
a∈Ax

 ∑
e∈ΓS(x)

p(e|x, S, a)

[
r(x, e) + γe

∑
y∈X

p(y|e, x)V S,∗(y)

] (4.19)

and in terms of Q-values we can write:

QS,∗(x, a) =
∑

e∈ΓS(x)

p(e|x, S, a)

[
r(x, e) + γe

∑
y∈X

p(y|e, x) max
b∈Ay

QS,∗(y, b)

]
(4.20)

which takes the same form as Equation (2.18) if we make:

r(x, a) =
∑

e∈ΓS(x)

p(e|x, S, a)r(x, e)

and

M(y|x, a) =
∑

e∈ΓS(x)

p(e|x, S, a) γe p(y|e, x)

=

∫ ∞
0

e−βtH(dt, y|x, S, a)

In fact, as mentioned previously the clock reset assumptions at each state change
transform the GSMDP induced by the C-GSTA into a SMDP, since no further memory
of the system is needed at each decision point, particularly there is no need to store
temporal values prior to the state change.

In Section 4.1 we defined actions as corresponding to controllable events that fire
immediately, with the exception of the idling action that may or may not correspond
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to the immediate firing of events depending on whether there are uncontrollable and
immediate events active in the state or not – with the assumption that EU = EC then
an idling action will, in fact, correspond to waiting for an uncontrollable timed event to
fire. Particularly, states that do not correspond to random switches, i.e. states not in
Xrs can be thought of as only having the idling action εa available. For the states, the
optimality equation acquires a particular form with:

QS,∗(x, a) =
∑

e∈ΓS(x)

p(e|x, S, a)

[
k(x, e) +

∑
y∈X

p(y|e, x) max
b∈Ay

QS,∗(y, b)

]
(4.21)

which clearly shows how there is no discount since the state change occurs infinitesimally
right after the decision.

It is handy to separate states with random switches from the ones that take some
time, particularly because the firing of events is directly determined by a probability
mass function and not by an event race. Nevertheless, we could unify the firing times of
events in EU and events in ET by saying that all events in EU will have the Heaviside
function as their distribution:

Fe(t) =

{
1 t ≥ 0

0 t < 0
, ∀e ∈ EU

Intuitively, it is clear this causes problems for convergence since, as show previously,
there will be no discount factor to bound the rewards. On the other hand, it is easy
to construct a system where infinite immediate events occur in succession in zero time.
This means that some additional assumptions need to be made in order to keep the
system well behaved, which will be discussed further ahead.

Poisson Clock Structure

Under a Poisson clock structure, the expressions for the optimality equations take a
particular form. In fact, if we consider that for the idling action

p(e|x, S, εa) =
λe

Λ(x)
(4.22)

with Λ(x) =
∑

j∈ΓS(x)∩ET λj then Equation (4.19) takes the form:

V S,∗(x) =
∑

e∈ΓS(x)

λe
Λ(x)

[
r(x, e) + γe

∑
y∈X

p(y|e, x)V S,∗(y)

]
(4.23)

for states x 6∈ Xrs, i.e., states where the only available action is the idling action.
Additionally, we need to calculate the event specific discount factors:

γe =

∫ ∞
0

e−βτF (dτ |x, e) =
λe

β + λe
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and

V S,∗(x) =
∑

e∈ΓS(x)

λe
Λ(x)

[
r(x, e) +

λe
β + λe

∑
y∈X

p(y|e, x)V S,∗(y)

]
(4.24)

again for x 6∈ Xrs.

4.4.2 Properties of the Bellman Operator

Ultimately, the goal in this chapter is to use a reinforcement learning algorithm in
the controller, so it can optimize the control policy within the bounds imposed by the
supervisor, and also to derive some convergence results about such algorithm. For that,
we will start by exploring some properties about the Bellman operator H : Q → Q,
with Q representing the space of all bounded q-functions, given by:

(Hq)(x, a) =
∑

e∈ΓS(x)

p(e|x, S, a)

[
r(x, e) + γe

∑
y∈X

p(y|e, x) max
b∈Ay

q(y, b)

]
(4.25)

Ideally, we would want this operator to be a contraction mapping in some norm,
similarly to what was shown for SMDPs in Chapter 2. However, that is not always
the case because of the existence of immediate events which induce an undiscounted
transition, as described in Equation (4.21). Put another way we can say that:

γe = 1 , e ∈ EU
As for the other timed events, let us make a similar assumption as to the one in

Section 2.2.4.

Assumption 4.4.1. For each event e ∈ ET , there exist δe > 0 and εe > 0 such that:

Fe(δe) < 1− εe
Under the conditions of Assumption 4.4.1 we can prove the following result:

Lemma 4.4.1. Suppose Assumption 4.4.1 holds. Then γe < 1 for every e ∈ ET
Proof. We have that γe =

∫∞
0
e−βtFe(dt) and following a similar derivation from the one

in Section 2.2.4:

γe =

∫ ∞
0

e−βtFe(dt) =

=

∫ δe

0

e−βtFe(dt) +

∫ ∞
δe

e−βtFe(dt) ≤

≤
∫ δe

0

Fe(dt) + e−βδe
∫ ∞
δe

Fe(dt) =

= Fe(δe) + e−βδe(1− Fe(δe)) =

= e−βδe + Fe(δe)(1− e−βδe) <
< e−βδe + (1− εe)(1− e−βδe) <
< 1
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So we have that γe = 1, e ∈ EU and γe < 1, e ∈ ET . For this reason, we are in the
condition to say that the operator H as defined in Equation (4.25) is a non-expansive
map.

Theorem 4.4.2. Suppose we have a C-GSTA with every e ∈ ET satisfying Assumption
4.4.1. Then the operator H:

(Hq)(x, a) =
∑

e∈ΓS(x)

p(e|x, S, a)

[
r(x, e) + γe

∑
y∈X

p(y|e, x) max
b∈Ay

q(y, b)

]

satisfies a Lipschitz condition with K = 1 for the distance defined by the sup norm.

Proof. We have:

‖Hq1 −Hq2‖∞ =

= max
x,a

∣∣∣∣∣∣
∑

e∈ΓS(x)

p(e|x, S, a)γe
∑
y∈X

p(y|e, x)

(
max
b1∈Ay

q1(y, b1)− max
b2∈Ay

q2(y, b2)

)∣∣∣∣∣∣ ≤
≤ max

x,a

∑
e∈ΓS(x)

p(e|x, S, a)γe
∑
y∈X

p(y|e, x) ·max
z,b
|q1(z, b)− q2(z, b)| =

Since γe ≤ 1 for all events:

‖Hq1 −Hq2‖∞ ≤ max
x,a

∑
e∈ΓS(x)

p(e|x, S, a)
∑
y∈X

p(y|e, x) ·max
z,b
|q1(z, b)− q2(z, b)| =

= max
x,a

∑
e∈ΓS(x)

p(e|x, S, a) ·max
z,b
|q1(z, b)− q2(z, b)| =

= max
x,a
‖q1 − q2‖∞ =

= ‖q1 − q2‖∞

Particularly, we can also prove that ‖Hnq1 −Hnq2‖∞ ≤ ‖q1 − q2‖∞ for any n > 0.
This is not enough to guarantee the existence of a unique fixed point of the operator,

and the value iteration algorithm given by:

qn+1 = Hqn

is not guaranteed to converge. So, we need additional conditions on the system, partic-
ularly concerning the immediate events which are the ones that cause the convergence
problems. In fact, like mentioned previously, it is possible to construct a system where
we have an infinite cycle of immediate events and since the associated transitions are not
discounted (and take 0 time), we would reach a situation where in null time the expected
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reward would diverge to infinity. Assumption 4.4.1 works to bound the expected reward
for timed transitions and we need an assumption that does the same for untimed ones.

Let us introduce some definitions:

Definition 4.4.1. A string s ∈ L(G) is said to be immediate if it is not null and only
contains immediate events:

s ∈ E∗U \ {ε}
and

Definition 4.4.2. A GSTA is said to have immediate cycles if for some state x ∈ X
it is possible to revisit it through an immediate string. Considering the extension of the
transition function to strings:

∃s∈E∗U\{ε}p(x|x, s) > 0

Since only states in x ∈ Xrs have immediate events active, this will never happen for
any state x 6∈ Xrs

Now we will make the following assumption:

Assumption 4.4.2. The GSTA does not contain immediate cycles.

∀x∈X∀s∈E∗U\{ε}p(x|x, s) = 0

With this assumption, the maximum number of immediate transitions that can occur
before the system changes to a state where only events in ET are active is equal to |Xrs|.
In practical terms, since immediate events are often associated with starting or stoping
an agent action, what this does is not allowing for indefinite of such starts and stops,
forcing the system to wait for something to happen before choosing to start a given
action again (or stop it). Still, it does allow for the decomposition of complex actions
since it is still possible to chain different immediate events in different random switch
states.

Under this assumption we can prove the following result:

Lemma 4.4.3. Suppose we have a supervised C-GSTA that follows Assumption 4.4.2.
Then for every state x ∈ Xrs and for the two disjoint sets V (x) ⊂ Xrs and NV (x) ⊂ Xrs,
with V (x) ∪NV (x) = Xrs, defined as7.

V (x) =
{
y ∈ Xrs : ∀s∈E∗U\{ε} p(y|x, s) = 0

}
NV (x) =

{
y ∈ Xrs : ∃s∈E∗U\{ε} p(y|x, s) > 0

}
we have that:

7For this definition we have to extend the transition function so that, if e 6∈ ΓS(x) then p(y|e, x) = 0
for all y ∈ X.
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1. y ∈ NV (x)⇒ x ∈ V (y)

2. ∀y∈NV (x)NV (y) ⊂ NV (x)

Particularly:
∃x∈Xrs NV (x) = ∅
∀x∈Xrs x ∈ V (x)

Note that V (x) represents the set of random switch states that are not accessible from
x through an immediate string, while NV (x) represents the set of random switch states
that have a non-null probability of being reached from x through an immediate string.

Proof. Let us start by assuming that, for some x, y ∈ Xrs we have that y ∈ NV (x). Then
there is an s ∈ E∗U \ {ε} such that p(y|x, s) > 0. Put another way, there is a potential
path from x to y that only includes immediate events. Because of Assumption 4.4.2,
the reverse cannot be true, i.e, there must not be a path consisting of only immediate
events from y to x. Put another way:

∀s∈E∗U\{ε}p(x|y, s) = 0

which means that x ∈ V (y).

As for the second result, if we assume it does not hold, i.e., that there is an y ∈ NV (x)
such that NV (y) 6⊂ NV (x), then we can say that:

∃z∈NV (y)z 6∈ NV (x)

and so, for some s′ ∈ E∗U \ {ε}:
p(z|y, s′) > 0

while for all possible strings in s ∈ E∗U \ {ε}
p(z|x, s) = 0

Since we had that y ∈ NV (x), then p(y|x, s′′) for some s′′ ∈ E∗U \{ε}. The concatenation
of two strings made of immediate events is still a string made of immediate events. So,
for s = s′s′′ we have that:

p(z|x, s) ≥ p(z|y, s′) p(y|x, s′′) > 0

contradicting the fact that z 6∈ NV (x).

If we make y = x and apply the first property we have:

x ∈ NV (x)⇒ x ∈ V (x)

which is impossible since NV (x) ∩ V (x) = ∅. So we must have that x ∈ V (x).

Finally, by applying the second property of nested NV sets successively, we end up
reaching a point where, for some x ∈ Xrs we have that NV (x) = ∅.
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In other words, what the lemma says is that, under Assumption 4.4.2, if a state y is
reachable from x through an immediate string:

• It is not possible to reach x through an immediate string starting from y.

• The set of states reachable through immediate strings decreases monotonically.
Particularly, there is at least one random switch state from which is not possible
to reach any other random switch through an immediate string.

Figure 4.5 shows an example of how the random switch states, if under Assumption
4.4.2, together with the immediate events form an acyclic directed sub-graph of the
automaton.
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Figure 4.5: Random switch states forming an acyclic sub-graph of the STA.

We can use these properties induced by the non existence of cycles of random switches
to show that, with some periodicity, operator H does contract, just not on every itera-
tion, which is shown in the following result:

Theorem 4.4.4. Suppose we have a supervised C-GSTA that follows Assumptions 4.4.2
and 4.4.1. Then the operator:

(Hq)(x, a) =
∑

e∈ΓS(x)

p(e|x, S, a)

[
r(x, e) + γe

∑
y∈X

p(y|e, x) max
b∈Ay

q(y, b)

]

is a local power contraction mapping.
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Proof. We have:

‖Hq1 −Hq2‖∞ =

= max
x,a

∣∣∣∣∣∣
∑

e∈ΓS(x)

p(e|x, S, a)γe
∑
y∈X

p(y|e, x)

(
max
b1∈Ay

q1(y, b1)− max
b2∈Ay

q2(y, b2)

)∣∣∣∣∣∣
We will start by noting that, for every state not in Xrs (or if the idling action is

chosen), we have that the only events active are timed ones, or ΓS(x)∩EU = ∅. So, for
x 6∈ Xrs or a = εa:

|Hq1(x, a)−Hq2(x, a)| =

=

∣∣∣∣∣∣
∑

e∈ΓS(x)

p(e|x, S, a)γe
∑
y∈X

p(y|e, x)

(
max
b1∈Ay

q1(y, b1)− max
b2∈Ay

q2(y, b2)

)∣∣∣∣∣∣ ≤
≤
∣∣∣∣∣∣
∑

e∈ΓS(x)

p(e|x, S, a)γe
∑

y∈X\V (x)

p(y|e, x) max
z,b
|q1(z, b)− q2(z, b)|

∣∣∣∣∣∣ ≤
≤ γmax max

z∈X
|q1(z, b)− q2(z, b)| =

= γmax‖q1− q2‖
where γmax = maxe∈ET γe, since p(e|x, S, a) = 0 for e ∈ EU and x 6∈ Xrs.

If we now apply Theorem 4.4.2 several times, we can also say that, for every n > 0:

|Hnq1(x, a)−Hnq2(x, a)| ≤ γmax‖q1− q2‖
On the other hand, for every possible immediate event, if a state x is a random

switch, p(y|x, e) = 0 if y ∈ V (x) and then we can write that:

|Hq1(x, a)−Hq2(x, a)| =

=

∣∣∣∣∣∣
∑

e∈ΓS(x)

p(e|x, S, a)γe
∑

y∈X\V (x)

p(y|e, x)

(
max
b1∈Ay

q1(y, b1)− max
b2∈Ay

q2(y, b2)

)∣∣∣∣∣∣ ≤
≤
∣∣∣∣∣∣
∑

e∈ΓS(x)

p(e|x, S, a)γe
∑

y∈X\V (x)

p(y|e, x) max
z∈X\V (x),b

|q1(z, b)− q2(z, b)|
∣∣∣∣∣∣

for every x ∈ Xrs. Since γe ≤ 1 for all events:

|Hq1(x, a)−Hq2(x, a)| ≤
≤ max

z∈X\V (x),b
|q1(z, b)− q2(z, b)|

So we can say that, for states corresponding to random switches:

|Hnq1(x, a)−Hnq2(x, a)| ≤ max
z∈X\V (x),b

∣∣Hn−1q1(z, b)−Hn−1q2(z, b)
∣∣
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Since on the maximization we only need to consider states not in V (x) for each x ∈ Xrs,
we can apply the same reasoning to |Hn−1q1(z, b)−Hn−1q2(z, b)|. Eventually, we will
reach a situation where NV (x) = ∅, as guaranteed by Lemma 4.4.3, or put another way
V (x) = Xrs. That happens for some n < |Xrs|.

|Hnq1(x, a)−Hnq2(x, a)| ≤ max
zn∈X\V (x),b

. . . max
z0∈X\Xrs,b

|Hq1(z0, b)−Hq2(z0, b)|

And since now the maximization is done only over states that do not correspond to
random switches, from Equation 4.4.4:

|Hq1(z0, b)−Hq2(z0, b)| ≤ γmax‖q1− q2‖
since z0 6∈ Xrs. Finally, we have:

|Hnq1(x, a)−Hnq2(x, a)| ≤
≤ max

zn∈X\V (x),b
. . . max

z0∈X\Xrs,b
γmax‖q1− q2‖

≤ γmax‖q1− q2‖
In general, at least for N = |Xrs| every x ∈ Xrs will the satisfy relation. So for every
possible state and action we can say that:

|HNq1(x, a)−HNq2(x, a)| ≤ γmax‖q1− q2‖
and for this reason:

‖HNq1 −HNq2‖ ≤ γmax‖q1− q2‖
which proves the operator H is a local power contraction mapping (see Definition A.2.3).

So now we can use Theorem A.2.2 to guarantee the existence of a fixed point of H,
i.e., a point q∗ such that Hq∗ = q∗.

4.4.3 Q-learning Rule

Since the our supervised system is equivalent to an SMDP, we use the same update rule
for the reinforcement learning based controller:

QS
k+1(xk, ak) = (1− αk)QS

k (xk, ak) + αkQ̃
S
k+1(xk, ak) (4.26)

with

Q̃S
k+1(xk, ak) = rk + e−βτk max

b∈Axk+1

QS
k (xk+1, b)

with a modification to account for the fact that the lump reward is received in the
end of the transition and not right after the decision is made. For this reason, we now
have:

rk = e−βτkκk +
1− e−βτk

β
µk
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To prove the convergence of this update rule we use a derivation similar to the one
in Theorem 2.2.38.

Theorem 4.4.5. Given a finite C-GSTA, the Q-learning sequence {Qk}, given by the
update rule:

Qk+1(xk, ak) = (1− αk(xk, ak))Qk(xk, ak) + αk(xk, ak)

(
rk + e−βτk max

b∈Axk+1

Qk(xk+1, b)

)
with

rk = e−βτkκk +
1− e−βτk

β
µk

converges with probability 1 to the optimal Q-function if:

• Assumption 4.4.1 holds.

• Assumption 4.4.2 holds.

• 0 ≤ αk(xk, ak) ≤ 1,
∑

k αk(xk, ak) =∞ and
∑

k α
2
k(xk, ak) <∞;

• kk and ck are bounded.

Proof. The convergence of the Q-learning update rule can be proved by making use of
Theorem 2.2.3 and the fact that the Bellman operator H has a unique fixed point, as
shown by Theorem 4.4.4.

4.5 A Practical Case

We applied our approach to a simulated domain where a robot navigates in the corridors
of a building, with the goal of interacting with people he meets along the way and
learning to lead them to 2 specific locations, according to their preference. Figure 4.6
represents the environment in which the robot is navigating, as well as the goal states
and initial starting point of the robot. After reaching a goal state, the robot keeps doing
its task from where it is, possibly wandering around the corridors waiting to find more
people to help out.

4.5.1 Environment Model

While navigating in the environment, the robot recognizes a set of navigation events:

• {movedUp, movedDown, movedLeft, movedRight} represent a situation where
the robot changed cell while moving in a certain direction.

8This proof is adequate for updates that do not have sequences of immediate events, with the trace
of the system following a pattern of alternating untimed and timed events, but does not fully establish
the convergence for the general case. We intend to complete it for the more general update scheme as
future work, making use of other stochastic approximation results, (Bertsekas and Tsitsiklis, 1996).
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x

y

Goal A

Goal B

Start

Person

Figure 4.6: Map of the environment where the robot lives.

• {crossingUp , crossingDown, crossingLeft, crossingRight} are similar but
only occur when the robot enters a corner or intersection.
• {wallUp , wallDown, wallLeft, wallRight} indicate the robot tried to navi-

gate in a certain direction but detected a wall when doing so.

Figure 4.8(a) shows an automaton model for navigation representing the map of Figure
4.6, with the navigation events, and Figure 4.8(b) shows a detail of that automaton.

Additionally, we considered automata for the robot actions, representing the possible
effects they can have on the environment. The events that start a robot action were:

• {startUp, startDown, startLeft, startRight} start a navigation action in a
certain direction.
• {startCall} starts an action that tries to approach a person to get her attention.
• {startAsk} starts an action that asks a person for the location they intend to go

to.

Besides these events corresponding to the start of an action, we modeled an additional
event, stopAction, that stops all actions currently running. We could also consider
individual stop actions for each of the possible robot actions but, in this problem, we
modeled the supervisor to allow only one behavior to be run at a given time, making
more stopping actions redundant. These events to start or stop a robot action are
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(a) Complete navigation automaton
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(b) Navigation automaton detail

Figure 4.7: Representation of the navigation map as an automaton.
The states represent x.y coordinates of the map cells from Figure 4.6.

the only ones considered to be controllable. Figure 4.8 shows the general scheme for
modeling the effects of a robot action with an automaton.

Not Acting

stop Action

Actingstart Action
stop Action

start Action
action effects

Figure 4.8: Environment automaton than models a general action’s effects.

Finally, we considered another automaton which models the interaction between the
robot and a person he meets along the way. Additional uncontrollable events generated
by the environment include:

• {metPerson, gotAttention, choseA, choseB, declinedHelp}, that concern the
actual interaction between the robot and the person.
• {lead2A, lead2B} are fired when the robot leads the person to the place they

previously chose to go.
• {bored} represents the moment a person gives up on the robot’s help, from having

spent to much time in the same map cell.

These events, as well as the ones mentioned previously that describe navigation of
the robot in the environment, are all considered to be uncontrollable.

In Figure 4.9 the interaction automaton is shown.
As mentioned in Section 4.1, the controllable events are considered to fire imme-

diately and the uncontrollable ones to have an associated time distribution. In this
example, the uncertainty in the robot’s actions stems from the underlying uncertainty
associated with the firing of different events.
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Navigation Events

bored

Navigation Events
gotAttention

Figure 4.9: Environment automaton that models the interaction between the robot and
a person.

In Table 4.2, we present a summary of the distributions associated with each one of
the timed events. Note that some are not exponential or the system would actually be
fully Markovian (Cassandras and Lafortune, 2007).

Events Distribution Class Expected Value

movedUp, movedDown, movedLeft,
movedRight crossingUp, crossingDown,
crossingLeft, crossingRight

Raleygh 2.50

wallUp, wallDown, wallLeft, wallRight Rayleigh 1.25

choseA, choseB, declinedHelp Exponential 0.50

lead2A, lead2B Exponential 0.10

bored Rayleigh 18.80

metPerson Exponential 10.00

gotAttention Exponential 1.00

Table 4.2: Distribution parameters for the uncontrollable events.

The automata presented previously were used to model and simulate the environment
and can be composed to analyze the supervised and controlled system but, from a
decision standpoint, the supervisor and controller only have direct access to the events
the system generates.

In Table 4.3 we summarize the classification of the events according to the time
between firing and controllability.
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Timed Untimed

Controllable Not considered in our model. startUp, startDown,

startLeft, startRight,

startCall, startAsk,

stopAction

Uncontrollable movedUp, movedDown,

movedLeft, movedRight,

crossingUp ,

crossingDown,

crossingLeft,

crossingRight, wallUp,

wallDown, wallLeft,

wallRight, choseA,

choseB, declinedHelp,

lead2A, lead2B, bored,

metPerson, gotAttention

Not considered in this exam-
ple.

Table 4.3: Event classification.

4.5.2 Supervisor Model

We used 3 different supervisors in parallel to steer the behavior of the system and allow
the learner to more efficiently converge to the real Q-function.

The first simply forces the action choice to follow a (Start→ Wait→ Stop) pattern.
We applied this supervisor to the system in all tests, which guarantees that Assumption
2.2.1 is always met. We’ll denote this supervisor by S1Action.

The second supervisor we considered concerns the navigation actions. It can be
thought as a map of the building which does not allow the robot to try actions that
will certainly lead him against a wall. A detail of the automaton that implements can
be seen in Figure 4.10. Note that it is similar to the one that represented the map in
the system model but it includes the controllable events that are or are not allowed in
each state and does not include the wall-related events. We’ll denote this supervisor by
SMap.

The third supervisor concerns the interaction procedure between the robot and a
person and, essentially, forces a small plan on the robot every time it meets a person in
any given map cell. Figure 4.11 represents it. The plan goes like this:

1. When the robot meets a person, the supervisor forces it to get the person’s atten-
tion, through action startCall.

2. When the robot has the attention of a person, the supervisor forces it to ask for
the goal room, through action startAsk.

3. Finally, when a person chooses a room the supervisor will allow for navigation
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Figure 4.10: Supervisor that regulates the navigation of the robot to avoid going in the
direction of walls.

actions to be made until the room is reached.
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Figure 4.11: Supervisor that regulates the interaction between the robot and a person.

We’ll denote this supervisor by SInt.
We did 4 tests under full observability (the observer automata have an identical

structure to the ones that model the system): unsupervised, interaction supervised,
map supervised and both. The supervisors were combined using Modular Supervisory
Control as described in Section 2.1.3 and Figure 4.12 shows the block diagrams for all
the 4 tests9.

Note that the events that will correspond to actions of the controller are those that ei-
ther start or stop a robot action, i.e.: startUp, startDown, startLeft, startRight,

startCall, startAsk, stopAction. Additionally, an idling action is added when it is
possible to safely do so without risking leading the system where the robot is left idling
indefinitely.

Essentially, what the supervisor does is select a set:

Bt ⊆ {startUp, startDown, startLeft, startRight, startCall, startAsk, stopAction}
and say that the the set of available actions at a given point in time is either At =
Bt ∪ {εa} or At = Bt.

9As mentioned, the supervisor that forces only one action to run at each time was used for all tests
in order to ensure Assumption 4.4.2 was always satisfied.
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4.4.3 Q-learning Rule

Since the our supervised system is equivalent to an SMDP, we use the same update rule
for the reinforcement learning based controller:

QS
k+1(xk, ak) = (1− αk)Q

S
k (xk, ak) + αkQ̃

S
k+1(xk, ak) (4.26)

with

Q̃S
k+1(xk, ak) = rk + e−βτk max

b∈Axk+1

QS
k (xk+1, b)

with a modification to account for the fact that the lump reward is received in the end
of the transition and not right after the decision is made. For this reason, we now have:

rk = e−βτkκk +
1− e−βτk

β
µk

To prove the convergence of this update rule we use a derivation similar to the one in
Theorem 2.2.3.

Theorem 4.4.5. Given a finite C-GSTA, the Q-learning sequence {Qk}, given by the
update rule:

Qk+1(xk, ak) = (1− αk(xk, ak))Qk(xk, ak) + αk(xk, ak)

�
rk + e−βτk max

b∈Axk+1

Qk(xk+1, b)

�
with

rk = e−βτkκk +
1− e−βτk

β
µk

converges with probability 1 to the optimal Q-function if:

• Assumption 4.4.1 holds.

• Assumption 4.4.2 holds.

• 0 ≤ αk(xk, ak) ≤ 1,
�

k αk(xk, ak) =∞ and
�

k α
2
k(xk, ak) <∞;

• kk and ck are bounded.

Proof. The convergence of the Q-learning update rule can be proved by making use of
Theorem 2.2.3 and the fact that the Bellman operator H has a unique fixed point, as
shown by Theorem 4.4.4.
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with a modification to account for the fact that the lump reward is received in the end
of the transition and not right after the decision is made. For this reason, we now have:

rk = e−βτkκk +
1− e−βτk

β
µk

To prove the convergence of this update rule we use a derivation similar to the one in
Theorem 2.2.3.

Theorem 4.4.5. Given a finite C-GSTA, the Q-learning sequence {Qk}, given by the
update rule:

Qk+1(xk, ak) = (1− αk(xk, ak))Qk(xk, ak) + αk(xk, ak)

�
rk + e−βτk max

b∈Axk+1

Qk(xk+1, b)

�
with

rk = e−βτkκk +
1− e−βτk

β
µk

converges with probability 1 to the optimal Q-function if:

• Assumption 4.4.1 holds.

• Assumption 4.4.2 holds.

• 0 ≤ αk(xk, ak) ≤ 1,
�

k αk(xk, ak) =∞ and
�

k α
2
k(xk, ak) <∞;

• kk and ck are bounded.

Proof. The convergence of the Q-learning update rule can be proved by making use of
Theorem 2.2.3 and the fact that the Bellman operator H has a unique fixed point, as
shown by Theorem 4.4.4.
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with

(d) Fully Supervised

Figure 4.12: Block diagrams for the 4 different tests.
We assumed every test to run with S1Action by default and, for that reason, when we say,
e.g., Unsupervised we are referring to the absence of other two supervisors. The same
reasoning can be applied for the other test labels.
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4.5.3 Controller Model

We used the modified Q-learning algorithm for SMDPs described in Theorem 4.4.5, with
the available actions at each state being given by the supervisor, as described previously,
and the state being the cartesian product of the observer state and supervisor state. As
learning parameters we used β = 0.1 (equivalent to a discrete time MDP discount factor
of γ = 0.9 for a time interval of 1 unit), α = 0.2 (not too large since some events are not
dependent on the robot making the tasks non deterministic) and ε = 0.1 with a simple
ε-greedy exploration strategy (Sutton and Barto, 1998). Table 4.4 shows what are the
individual equivalent discount factors for each of the uncontrollable events, when we use
β = 0.1 and assume the inter-event times are distributed according to Table 4.2 10 11.

Events γe Calculation γe Value

movedUp ,movedDown, movedLeft, movedRight
crossingUp , crossingDown, crossingLeft,
crossingRight

∫∞
0

t
σ2 e
− t2

2σ2−βtdt 0.78

wallUp , wallDown, wallLeft, wallRight
∫∞

0
t
σ2 e
− t2

2σ2−βtdt 0.88

choseA, choseB, declinedHelp
∫∞

0 λe−(β+λ)tdt = λ
β+λ 0.95

lead2A, lead2B
∫∞

0 λe−(β+λ)tdt = λ
β+λ 0.99

bored
∫∞

0
t
σ2 e
− t2

2σ2−βtdt 0.23

metPerson
∫∞

0 λe−(β+λ)tdt = λ
β+λ 0.5

gotAttention
∫∞

0 λe−(β+λ)tdt = λ
β+λ 0.91

Table 4.4: Equivalent event-based discount factors for the uncontrollable events.

For rewards, we gave a reward of 100 for completing the task of leading a person to
the appropriate room successfully, and thus receiving events { lead2A , lead2B }, a
reward of -50 for abandoning a task after beginning interaction, a reward of -50 every
time the person got tired of waiting and sent the bored event and a reward of -10 for
bumping into a wall. The goal was to have the robot learn how interact with a person
it met in the building and learn how to lead the person to one of two possible rooms,
chosen by the person through the interaction procedure.

To speed up the learning process, particularly because the supervisors occasionally
force the system to choose only one action or to wait for an unobservable event to
occur (an idling action), we only applied the learning algorithm in the states for which
#actions ≥ 2. Nevertheless, we kept updating the reward to account for changes in its
value between states where an actual decision was needed.

10λ is the parameter (rate) of the exponential distribution and E[X] = 1
λ if X ∼ Exponential(λ).

11σ is the parameter of the Raleygh distribution and E[X] = σ
√

π
2 if X ∼ Raleygh(σ).
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4.5.4 Observer Model

Under full observability, the observer models were identical in structure to the environ-
ment automata, i.e., the controller had access to the exact state the environment was in,
albeit not to the transition probabilities and time distributions of the associated events.

4.6 Results

The evolution of the total accumulated rewards over time can be seen in Figure 4.13; all
tests ran for T=50000. We can see how the fully supervised system converges to a steady
reward rate much faster than all the other ones, since it does not need to learn the correct
sequence of interaction actions or the location of the walls. Among the unsupervised
(or partially unsupervised) cases, the ones without the interaction supervisor suffer the
most because failure to complete the full interaction action sequence, until the person
agrees on help and communicates the place he wants to go to, means the robot has to
wait for another person and start the process all over.

Eventually, all systems start to approach a similar reward rate after having learned
the complete task and the location of the walls, with the difference being explained by
exploration factors, which again affect the cases without an interaction supervisor the
most.
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Figure 4.13: Total accumulated rewards over time under full observability for different
supervisory schemes, for a test with T=50000.

In Table 4.5 it is possible to see statistics of the interactions for each of the cases. Over
the course of T=50000 the fully supervised system managed to reach 60.6% successful
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tasks since it converged faster, with the failure rate being only of 6.1% and the remaining
cases corresponding to when help was simply declined by the person. The systems with
supervised navigation performed slightly better than their counterparts, both with or
without supervised interaction. The systems with supervised interaction had no task
abandons, by supervisor design, and those without supervised interaction abandoned
the task before completion roughly around 14% of the times.

Supervisors
Used

# interac-
tions

% leads
to goal

% per-
son gave
up

% robot
gave up

% help
declined

None 2353 34.8% 26.1% 14.7% 28.1%

Interaction 2362 57.7% 7.8% 0% 34.5%

Navigation 2473 36.8% 24.9% 14.0% 24.3%

Both 2655 60.6% 6.1% 0% 33.2%

Table 4.5: Task statistics under full observability for a test with T=50000.

In Figure 4.14 we show a detail of the initial instants of the experiment’s path to
highlight how inter-event time is not discrete and is, instead, regulated by the associated
cdfs.
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Figure 4.14: Detail of the cummulative rewards over time showing how time between
events is not discrete.
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4.7 Summary

In this chapter we established the building blocks of our agent control framework. We
assumed the systems to be controlled by the agent generated Generalized Semi-Markov
Processes and could be modeled by STA.

We classified the events of the STA according to their controllability and the time
it takes for them to occur. Furthermore, in a single agent scenario it is quite common
that two kinds of events, immediate controllable events and timed uncontrollable events,
suffice to model a large number of applications. In fact, these two kinds encompass the
most fundamental aspects of the behavior of an agent acting in an environment: the
start/stop of an agents’ actions and the effects of agents’ actions.

Additionally, we presented a definition of full observability w.r.t. the state of the
system and derived the necessary and sufficient conditions for the existence of full ob-
servability, considering an observer only has access to the strings generated by the system
and not its state directly. One of the effects of these conditions is that the observer can
be represented by a DFA. The supervisor was also assumed to be represented by a DFA,
and for that reason the language generated by the supervised system is regular.

We derived the Bellman optimality equations for the reinforcement learning based
controller and shown that under some assumptions a Q-learning rule could be proven to
converge to the optimal value function. The choice of actions for the controller is based
on the controllability of immediate events and, if no immediate uncontrollable events
exist, the emission probabilities of the controllable events will be directly related to the
value of the policy for the corresponding action. The choice of which controllable event
to fire can be deterministic or probabilistic according to the controller policy.

Finally, we presented a case study of a robot navigating in a building environment,
whose goal was to lead visitors to one of two rooms, and shown how the introduction of
a supervisor improved the learning task.



Chapter 5

Partial Observability: Deterministic
Observer

Full observability of a Stochastic Time Automata, as defined in the previous chapter,
requires an observer to be able to univocally identify the state of the system by looking
at the string of events that it outputs. For this to happen, the transition function of the
STA (defined in terms of states and events) must be deterministic and all events must
be observed. The questions that naturally arise are:

• What happens if one of the observability assumptions is broken?

• What can we do under partial observability?

Answering those questions is closely tied to the observer we use to obtain state
estimates, the amount of knowledge about the system embedded in said observer and
the type of representation the observer uses. When assuming full observability, we saw
how the observer can be represented by a function which, essentially, mimics the system’s
transition function, which allows us to use a FSA as observer with the transition function
being isomorphic with the transition function of the system.

The main difference between this observer automaton and the system itself is the
fact that, since the observer is built as a recognizer for the language generated by the
system, it has no information about the parameters that determine the firing of events:
random switch probabilities for events that fire immediately and clock structure for
timed events. The observer retains the logic structure of the STA without maintaining
information about its stochastic part. This observer is deterministic by its own nature,
which as mentioned is a consequence of full observability.

Under partial observability, it will generally not be possible to construct an observer
function which is isomorphic to the transition function of the STA. Nevertheless, it is
often true that the uncertainty in the state of the system is not total and an observer can
still identify a subset of the state space where the system will certainly be. This observer
will, in fact, still be deterministic but instead of identifying states it will identify subsets
of the state space.

93
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We will address the questions posed previously under the assumption that we still
have a deterministic observer that can be represented by a FSA. The only information
the observer is assumed to have about the system is the logic transition structure.

5.1 Observer Model

5.1.1 Unobservable Events

We start by assuming the existence of unobservable events with Euo 6= ∅, dropping
one of the assumptions of Theorem 4.2.1. Nevertheless, the STA transition function is
still assumed to be deterministic, with the uncertainty stemming from the event firing
distributions. An observer is still a function:

O : P (L(G))→ X̂

and the difference to the full observability case is that it is not possible to find a function
O that induces a bijection between X and X̂.

In fact, since the projection is not the identity as was previously the case, due to
the existence of unobservable events, it is possible to have strings s1 6= s2 such that
P (s1) = P (s2), which means they will be mapped by O to the same state estimate. In
addition, if we have that x1 6= x2, with x1 = f(x0, s1) and x2 = f(x0, s2), then it would
not be possible to construct a bijective function such that its inverse reconstructs the
system state, with (b−1 ◦O)(P (s)) = x.

Nevertheless, it is still possible to construct an observer and a backward projection
function that, for each element of X̂ identifies the subset of X where the system might
be. We define a backward state projection induced by an observer:

Definition 5.1.1. An STA, G, with deterministic transition function f : X ×E∗ → X
(extended to strings) , a projection P : L(G)→ E∗O and an observer O : P (L(G))→ X̂
induce a backward state projection:

b+ : X̂ → 2X

with b+(x̂) = {z ∈ X : ∃s∈L(G)(z = f(x0, s)) ∧ (O(P (s)) = x̂)}

Under full observability we have that every element of the backward projection will
be a singleton, with b+(x̂) = {b−1(x̂)}.

5.1.2 Building the Observer Automaton

This kind of observer can be given by a finite state automaton similarly to what was
done under full observability. The difference is that the observer automaton will not
have the same transition structure as the system and will not be isomorphic to the
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underlying DFA1 associated with the transitions of G . An algorithm to construct such
an automaton is presented in (Cassandras and Lafortune, 2007) and the first step is to
transform the transition DFA in the non deterministic FSA that is seen after projection
P is applied.

We have that Gnd = (X,Eo ∪ {ε}, fnd,Γnd, xnd0 ) with:

• X is the same state space as the original automaton.
• Eo ∪ {ε} is the event set which only considers observable events and the special

event labeled as the empty string.
• fnd : X × Eo ∪ {ε} → 2X is the non deterministic transition function with:

fnd(x, e) =

{
{f(x, e)} e ∈ Eo
{y ∈ X : y = f(x, e) ∧ e ∈ Euo} e = ε

• Γ : X → 2E is the set of enabled events for each state but with all the unobservable
events replaced with ε.
• xnd0 is the initial state with xnd0 = {x0}
The procedure to construct a DFA observer Obs = (X̂, Eo, fO,ΓO, x̂0) from the NFA

automaton that we just described, as presented in (Cassandras and Lafortune, 2007),
can be seen in the following algorithm:

Algorithm 5.1.1 Procedure to Build an Observer from a Nondeterministic FSA.

Start with X̂ = 2X \ ∅
for all x ∈ X do

Define 2:
UR(x) = fnd(x, ε)

end for
Define, for a set B:
UR(B) =

⋃
x∈B UR(x)

Define x̂0 = UR(x0)
for all S ∈ X and e ∈ Eo do

Define:
fO(S, e) = UR({x ∈ X : ∃xe∈Sx ∈ fnd(xe, e)})

end for
{The resulting state space of the observer is a subset of 2X}

With this definition, the observer function will essentially be given by the transition
function of the observer automaton extended to strings, with O(s) = fO(x̂0, s), and a
backwards projection is given by the identity function, with b+(x̂) = x̂, since the states of
the observer as constructed by the algorithm are essentially subsets of the state space of

1Note that without the stochastic structures that define the firing of events, the STA is a Finite
State Automaton.
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the original automaton already. Still, other sets could be used as states of the observer,
as long as would be possible to construct a function b+ that preserves the correspon-
dence between states of the observer and subsets of X. Put another way, if for some
observable event e ∈ Eo and observer states x̂1, x̂2 ∈ X̂ we have that x̂2 = fO(x̂1, e) then:

b+(x̂2) = UR({x ∈ X : ∃xe∈b+(x̂1)x ∈ fnd(xe, e)})
The obvious drawback to using an observer built with the procedure described in

(Cassandras and Lafortune, 2007) is the fact that its usefulness depends on the transition
structure of the system automaton. Worst case scenario, after a transition period the
observer will be stuck in a state x̂ with b+(x̂) = X and fO(x̂, e) = x̂ for all e ∈ Eo.
What this means is that the observer reached an observer state where it is not possible
to extract any information about the state in which the system is in.

Nevertheless, it is common that systems have a sparsely defined transition function
and, for that reason, there is still useful information in the state of the observer, which
can be used by the controller as support for decision. A typical and ideal example is
when a given observable event eR resets the state of the original automaton, with:

∃xR∈X∀x∈Xf(x, eR) = xR

In this case, whatever the observer state x̂ is, we have that:

b+(fO(x̂, eR)) = UR({x ∈ X : ∃xe∈b+(x̂)x ∈ fnd(xe, eR)})
= UR({x ∈ X : x = xR})
= UR(xR)

= fnd(xR, ε)

The occurrence of event eR grounded the observer to a state which corresponds xR and all
the states that can be reached from xR through unobservable transitions, in all effects
reseting the state of the observer to one with potentially more accurate information,
particularly if as worst case scenario b+(x̂) = X3.

5.1.3 Probabilistic Transition Function

If, in addition to considering unobservable events, we also drop the assumption of a
deterministic transition function, it is important to determine how much information
we can obtain from the system by using a deterministic observer. So, in this case, the
transitions of the automaton are represented by a function:

p : X × E ×X → [0, 1]

3In MDPs, the information about the current state that the agent receives at each time step can be
though as one of those events. In a way, an MDP in a classical Reinforcement Learning setting where
the system outputs a state value can be interpreted, in light of a DES formalism, as a system that has
an event set E such that |E| = |X| and there is a bijection e : X × E between states and events such
that the system always outputs e(x) when it reaches state x.
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representing the probability of jumping from one state to another, given the occurrence of
an event. Since p defines a probability mass function, it is clear that

∑
y∈X p(y|x, e) = 1

for every state x and event e4.
In this case, even if all events are observable, it is still not possible for an observer

function O to distinguish between two different states of the system, since they are
possible to be reached using the same trace s, as seen in the proof of Theorem 4.2.1.
Nevertheless, it is still possible to obtain a deterministic observer for the STA by looking
at the points where p is defined and not zero, the support of the function. We can
construct a NFA from the PA, obtaining a nondeterministic transition function, fnd :
X × E → 2X , from the probabilistic one, with:

fnd(x, e) = {y ∈ X : (p(y|x, e) is defined) ∧ (p(y|x, e) > 0)}

After that, we simply replace all the unobservable events with ε and obtain a nonde-
terministic FSA that can be used to construct the observer using the algorithm described
previously. The practical aspect behind building such an observer for an STA with an
underlying probabilistic automaton for transition structure is related to the fact that
the probabilities p(x′|x, e) are often not known by the agent but there is still knowledge
about the states to which the system might jump to by effect of a given event.

Again, this procedure is susceptible to a decrease of information in the state of
the observer and, worst case scenario, to the observer being locked in a state x̂ with
b+(x̂) = X. In this case, since the nondeterminism of the system increases the chances of
the observer not being able to extract any useful information from the strings of events
it observes, it is even more important that the function p(x′|x, e) has support over a
small set; if we represent it in matrix form Pe, for some ordering of X, then for each
event e the matrix will be ideally as sparse as possible. In the case a reseting event eR
exists, leading the system from any state to state xR, then PeR will be zero everywhere
except for a column of ones corresponding to xR.

5.2 Properties of the Observer States

To be able to apply some reinforcement learning algorithm to the signal provided by
the observer state, we need to verify wether the parameters associated with such a state
are Markovian and stationary. Since the observer is, by definition, deterministic, the
transition probabilities are intrinsically defined by fO.

However, there is no guarantee that even events that in the system occur immediately,
will manifest themselves immediately from the point of view of the observer. As an
example, take a string s = e1e2e3 with e1, e3 ∈ EO and e3 ∈ EU . Also, let us assume
that τ time passed between the occurrence of event e1 and the occurrence of event
e2. From the point of view of the system the generated events and time between them
evolves in the following way:

e1
τ−→ e2

0−→ e3

4 In reality, p might not be defined for every (state, event) pair but only for those in which e ∈ Γ(x).
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On the other hand, after applying projection P , and from the point of view of the
observer, we have:

e1
τ−→ e3

In practical terms, the observer view event e3 has having a time distribution associated,
with F̂e3(t) = Fe2(t), where F̂e(t) is a distribution associated with the random variable
that represents the time between the occurrence of any event and event e, as seen by the
observer. Naturally, if e3 always occurs after an observable event, then the perceived
distribution will be the Heaviside function, as is the case for immediate events.

So it becomes obvious that we need to try to determine these and associated param-
eters, or a way to calculate them, for the observer states, in order to be able to apply
the optimality equations derived in Chapter 4. Let us start by taking a look inside
one of the observer states. By definition, a state of the observer x̂ corresponds to a
subset of the the system automaton, by the way of function b+. So, we can always say
that b+(X̂) ⊂ 2X but for simplicity of notation, and since the map b+ is by definition
injective, we will simply write X̂ ∈⊂ 2X , although strictly this is not necessarily the
case.

5.2.1 Semi-Markov Chains

To help determining the probability measures associated with the occurrence of events,
we will make use of some results on Semi-Markov Chains (SMC), as explained in (Lopez
et al., 2001) and in greater detail in (Kulkarni, 1995). A SMC can be described as a
tuple M = (X,P,Q) where:

• X is a finite set of states.

• p : X ×X → [0, 1] is a transition probability matrix such that
∑

x′∈X p(x
′|x) = 1

for every x ∈ X.

• Q : X × X × (R+
0 → [0, 1]) is a matrix of continuous probability distributions,

with Q(x′, x, t) representing the probability of moving from state x to x′ in less
than t time, i.e., Q(x, x′, t) = P [Y < t|X = x,X ′ = x′]. Y is a random variable
representing the holding time between state x and state x′.

The transition structure of an SMC is identical to that of a Discrete Time Markov Chain
(DTMC), and (X,P ) is often referred to as the embedded DTMC of M .

The state holding time is of some state x can be given by a distribution F such that:

F (t|x) = P [Y < t|X = x] =
∑
x′∈X

p(x′|x)Q(x, x′, t) (5.1)

essentially taking the expected value of Q over all the possible successor states.
It is common to impose restrictions on the time it takes for a system to change state,

which are essentially the same as Assumptions 2.2.1 and 4.4.1. We say that:



5.2. PROPERTIES OF THE OBSERVER STATES 99

Assumption 5.2.1. There exist ε > 0 and δ > 0 such that

F (δ|x) < 1− ε

∀x∈X .

Additionally, we assume the expected value of the holding time at each state is finite,
E[F (t|s)] <∞.

A sequence of states:

x0
t0−→ x1

t1−→ x2
t2−→ · · ·

is called a path in M if all the consecutive probabilities are non null, i.e, p(xi+1|xi) > 0.
The set of all paths in the SMC can be denoted by PathM with PathM(x) referring to
all the paths that start in state x. For a given path σ, we can denote the state occupied
at time t by σ@t.

Some important measures on SMCs can be defined.

π(x, x′, t) = P{σ ∈ Path(x) | σ@t = x′}
= P [X ′ = x′|T = t,X = x]

(5.2)

denotes the probability of the state being x′ ∈ X at time t if the chain started in state
x. This has a similar meaning to π(t) in a Continuous Time Markov Chain (CTMC)
except that the initial state is specified.

Another important measure is related to the first time a state x′ is reached after
starting in state x and within t time units:

H(x′, t|x) = P{σ ∈ Path(x) | ∃t′∈]0,t] σ@t′ = x′}
= P [X(t) = x′, Y < t|X(0) = x]

(5.3)

This measure satisfies the following system of equations:

H(x′, t|x) = p(x′|x)Q(x, x′, t) +
∑
x′′ 6=x′

∫ ∞
0

p(x′|x)
dQ(x, x′′, τ)

dτ
H(x′′, t− τ |x′)dτ (5.4)

which can be proved to have a unique solution if the state holding times are positive
with nonzero probability, as guaranteed by Assumption 5.2.1.

5.2.2 Observer States as Semi-Markov Chains

Let us now consider, for each state x̂ of the observer, a SMC Mx̂ = (x̂, p, Q)5. If we focus
on the dynamics of the SMC without the possibility of escaping it, i.e, of the occurrence

5Although we generally denote sets in upper case, here we maintain the notation x̂ to emphasize
that the state space of the SMC is one state of the observer. Strictly speaking, x̂ is not necessarily a set
of states but can be associated with a set of the system states through the function b+, as previously
defined, and so the abuse of notation is reasonable for the sake of simplicity of expressions.
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of observable events that, by definition, will change the state of the observer:

p(x′|x) = P [X ′ = x′|X = x]

=
1

η(x)

∑
e∈Γ(x)∩EUO

P [X ′ = x|X = x,E = e] P [E = e|X = x]

=
1

η(x)

∑
e∈Γ(x)∩EUO

p(x′|x, e) p(e|x)

(5.5)

with p(x′|x, e) and p(e|x) being given by the STA parameters as described in Chapter
4. The normalizing factor η(x) is needed because the probabilities of events occurring
in each state are defined for all the events and not just the unobservable ones. We have:

η(x) =
∑

e∈Γ(x)∩EUO
p(e|x)

If we make another assumption:

Assumption 5.2.2. The control and supervisor actions only change after the occurrence
of observable events.

It is reasonable to assume so since from the point of view of the supervisor and
observer there are no changes in the system. We can now redefine the SMC to include
the influence of the supervisor and observer actions, with MaS

x̂ = (x̂, paS, QaS), which
leads to:

paS(x′|x) = P [X ′ = x′|X = x,A = a, S]

=
1

η(x)

∑
e∈ΓS(x)∩EUO

P [X ′ = x|X = x,E = e] P [E = e|X = x,A = a, S]

=
1

η(x)

∑
e∈ΓS(x)∩EUO

p(x′|x, e) p(e|x, S, a)

(5.6)

with p(e|x, S, a) being given directly by Equations (4.3) and (4.4). Additionally:

η(x) =
∑

e∈ΓS(x)∩EUO
p(e|x, S, a)

On the other hand, the function QaS is given by:

QaS(x′, x, t) = P [Y < t|X ′ = x′, X = x,A = a, S]

=
P [Y < t,X ′ = x′|X = x,A = a, S]

P [X ′ = x′|X = x,A = a, S]

=

1
η

∑
e∈ΓS(x)∩EUO P [Y < t,X ′ = x′|X = x,E = e] P [E = e|X = x,A = a, S]

1
η

∑
e∈ΓS(x)∩EUO P [X ′ = x′|X = x,E = e] P [E = e|X = x,A = a, S]

=

∑
e∈ΓS(x)∩EUO Fe(t) p(x

′|x, e) p(e|x, S, a)∑
e∈ΓS(x)∩EUO p(x

′|x, e) p(e|x, S, a)

(5.7)
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with H(t, x′|x, e) being the same as in Equation (4.6).

Now let us extend the SMC with some states corresponding to the occurrence of
observable events. Let us define XE = {xe}e∈EO that essentially creates one additional
state for each e ∈ EO. The purpose of these states is to study the conditions under
which the original SMC corresponding to a given observer state x̂, as defined previously,
is abandoned and the idea is to make the chain jump to an absorbing state in XE every
time an observable event occurs.

So now we have M̃aS
x̂ = (x̂ ∪XE, p̃aS, Q̃aS), and the chain parameters are defined as

follows.

• For x, x′ ∈ x̂6, the transition probabilities are defined as Equation (5.6) but con-
sidering all the active events in x. So, we have:

p̃aS(x′|x) =
∑

e∈ΓS(x)

p(x′|x, e) p(e|x, S, a) (5.8)

Additionally, we assume that p(x′|x, e) = 0 if e is an observable event.

• For x ∈ x̂ and x′ ∈ XE the system will change from any state x to x′ every time
there is an occurrence of the corresponding observable event e(x′) ∈ EO. So we
have that:

p̃aS(x′|x) = p(e(x′)|x, S, a) (5.9)

which stems from the fact that

p(x′|x, e) =

{
1 e = e(x′)

0 otherwise

• Finally, since we are only interested in studying the first time the markov chain
reaches a state in XE, corresponding to the occurrence of an observable event
and abandoning the original SMC MaS

x̂ , we defined that each state in XE is an
absorbing state, i.e., if x ∈ XE then p̃aS(x|x) = 1.

As for the Q matrix, we have:

Q̃aS(x′, x, t) =

∑
e∈ΓS(x) Fe(t) p(x

′|x, e) p(e|x, S, a)∑
e∈ΓS(x) p(x

′|x, e) p(e|x, S, a)

Particularly this expression also defines Q̃aS(t|x, x′) when x ∈ XE but its value is irrel-
evant for our study here.

6Note that x̂ ∩XE = ∅.
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Now, if we go back to Equation (5.4) and apply it for some initial state x0 ∈ x̂ and
final state xe ∈ XE we have:

HaS(xe, t|x0) =

p̃aS(xe|x0) Q̃aS(x0, xe, t) +
∑
x′′ 6=xe

∫ ∞
0

p̃aS(xe|x0)
dQ̃aS(x0, x

′′, τ)

dτ
HaS(x′′, t− τ |xe)dτ

(5.10)

and we know there is a solution to this system of equations (Kulkarni, 1995). Since
HaS(xe, t|x0) represents the probability of reaching state xe for the first time, and since
we defined xe as being reached every time the event e occurred, we can write that:

HaS(xe, t|x0) = P [Y < t,Xt = xe|X0 = x0, a, S]

By taking the marginal over t we can obtain the probability of ever reaching state xe if
we start in state x0.

p∞(xe|x0, a, S) =

∫ ∞
0

HaS(xe, dt|x0)

This probability is not necessarily 1 if nothing else because we assumed every state in
XE to be an absorbing state, so there might be a chance that some state is reached
before xe, i.e., there might a chance another observable event occurs before e. Since
reaching xe does correspond to the occurrence of event e in x̂, we can write that:

p(e|x̂← x0, a, S) =

∫ ∞
0

HaS(xe, dt|x0) (5.11)

On the other hand:

P [Y < t,Xt = xe|X0 = x0, a, S] = P [Y < t,E = e|X0 = x0, a, S]

= P [Y < t|E = e,X0 = x0, a, S] P [E = e|X0 = x0, a, S]

And so we can write that:

HaS(xe, t|x0) = Fe(t|x̂← x0) p(e|x̂← x0, a, S)

or

Fe(t|x̂← x0, a, S) =
HaS(xe, t|x0)∫∞

0
HaS(xe, dt|x0)

(5.12)

We are now in the condition to prove the following result:

Theorem 5.2.1. Suppose we have a C-GSTA with a set of observable events EO. Let
Obs = (X̂, Eo, fO,ΓO, x̂0) be the observer automaton constructed using the algorithm
described previously. The states of the observer are a Markovian signal that can be used
for learning if each state x̂ is reached always under the same initial condition x0(x̂).
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Proof. Going back to Equations (5.12) and (5.11), if the initial state of x̂ is always x0(x̂),
then we can write:

p(e|x̂← x0(x̂), a, S) =

∫ ∞
0

HaS(xe, dt|x0(x̂))

Fe(t|x̂← x0(x̂), a, S) =
HaS(xe, t|x0(x̂))∫∞

0
HaS(xe, dt|x0(x̂))

But since x0 is fixed for every x̂, the quantities p(e|x̂, a, S) and Fe(t|x̂, a, S) will only
be dependent on the observer state and supervisor and controller actions. We can
also extend the state representation to include both the state of the observer and the
supervisor, and in this case the supervisor function is also dependent on the state.

So essentially, we have the same parameters defined in Chapter 4 with no dependence
on the past history of the observer but only its current state – the event path which
lead to a given state of the observer x̂ is irrelevant since we are assuming the state will
always be reached in the same way, i.e. when the observer enters x̂ the system will
always enter the same x0 ∈ x̂. For this reason, the state of the observer is a Markovian
signal and the optimality equations from Chapter 4 also apply.

Additionally, if we maintain the Assumptions 4.4.1 and 4.4.2, we can still guarantee
the existence of a fixed point of the Bellman operator, applied to the observer state, and
the same Q-learning update rule can be used.

It is important to note that, although we have showed how to obtain the expressions
for p(e|x̂, a, S) and Fe(t|x̂, a, S), if a learning algorithm is used these quantities will be
embedded in the Q − values and there will be no need to calculate them analytically,
which might prove difficult specially solving the system of equations given by Equation
(5.4) or (5.10). This is one of the advantages of using a stochastic approximation strat-
egy like Q-learning, and it is well patent in this particular application.

Also, the restriction of making every sub-SMC associated with a given state of the
observer might be lifted if the initial condition is not always the same but the controller
has information about what such initial condition is. In this case, the state of the
observer used by the learner must be given by (x̂, x0), with x0 ∈ x̂. Put another way,
by extending the state of the learner to the initial condition of each observer state,
it is possible to differentiate from the several emission probabilities and cumulative
distribution functions (cdfs) p(e|x̂← x0(x̂), a, S) and Fe(t|x̂← x0(x̂), a, S) respectively.
Since each state of the observer is associated with a finite number of system states, there
will also be a finite number of initial conditions. An upper bound for the number of
states of the learner is |XS||X̂||X| but since each x̂ does not contain all the possible
states in X, the number of possible initial conditions will be slightly lower, and the
overall number of states that the learner will experience will be lower as well. We
are not considering the situations where the initial state of each sub-SMC might be a
distribution over x ∈ x̂.
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5.3 Controller Model

Under the conditions expressed in Theorem 5.2.1, it is possible to write Markovian tran-
sition and event emission parameters for each observer state so that it can be used in
a Bellman equation and, ultimately, by the reinforcement learning based controller de-
scribed in Chapter 4. Nevertheless, there are three differences that need to be considered
when adapting the algorithm to a setup with this kind of observer:

• The cdfs associated with the inter-event time are not only associated with events
but with the observer state and controller/supervisor actions being considered. In
fact, as explained previously, even though the occurrence of a given event is still
governed, at the system level, by a fixed cdf, the crucial quantity when applying
the optimality equations to the observer is the perceived cdf, from the point of
view of the observer, i.e., Fe(t|x̂, a, S).

• If the rewards are dependent on the system state and not the observer state, it
might happen that the controller receives lump rewards between event occurrences,
or put another way, in an instant where it is not expecting to receive any reward.
Additionally, the rate reward term, which depends linearly on time, might change
due to an observable event which, from the point of view of the observer, is as if
the reward changed with no apparent reason since it does not have access to state
changes produced by unobservable events.

• The action set cannot depend directly on the system state but needs to be a
function of the observer and supervisor states.

The first difference of the case being explored in this chapter is easily addressed
by modifying the optimality equations and associated quantities. As for the reward
problem, we introduce the following assumption:

Assumption 5.3.1. The rewards are assumed to be obtained by a process posterior
to the observation and, for this reason, are subject to the same constraints in terms
of unobservable events as the observer. Put another way, they are a function of the
observer state.

In fact, we had already considered such an assumption in Chapter 4 but since there
was a bijective correspondence between states of the observer and states of the system
there was no visible effect of assuming the rewards were dependent on the state of the
observer and not the state of the system.

Finally, we will re-define the action set as:

Ax̂ =

{
ΓS(x̂) ∩ EA ΓS(x̂) \ EA = ∅
(ΓS(x̂) ∩ EA) ∪ {εa} otherwise

with ΓS(x̂) = ΓO(x̂) ∩ S(xS), where we explicitly refer to xS in the supervisor function.
Additionally, ΓO(x̂) only depends on the observer state but, for simplicity of notation
in the Bellman equations, we maintain the extended state assumption.
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Now, we can re-write the bellman optimality equations in the following way:7

V S,∗(x̂) = max
a∈Ax̂

 ∑
e∈ΓS(x̂)

p(e|x̂, S, a)

r(x̂, e) + γe(x̂, S, a)
∑
y∈X̂

p(y|e, x̂)V S,∗(y)

 (5.13)

where the event dependent discount factors now also depend on the action and state,
with:

γe(x̂, S, a) =

∫ ∞
0

e−βτFe(dτ |x̂, S, a)

Like mentioned previously, this differences are mostly relevant to writing the equa-
tions and showing how the observer state still can be used for learning, leading to the
optimal control solution given the information that the observer has available. However,
if the controller is implemented by a Q-learning algorithm like in Chapter 4 we can use
the same update rule from Equation (4.26), given by:

QS
k+1(x̂k, ak) = (1− αk)QS

k (x̂k, ak) + αkQ̃
S
k+1(x̂k, ak)

with
Q̃S
k+1(x̂k, ak) = rk + e−βτk max

b∈Ax̂k+1

QS
k (x̂k+1, b)

5.4 A Practical Case

We used the same domain as in the full observability chapter but considered the supervi-
sor, observer and controller were not able to observer the events of type moveDirection,
only being able to determine when the robot reached a corner/intersection or when it
bumped into a wall. All the interaction events were considered to be observable, and
the observer automata representing robot-person interaction did not change.

We did not use the navigation supervisor in the partial observability tests because
it requires a perfect knowledge of the map position of the robot. Since the states of
the map observer are subsets of the map positions, it would still be possible to do some
supervision, if for some state xobs ∈ Xobs of the observer, all corresponding states8 of
the original supervisor shared a non-active event:

∃e∈EC∀x∈xobse 6∈ Γ(x)

but the amount of those states would be minimal and there would not be a big gain in
using a navigation supervisor.

In Figure 5.1 a detail of the of the navigation observer under partial observability is
shown.

We did 2 additional tests comparing the performance of the supervised system partial
observability, both with no supervisor and with the interaction supervisor9.

7We are still considering the state of the observer augmented by the state of the supervisor, as was
done in Chapter 4. So, in reality x̂ actually refers to the pair (x̂, xS).

8These states do not reflect the complete state of the environment, observer or supervisor, but rather
only of the corresponding map automata at each level.

9The single-action supervisor was still used in all situations.
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Figure 5.1: Detail of the map observer under partial observability.

5.5 Results

For the partial observability case, we obtained an evolution of total accumulated rewards
over a period of T=50000 that can be seen in Figure 5.2. At first sight, it seems surprising
that under partial observability the system seems to converge faster than under full
observability. This can, in fact, be explained by the nature of the environment: since
the robot lives in the corridors of a building, there is often no reason to turn back while
navigating a corridor, and the fact that under partial observability there is no way to
observe some of the intermediate state transitions, makes the robot always travel full
corridors. Nevertheless, for the particular states where it might be better to turn back,
usually after unexpected events like meeting a person in the middle of the corridor or
finishing a task, the fully observable system is able to distinguish between states and,
thus, learn exactly when to turn back. We can see that, for the time period considered,
the fully observable system under interaction supervision in fact does converge eventually
to a higher reward rate than the partially observable one.

In Table 5.1 the statistics under partial observability are shown. We can see that with
the Interaction supervisor, the percentage of successful tasks was slightly bigger under
full observability than under partial observability (60.6% vs. 59.2%), that difference
being likely to increase if more time was considered. The % of times the robot abandoned
the task or the person got tired of waiting are all very similar to the fully observable case,
the first one because it mainly depends on the exploration parameter and the amount of
actions available and the second one depends on the probability of doing actions outside
the correct action sequence, and that is also independent of observing the map state.

In this case we did not impose the condition of using the same initial condition for
each state of the observer. Nevertheless, we can see the system behaved well, although
this is dependent on the particular application at hand.
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Figure 5.2: Total accumulated rewards over time under partial and full observability for
different supervisory schemes, for a test with T=50000.

Supervisors
Used

# interac-
tions

% leads
to goal

% per-
son gave
up

% robot
gave up

% help
declined

Interaction 2182 59.2% 8.2% 0% 32.6%

None 2400 41.0% 21.4% 13.1% 24.5%

Table 5.1: Task statistics under partial observability for a test with T=50000.

5.6 Summary

In this chapter we studied the effects on our framework of dropping the observability
assumptions from Chapter 4. Under partial observability, it is still possible to construct
a deterministic observer which captures the logical aspects of the system. In general,
this observer is less informative than the one under full observability but it still pro-
vides enough information to support decision making, particularly since it only requires
knowledge about the logic structure of the transitions of the underlying system to be
built, and is not dependent on the knowledge about its parameters. The observer works
by identifying states in a disjunctive way, i.e., each state of the observer identifies a
subset of the state of the system, which is essentially as saying, e.g., ”The system is
either in state x, y or z”.

With this model of the observer, each observer state will not only be associated with
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a subset of the system but also with the dynamics within that subset. For this reason,
each state of the observer can be identified with a Semi-Markov sub-Chain, similar to
the ones defined in (Lopez et al., 2001), of the STA. We proved that, if the initial
conditions of this subchain are always the same, then the evolution of the states of the
observer is also a Semi-Markov Process, as under full observability in Chapter 4, and
the optimality equations and learning rule used in Chapter 4 can still be applied to the
observer. Nevertheless, there are some minor differences in the optimality equations
that need to be taken into account which we discussed, although they do not affect the
update rule.

Finally, we picked up the case study from Chapter 4, re-did the experiments under
partial observability and with the construction of a deterministic observer as described
in this chapter, and compared the results to the ones under full observability. We saw
that incomplete knowledge about the state of the system, in this particular case, actually
led to better short term results since it eliminated some exploring options, but the long
term behavior was, as expected, not as good.



Chapter 6

Partial Observability: Probabilistic
Observer

In Chapter 5 we looked at the question of partial observability by assuming we could
construct an observer that retained the deterministic characteristics of the system, in the
presence of uncertainty in observation both from the existence of unobservable events
and the lack of knowledge about the effects of the events. In fact such approach is often
enough for a vast number of problems, particularly if they exhibit sparse transition
functions and identifiable states. Additionally, we saw how the observer models used
required little information about the parameters of the underlying system.

But what if the observer has access to additional information? It should be possible
to construct policies that are more adequate to deal with partial observability by in-
cluding that additional information in the observer model. Since the parameters of the
system are probabilistic quantities, it seems natural to adopt as observers models that
are able to encode such probability information.

In this chapter we address the question of considering probabilistic observer models
and how that affects the supervisor and the optimality equations for the controller.

6.1 Observer Model

We start by noting that the transition structure of the STA that models the system is
given by a probabilistic automaton, if the full observability assumptions are not consid-
ered. A probabilistic automaton (PA) can be defined as (X,E,Γ, p, p0) where:

• X represents a state space.
• E represents an event set.
• Γ : X → 2E is the set of enabled events in state x
• p : X × E ×X → [0, 1] is a transition function defined as:

p(x′|x, e) = P [Xk+1 = x′|Xk = x,Ek = e]

The function is possibly partial, not defined for events e /∈ Γ(x). The indices
k, k + 1, . . . are associated with the moments in time where some event occurs.

109
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• p0(x) is a probability distribution over X that represents the knowledge about the
initial state of the system, P [X0 = x].

The name probabilistic automaton is sometimes used to represented one of the most
popular kinds of these systems called Rabin Automata (Rabin, 1963).

This automaton can be used as a recognizer for the language generated by the system
taking the event strings as inputs. The state of the observer automaton at each time
step is characterized by state probabilities, much like in Discrete Time Markov Chains,
such that:

vj(k) = P [Xk = xj]

for some ordering of state space X. Since the we can always build a bijective index
function according to the ordering of X, it is sometimes common to write P [Xk = j]
even though in reality the state space is not a subset of N.

In fact, if we consider matrices Pe according to the referred ordering of X such that:

Pe(i, j) = p(xj|xi, e)

and

Pe(i, j) = 0 if j 6= i, e 6∈ Γ(xi)

the distributed state of the probabilistic automaton, given an input string, e.g., e1e2e3,
can be calculated as:

v = p0 Pe1 Pe2 Pe3

with the difference to DTMCs being that the probability matrices depend on the input
string.

This kind of automaton is specially adequate when we want the transitions to depend
on input events. The idea is that the automaton state will change according to whatever
dynamics are associated with the firing of events but this mechanism does not need to
be known by the automaton itself. However, since we intend to use it as an observer for
the state of the system, there is information not encoded in the automaton definition
and that could be used to more precisely provide a probabilistic estimation of the system
state.

In fact, since the automaton does not know the exact state of the system, the fol-
lowing Bayesian expression is more accurate in expressing the update of the probability
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vector v:

vk+1(x′) = P [Xk+1 = x′|Ek = e, Vk = vk]

=
∑
x∈X

P [Xk+1 = x′|Ek = e,Xk = x, Vk = vk] P [Xk = x|Ek = e, Vk = vk]

=
∑
x∈X

P [Xk+1 = x′|Ek = e,Xk = x]
P [Ek = e|Xk = x, Vk = vk] P [Xk = x|Vk = vk]

P [Ek = e|Vk = vk]

=
1

η

∑
x∈X

p(x′|x, e) P [Ek = e|Xk = x] vk(x)

(6.1)

where η is a normalization constant.
The expression bears a strong resemblance to the POMDP update rule of Equation

(2.21), with the difference residing in the fact that not only events work in a simi-
lar way to both actions and observations but the emission of events, corresponding to
P [Ek = e|Xk = x], depends on the previous state and not the next one, as opposed to
observations in POMDPs . We can see how events have a double aspect of changing
the state of the system, like actions, and providing information about the state of the
system, like observations. Conversely, we could think of actions and observations as
kinds of events.

In any case, the probability vector essentially represents the same concept as the
notion of belief and, for this reason, we will start using b to denote it and b0 to denote
the initial probability vector of the system.

6.1.1 Probabilistic Discrete Event System

To better model all the quantities that the observer needs to have access to we will use,
instead of a PA, a model that in (Lawford and Wonham, 1993; Pantelic et al., 2009) is
known as a Probabilistic Discrete Event System (PDES), which can be described as a
tuple (X,E,Γ, p, b0, pE) with:

• X,E,Γ, p, b0 having the same meaning as for Probabilistic Automata.
• pE : X × E → [0, 1] with pE(e|x) = P [E = e|X = x] representing the probability

of event e firing in state x.

This kind of model is similar to GSTAs but time is not considered explicitly and
all the event emission probabilities are given directly by probability distributions over
events. In a way, it is as if all the states of a GSTA corresponded to random switches but
with no consideration about the time transitions take. Since we intend to use the PDES
as an observer to the system, it is important to note that it does not generate a string
of events, although it has information about the probabilities of generating events, but
rather it receives a string of events and outputs a probability vector, or belief.
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The belief update for this system is, then, done using the following rule based on
Equation (6.1)

be(x′) =
1

η

∑
x∈X

p(x′|x, e) pE(e|x) b(x) (6.2)

with η = p(e|b) =
∑

x∈X pE(e|x) b(x). The update is similar to Equation (2.21).

So far we have not considered the time between states x and x′ to be an observational
input. If we do consider that besides the events the observer also has access to the time
the transition took, then the update expression must be modified to:

beτ (x′) =
1

η

∑
x∈X

p(x′|x, e) pE(e|x)f(τ |x, e) b(x) (6.3)

with η =
(∑

x∈X pE(e|x) b(x)
) (∑

x∈X f(τ |x, e) b(x)
)

and f(t|x, e) = dF (t|x,e)
dt

. However,
since we assumed that the time distribution associated with each event only depended
on the event itself, then:

f(τ |x, e) = fe(τ) =
dFe(t)

dt
|t=tau

and ∑
x∈X

f(τ |x, e) b(x) = fe(τ)

which reduces the update to Equation (6.2). Essentially, if the time cdf associated with
each event only depends on the event itself, knowing the sampled time the event took
to occur, τ , does not provide any additional information about the state of the system,
considering the event itself is known.

6.1.2 The Observer as a Probabilistic Discrete Event System

The observer is a function:

O : P (L(G))→ ∆(X̂)

with ∆(X̂) representing the simplex of beliefs over X̂, i.e., the space of probability
distributions on X̂ – for simplicity of notation we will refer to it as ∆, similarly to what
was done for POMDPs. Note the observer progression we analyzed so far:

Deterministic Full Observer: in Chapter 4 the observer had as output a value that
could be bijectively identified with the state of the original system.

Deterministic Partial Observer: in Chapter 5 the observer had as output a rough
idea of what the state of the system could be, with observer states corresponding
to subsets of the state space of the system.
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Probabilistic Partial Observer: in this chapter the observer does not have a deter-
ministic state but a probabilistic one. Essentially, the idea is that here the state
space of the observer is isomorphic to the state space of the system, as in Chap-
ter 4, but the observer does not pick a state directly and instead maintains a
distributed representation of state.

The observer can be implemented by a PDES defined as:

Obs = (X̂, Eo,ΓO, p̂, b0, pE)

with X̂ = b(X) for some bijection between both state spaces, Eo is the set of observable
events, ΓO(x̂) = Γ(b−1(x̂)) and p̂ : X̂ × E × X̂ → [0, 1] is a function such that, for
x̂′ = b(x′) and x̂ = b(x) we have:

p̂(x̂′|x̂, e) = p(x′|x, e)
For now we assume the effects of events are not deterministic, which breaks one of the
observability conditions, but all events are observable. In this case, since X, Γ and p
are isomorphic with X̂, ΓO and p̂, we will drop the additional notation and refer to the
quantities of the observer as the corresponding quantities of the original system, unless
explicitly stated. Still to define is the function pE but we will address that further ahead.

In general, even under full observability as defined in Chapter 4, meaning that it is
possible to reconstruct an estimate of the state of the system from the produced string
of events, there might be errors in the definition of the observer model. In that case,
the system is still fully observable but the observer is not sound, and sets like X and X̂
might not be isomorphic. The presence of faulty observers and inaccurate estimations
of the system parameters is outside the scope of this work.

Besides the tuple definition, the observer maintains not a representation of the state
it is in but a representation of the belief. The belief update is then made using the
Bayesian rule presented in Equation (6.2). If we consider the existence of a supervisor
and controller of the system, the belief update expression has to be modified to take
into account the supervisor and controller actions, that we will assume are also given as
an input to the system. In this case, we have:

beSa(x′) =
1

η

∑
x∈X

p(x′|x, e) pE(e|x, S, a) b(x) (6.4)

with η = p(e|b, S, a) =
∑

x∈X pE(e|x, S, a) b(x). If we considered τ to be an observa-
tional input, a similar reasoning to what was made previously could be applied, and
the modified belief update would reduce to Equation (6.4). If however, as for the ob-
server of Chapter 5, the time cdfs associated with events also depend on the state and
action, then the expression of belief update has to be modified to account for the ad-
ditional observational input provided by τ , similar to what was done for POSMDPs
by (Mahadevan, 1998) as described briefly in Chapter 3. In this chapter, we continue
assuming independence of Fe(t) from the state and action.
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We will again assume, as in Chapter 4, that all actions correspond to a choice of a
controllable and immediate event. Additionally, we recall that it is possible to choose an
idling action εa that represents waiting for some uncontrollable event to happen. With
this in mind, the emission probabilities can be obtained by recalling Equations (4.3) and
(4.4). The first one

p(e|x, S, a) =


prs(x, e) e ∈ ΓS(x, s) ∩ (EU \ EC)

1−∑i∈(ΓS(x,s)∩(EU\EC)) prs(x, i) e = a ∧ e ∈ ΓS(x, s)

0 otherwise

(6.5)

is used if the state corresponds to a random switch, i.e., there are still active events with
associated null time after the effects of the controller and supervisor.

The second one

p(e|x, S, εa) =

∫ ∞
0

Fe(y) · dFWe(y) (6.6)

with FWe(t) defined by Equation (4.9), is used when the state is not a random switch,
or when an idling action was chosen1.

Essentially, even if the parameters of the system are known, it is clear that the hard
part about constructing an observer is integrating the cumulative distribution functions
associated with the time between events, since all other parameters are known. For
this reason, a common assumption in modeling continuous-time Markov processes is to
assume all the inter-event times to be exponentially distributed, i.e., generated by a
Poisson process. This not only gives the expressions a closed form, as seen in Chapter
4, but guarantees that the system is fully Markovian. Under a Poisson clock structure
we have, for timed events:

p(e|x, S, εa) =
λe

Λ(x, s)

where the rates are the same as defined in Chapter 4.
We refer this approximation because it is a common assumption, particularly in

Stochastic Petri Nets (Molloy, 1982), but it is still the goal of this work not to be
restrictive in the type of cumulative distribution function (cdf) used for inter-event
times.

6.2 Controller Model

The control scheme for the system with a probabilistic observer is slightly different from
the general one, in the sense that the observer does not output an exact state but a
belief state, as represented in Figure 6.1. The fact that we denote the policy generator

1Again, note that we can consider that the only possible choice of action in non-random-switch
states is the idling action.
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by the general designation of Controller is tied to the fact that, by using the belief
state as input, the system will be similar to a POMDP and for this reason optimizing
it will be equivalent to optimizing a particular kind of infinite MDP, which cannot be
accomplished by the basic Q-learning algorithm.

Our goal in this chapter is to obtain equations that can be used to derive POMDP-
like dynamic programming algorithms for our discrete event based system, which are
generally run offline assuming we know the model parameters, as opposed to Q-learning.
When the agent is actually interacting with the environment, it does so through the
optimal control policy but during that time the policy is fixed. Contrary to what we did

Sup

G

Obs
P(s)

xS 

bO

Controller
a

S(s)

Ps

P(s)

Figure 6.1: Supervised event-based control block diagram for a system with a proba-
bilistic observer.

in Chapter 4, we will explicitly consider referring to the complete state, as seen by the
controller, as (b, xS) to distinguish between the different nature of the observer belief,
which is continuous, and the supervisor state, which is discrete and finite.

6.2.1 Optimality Equations

To derive the optimality equations, we follow a similar procedure as what was done for
POMDPs. First we start by recalling the value function optimality equation derived in
Chapter 4. We have, for a policy π:

V S,π(x) =
∑

e∈ΓS(x)

p(e|x, S, π)

[
r(x, e) + γe

∑
y∈X

p(y|e, x)V S,π(y)

]
(6.7)

and for the optimal policy:

V S,∗(x) = max
a∈Ax

 ∑
e∈ΓS(x)

p(e|x, S, a)

[
r(x, e) + γe

∑
y∈X

p(y|e, x)V S,∗(y)

] (6.8)
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Since in this chapter we not only do not have an access to the state but it is impossible
to provide an exact estimation from the inspection of the output strings, because we
dropped one of the conditions of Theorem 4.2.1, we need to rewrite the value function
in terms of the quantities that the controllers does have access to: the belief about the
state of the system and the state of the supervisor.

From the point of view of the controller and considering a probabilistic observer
whose output is a belief vector, it is as if the process is being generated by an automaton
A = (∆×XS, E, p, pE, (b0, x

S
0 )) from which the controller can inspect the state and the

events being produced. The state space is simply a product of the observer belief simplex
and supervisor state space, and the event set used is the same the system produces2.
The transition probabilities are given by:

p(b′, xS
′|b, xS, e) = p(b′|b, e) p(xS′ |xS, e)

Since the supervisor is considered to be deterministic we have that:

p(b′, xS
′|b, xS, e) = p(b′|b, e)1{f(xS ,e)}(x

S′)

Additionally, if we consider the effects of a supervisor action and controller action:

p(b′, xS
′|b, xS, e, S, a) = p(b′|b, e, S, a)1{f(xS ,e)}(x

S′)

= 1{baSe}(b
′)1{f(xS ,e)}(x

S′)
(6.9)

Note the transition function of this automaton is exactly deterministic since for each
state in ∆×XS and every event e, the successor state is well defined. As was done for
FSAs, we could write the transition function as: f : ∆×XS × E → ∆×XS with:

f(b, xS, e) = (be, f(xS, e))

but this function could not be described tabularly since the state of the automaton is
uncountably infinite.

If we want to consider time in the probability expression, we have that:

H(t, b′, xS|b, xS, e, S, a) = Fe(t).p(b
′, xS

′|b, xS, e, S, a)

The emission probabilities do not depend directly on the state of the supervisor,
although indirectly they are affected by it since the supervisor function does depend on
the state of the supervisor, so we can write that:

pE(e|b, xS, S, a) = pE(e|b, S, a) =
∑
x∈X

pE(e|x, S, a)b(x)

with pE(e|x, S, a) being the same as defined in Chapter 4.

2In reality, it is only the set of observable events but we are not considering that additional source
of partial observability yet.
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The process to derive optimality equations written in Chapter 4 can be replicated
to this automaton and we have:

V π(b, xS) = E

{ ∞∑
k=0

e−βσkr(bk, xSk , ek)

∣∣∣∣b0 = b, xS0 = xS, S, π

}

=
∑

e∈ΓS(b,xS)

p(e|b, xS, S, π)E

{[
r(b, xS, e) + e−βτV π(bk+1, x

S
k+1)

∣∣∣∣π}]
=

∑
e∈ΓS(b,xS)

p(e|b, S, π)Ṽ π
aSe(b, x

S)

(6.10)

with

Ṽ π
aSe(b, x

S) =

r(b, e) +
∑

yS∈XS

∫
∆

(∫ ∞
0

e−βτH(dτ, b′, yS|b, xS, e, S, a)

)
V π(b′, yS)db′


The rewards are the same as defined in Chapter 4 and do not depend on the supervisor
state, and that is why we simply write r(b, e). Additionally, we have that:

r(b, e) =
∑
x∈X

r(x, e)b(x)

or, if we consider the vector re for the same ordering of X that defines the belief vectors:

r(b, e) = b · re
We continue the derivation by making use of the fact that, for each event, it is

possible to decouple the transition probabilities from the time distribution. We have:

V π(b, xS) =
∑

a∈A
b,xS

π(b, xS, a)
∑

e∈ΓS(b,xS)

p(e|b, S, a)Ṽ π
aSe(x)

=
∑

a∈A
b,xS

π(b, xS, a)
∑

e∈ΓS(b,xS)

p(e|b, S, a)
[
r(b, e) + γe V

π(baSe, f(xS, e))
]

(6.11)

with

Ṽ π
aSe(b, x

S) =

r(b, e) + γe
∑

yS∈XS

∫
∆

p(b′, yS|b, xS, e, S, a)V π(b′, yS)db′


and γe =

∫∞
0
e−βtFe(dt) as defined in Chapter 4.

The equivalent optimality equation can be given by:

V ∗(b, xS) = max
a∈A

b,xS

∑
e∈ΓS(b,xS)

p(e|b, S, a)
[
r(b, e) + γe V

∗(baSe, f(xS, e))
]

(6.12)
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What remains to be defined in this equation are the Γ sets and the action set for
each (belief, supervisor state) pair. Since:

pE(e|b, S, a) =
∑
x∈X

pE(e|x, S, a)b(x)

which means the event emission probabilities for the beliefs can be defined in terms of
the equivalent quantities for the states themselves, we will start by extending the event
emission function such that:

∀e6∈ΓS(x) p(e|x, S, a) = 0

Additionally, we need to assume that:

∀y∈X e 6∈ ΓS(x) ⇒ p(y|x, e) = 0

Technically, this makes the transition probability distribution associated with event e
and state x not a well defined pdf. However, since we are doing this for e 6∈ ΓS(x), we
know by definition that e will never occur in x under any condition, and we can use the
extensions defined previously to be able to do

∑
e∈E.

As for the action set, In Chapter 4 we defined Ax,xS
3:

Ax,xS =

{
ΓS(x, xS) ∩ EA ΓS(x, xS) \ EA = ∅(
ΓS(x, xS) ∩ EA

) ∪ {εa} otherwise

which seems to indicate that we need to drop the dependance on ΓS(x, xS) as done for
the optimality equations. We have that ΓS(x, xS) = Γ(x) ∩ S(xS) but the only term
that varies with the system (or observer) state is Γ(x) since S(xS) only depends on the
supervisor state.

Since the belief representation does not allow for an identification of the system state,
we will assume the controller can choose from all the possible actions, except for the
ones disabled by the supervisor. We have.

Ab,xS = AxS =
(
S(xS) ∩ EA

) ∪ {εa}
Note that it would not be possible to determine the states for which the inclusion

of an idling action would not lead to a lock off the system, i.e., a situation where the
controller chooses to wait for the next observable timed event to occur but the system is
in a state where no events in ET are active and will just remain in this state indefinitely.
We could either not consider εa altogether or always include the possibility of waiting
for something to happen in the environment. This choice is also somewhat related to
the problem being tackled and wether there are intrinsic processes in the environment
occurring spontaneously that do not depend on the choice of actions but might affect the

3Here we are explicitly denoting the system (or observer) state separately from the supervisor state.
In Chapter 4 we assumed x referred to the extended state to avoid cluttered notation unnecessarily.
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agent’s plans. In the example from the previous chapters, we considered an automaton
representing the arrival of people at the building where the robot lived in – that is an
example of a problem where there is always an escape event caused by a process external
to the robot and that can justify always including the idling action in the action space.

In the absence of such kind of processes and escape events, or the uncertainty about
their existence, it is always possible to design the behavior of the agent to generate a
timeout event to act as an escape for these sort of situations. In fact, timeout events
are common practice in a myriad of applications and designing an automata to run in
parallel with the ones defining G that generates such an event is fairly straightforward.

In any case, it is clear that Ax,xS ⊂ AxS for every x. For this reason, maximizing over
the action set AxS never removes decision options from the agent, effectively considering
more general action sets at each decision point.

Going back to the optimality equation we get:

V ∗(b, xS) = max
a∈A

xS

[∑
x∈X

∑
e∈E

b(x)p(e|x, S, a)
(
r(x, e) + γe V

∗(baSe, f(xS, e))
)]

(6.13)

which has a similar form to Equation (2.24) with the differences in form residing in the
fact that events, which here assume the role of observations, induce specific discount
factors due to the assumption of continuous time and the fact that each event has a
different time cdf associated with it. Furthermore, the value functions are defined not
only in terms of beliefs but of the supervisor state. The process induced by this system
is equivalent to an MDP whose state is hybrid, with a continuous component and a
discrete one.

As was the case for POMDPs, there is a finite action choice at each decision point
and, for each finite planning horizon, the optimal value function will also be piecewise
linear and convex, which means it can be represented by a finite set of vectors.

Vn(b, xS) = max
α∈An(xS)

b · α (6.14)

Note that now, since there is a dependence on the supervisor state, the set of vectors
might be different for each supervisor state. We can continue to derive the value function
expression leading to:

Vn+1(b, xS) = max
a∈A

xS

∑
e∈E

[∑
x∈X

b(x)p(e|x, S, a)r(x, e) + γe p(e|b, S, a) max
α∈An(f(xS ,e))

baSe · α
]

= max
a∈A

xS

∑
e∈E

[
p(e|x, S, a) b · re + γe p(e|b, S, a) max

α∈An(f(xS ,e))
baSe · α

]

= max
a∈A

xS

∑
e∈E

[
p(e|x, S, a) b · re + γe max

α∈An(f(xS ,e))

∑
y∈X

∑
x∈X

p(e|x, S, a)p(y|x, e)b(x)α(y)

]
(6.15)
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and so we can say that

Vn+1(b, xS) = max
a∈A

xS

[∑
e∈E

p(e|x, S, a) b · re +
∑
e∈E

γe max
gaSe∈GaSe(xS)

b · gaSe
]

(6.16)

with

GaSe(xS) = {gaSe : gaSe(x) =
∑
y∈X

p(e|x, S, a) p(y|x, e)α(y) , α ∈ An(f(xS, e))} (6.17)

Finally

backup(b, xS) = arg max
{gba}a∈A

xS

b · gba (6.18)

with

gba =
∑
e∈E

p(e|x, S, a)re +
∑
e∈E

γe arg max
gaSe∈GaSe(xS)

b · giaSe (6.19)

Note how the backup vector depends not only on the belief but also on the supervisor
state. In fact, because the supervisor changes the actions available to the agent at each
decision point, for each state of the supervisor xS, we have a different value function
V (·, xS) which is PWLC. For this reason, while calculating the Bellman backup of a given
vector (b, xS), several sets of back-projected vectors gaSe will be computed, depending
on the state of the supervisor to which event e leads to. Worst case scenario, the number
of back-projected sets will be equal to |XS|.

In any case, an exact dynamic programming algorithm to solve this kind of partially
observable problem will need to maintain not only one set of vectors but as many sets
as there are supervisor states.

Sub-optimal equations

To achieve optimality within the restrictions imposed by the supervisor, it is impor-
tant to explicitly consider its state in the optimality equations and, consequently, the
existence of separate value functions (or in this case vector sets) for each of the states
of the supervisor. We can think of the supervisor as dynamically switching between
different problems that share some parameters like transition probabilities, but that
is because the action limitations will, in general, have distinct plans as the optimal
choice. Therefore, controllers have to be optimized taking into account the supervisor
restrictions.

If we assume we can compute an unsupervised optimal policy for a given system,
and then apply the supervisor a posteriori, imagining that the optimal action at a given
state is then forbidden by the supervisor, there is no guarantee that the second best
action under no supervision will still be so in the supervised case. The unsupervised
value function does not reflect the expected sum of discounted rewards for the restricted
system.
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Nevertheless, for some applications it might be interesting to consider the suboptimal
equations. Essentially, what we need to do is remove the dependence on xS from the
optimality equations, to obtain:

V ∗(b) = max
a∈A

[∑
x∈X

∑
e∈E

b(x)p(e|x, S, a)r(x, e) +
∑
x∈X

∑
e∈E

γe b(x) p(e|x, S, a) V ∗(baSe)

]
(6.20)

with the action set being defined as A = EA ∪ {εa}.
Under no supervision the rest of the equation will be even closer in form to the

POMDP ones, retaining nevertheless some particular aspects like the event dependent
discount factor. We have:

Vn+1(b) = max
a∈A

[∑
e∈E

p(e|x, S, a) b · re +
∑
e∈E

γe max
{giaSe}i

b · giaSe
]

(6.21)

with

giaSe(x) =
∑
y∈X

p(e|x, S, a) p(y|x, e)αi(y)

for every vector αi ∈ An. Finally

backup(b) = arg max
{gba}a∈A

b · gba (6.22)

with

gba =
∑
e∈E

p(e|x, S, a)re +
∑
e∈E

γe arg max
{giaSe}i

b · giaSe (6.23)

The difference between these equations and the complete ones might seem like a
small difference in aspect but it essentially eliminates the need for several vectors sets
at each time step. All events will lead the system to a state where the same actions
are available as a choice. POMDP solvers can be applied almost directly here, with the
nuance that the backups, and the dynamic programming operator in general, are defined
in a slightly different way because of the introduction of continuous time associated with
events and how that reflects as event specific discount factors.

Looking at the equations, it is clear that events and observations share a common
role in terms of providing information to improve the belief about the state we are in.
However, events also influence the transition probabilities and in our case actions work
by selecting which events will fire, but the transition parameters are still defined in
terms of events. That is why we say events have a double role of observation and action.

Still, if we considered discount factors dependent on the observations, the POMDP
equations would acquire an even closer form to these ones.
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Algorithm 6.2.1 General procedure to use a Dynamic Programming POMDP algo-
rithm. DP represents the algorithm of choice.

Calculate the quantities γe, p(e|x, S, a) and p(y|x, e).

for all xS ∈ XS do
A0(xS)← {∑e∈E p(e|x, S, a)re}a∈A

xS
.

end for

loop
for all xS ∈ XS do
An+1(xS)← DP (An(·))
{The Bellman backup, backup(b, xS), is given by Equation (6.18).}
{The exact dynamic programming operator is given by Equation (6.12).}

end for
end loop

6.2.2 Adapting POMDP Solvers

In general, an algorithm to solve a POMDP can be adapted in the following way:
As mentioned in Chapter 2, an exact algorithm will, in general, either identify the

regions in which a given vector is the maximizing component or span all possible vectors
and then prune dominated ones. In our case, the algorithm has to be applied several
times, for each of the supervisor states, and each backup is potentially calculated using
all the vector sets at a given time step, and not just the one corresponding to the
supervisor state in question. That’s why we wrote:

An+1(xS)← DP (An(·))
Besides this additional complexity source, computing the emission probabilities p(e|x, S, a)

and the event dependent discount factors γe might require approximations in integration,
depending on the cdfs of the events in question. We recall that:

p(e|x, S, εa) =

∫ ∞
0

Fe(y) · dFWe(y)

as defined in Equation (4.8) in Chapter 4 and:

γe =

∫ ∞
0

e−βτFe(dτ)

So far we have not explicitly considered the existence of random switch states but
their inclusion in the equations is fairly straightforward. Essentially, the emission prob-
abilities are given directly, as explained in Equation (4.3), and for each event in EU
we can consider that γe = 1 and r(x, e) = k(x, e), as was explained in Chapter 4. This
would cause boundedness problems but we assume we are still under the same conditions
of Chapter 4, given by Assumptions 4.4.1 and 4.4.2.
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6.3 Summary

If the agent has knowledge about the model parameters, under partial observability, an
observer different from the one used in Chapter 5 can be constructed. In this chapter
we assume we have a probabilistic observer that mimics the system not only in the logic
aspect but also in the probabilities associated with the transitions between states and
the emission of events. The supporting model to the observer is called a Probabilistic
Discrete Event System, as defined in (Pantelic et al., 2009).

With a probabilistic observer, we saw how the state representation could be dis-
tributed over the state space of the observer, representing the uncertainty about the
actual state of the system. This distributed representation is essentially a probabil-
ity distribution over the states and is equivalent to the notion of belief in Partially
Observable Markov Decision Processes.

Following a derivation similar to the optimality equations for POMDPs described
in Chapter 2, we obtained optimality equations for our system. Because the supervisor
state is always fully observable, the state representation of the observer and supervisor
has mixed observability and, for this reason, the equations we obtained are similar to the
ones in Mixed Observability Markov Decision Processes (Ong et al., 2009), as described
briefly in Chapter 3, with some differences stemming from the event-based nature of our
model and the fact that time is considered to be continuous.

Based on the derived equations, we proposed a generic algorithm to modify POMDP
solvers so they can be applied to our model.





Chapter 7

Conclusions

7.1 Thesis Overview

The main goal of this work was to develop a framework that is able to integrate suc-
cessfully aspects from planning, reactive control and learning under uncertainty. We
presented an event-based approach to integrate deliberative knowledge, in the form of
discrete event systems supervisors, and a reinforcement learning based controller, using
a continuous time Q-learning algorithm, that works for Semi-Markov Decision Processes.
Our approach works if full plans are provided to the agent but also if plans are loosely
specified by plan options, among which the controller will learn to optimize.

The key contributions of this work are:

• Introducing a novel approach to combine deliberative planning, reactive
control and learning methods by using supervisory control of discrete
event systems to provide loosely specified planning options over which
a reinforcement learning based controller can optimize. We showed how
our model can be used to integrate planning, reactive control and learning using
some scenarios plagued with uncertainty.

• Defining full observability for a system based on a controllable stochastic
timed automata. Our definition of full observability requires the STA modeling
to produce no unobservable events and, on the other hand, that from an initial
state and a string of events the current state of the system can be univocally
identified by an observer receiving that string. This translates in requiring the
transition functions to be deterministic, which at first glance seems like a strong
assumption. While proving the result establishing the sufficient and necessary
conditions for such full observability, we discussed how the transitions probabil-
ities, when conditioned on the action and not the event, would still configure a
stochastic process since there is no deterministic knowledge of the event that will
fire, given a certain action of the controller.
An interesting consequence of this discussion is that events, in our model, have
associated with them a double view of action and observation, patent in the two
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parameters: probability of generating a given event for a certain state and action
and the transition probabilities.

• Determining the conditions that the firing of events needs to follow in
order to ensure the convergence of the modified Q-learning algorithm,
proving that the algorithm converges. One of the conditions that we must
have in order for the process generated by the STA to be equivalent to an SMDP is
the clock reset assumption, stating that the clocks associated with each event must
all be reset whenever an event fires. At first glance this assumption is not that
strong if we consider, for example, that we have a robot in a certain environment
and all the events are generated by the same source, the robot. However, if we
consider multiple sources, the assumption is strong since it does not make sense
to have the occurrence of an event in one robot reseting the temporal processes
exclusively related to the other robot. In this case, many of the supervisor results
will remain the same but the controller will not have a guarantee of stationary
and Markovian transition functions. The study of this more general case was,
nevertheless, out of the scope of this work but it would be interesting to see
empirically what kind of non-Markovian problems would suffer more from using
methods that are supported by a semi-Markov assumption.
Another important condition is the fact that the time probability density functions
associated with the events must not be too dense near zero, since we do not want
infinite state changes to occur in finite time. For immediate events this condition
is trivially broken but we showed the method would still converge if we made
sure the consecutive number of immediate events was bounded. We showed how
a supervisor can be constructed to ensure this condition is not broken.

• Showing that the states of the observer, which are associated with parts
of the original STA, can be proven to still provide a semi-Markov process
which can be used for learning. The use of a deterministic observer for the
state of the system has the advantage of not needing more than the logic knowledge
of the transition structure to be able to produce a state estimate from the sequence
of events. The drawback is that, in the limit, the observer might end up reduced to
a single state which corresponds to the complete original automaton, defeating the
purpose of learning. Nevertheless, we shown that under the condition that each
state of the observer corresponds to a semi-Markov chain with the same initial
condition, we can still apply the same learning algorithms.
Moreover, in some cases, applying the full observability algorithm directly to the
states of the observer yielded good empirical results even when the system was
not semi-Markovian.

• Deriving the optimality equations for the system when the observer is
a probabilistic automaton and showing how we can modify POMDP
algorithms to solve our event based problem. The use of a probabilistic
automaton observer is closely tied to the concept of belief in POMDPs. For this
reason, the optimality equations for an event based system such as ours have
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a similar form to the the POMDP ones. We showed that we also can modify
Dynamic Programming methods classically used to solve POMDPs to use in our
system.

One of our goals in developing this approach was that the supervisor, which was
partially intended to be provided by the designer of the system, could have a represen-
tation natural enough so that the designer could easily program further restrictions in a
systematic yet intuitive way. We believe automata provide one such representation but,
nevertheless, other models like Petri Nets can easily be used to specify the supervisor,
as shown by (Costelha and Lima, 2008). Even closer to a natural language is the work
of (Lacerda and Lima, 2008), where Temporal Logic is used to provide the specifica-
tions and then transformed to an automata equivalent that can be used for supervision
and which, by having a state representation, can be directly used by the reinforcement
learning controller.

7.2 Directions for Future Work

There are several possible ways this work can be extended:

• The most short-term future work goal is to complete the proof presented in Theo-
rem 4.4.5 for the general updates proposed by the modified Q-learning algorithm.
The idea of having successions of immediate events, although of a finite length, is
tied to the need to factorize action spaces, or because the actions of a given agent
are themselves factorized already: a robot, for example, can be running simulta-
neously a navigation action and a sensing action in paralell, and at some decision
points there will only be a need to address one or the other, although sometimes
it might make sense to address both in the same instant. Not having this natural
factorized action space would imply that, at every decision point, the agent would
have to look at the space of all navigation+sensing composed actions, which is not
only further from the natural way of programming the robot but does not scale
well.

• In multi-agent scenarios the clock reset assumption might become too strong since
multi-agents imply multiple event sources that most likely will not influence the
firing mechanisms of the events from each other. This will pose a problem since,
in this case, it is no longer possible to reduce the process to an equivalent of a
SMDP, and ideally a memory of the time for which each event has already been
active would be needed in order to provide a complete state representation. But
in this situation, not only the state space becomes non-countable but, most of the
times, it may not be possible to access the internal time values of each of the other
agents.
A possible simplification is that, since each agent is a potential event source, all
events generated by a source will still be reset when one of them occurs. This
remove the need for an extended state representation but generally it will reduce
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the number of sources from the number of events to the number of agents in the
environment.
The most common simplification is to assume the firing of all events is modeled by
a Poisson process, effectively making the system fully markovian and removing the
need for a time memory. This is what is commonly used in Stochastic Petri Nets,
but in general an exponential distribution will not always adequately describe the
firing of all kinds of events.

• Also in multi-agent scenarios, it is possible to define special events to synchronize
between agents and ensure decisions are taken simultaneously. In that case, par-
ticularly in one-on-one adversarial situations (where the two agents have opposite
objectives) or team situations (where all the agents have the same objective), the
combined action of the agents will have equilibrium points (Nash, 1950) and the
system will behave as a stochastic game (Shapley, 1953). In that case, the extensive
body of work on multi-agent learning (Littman, 1994; Singh et al., 2000a; Hu and
Wellman, 2004; Bowling, 2003; Wang and Sandholm, 2002; Bowling et al., 2004)
can be applied to the problem. Another interesting work on coordination in a
multi-agent scenario that could possibly be integrated with our framework is that
of (Kok et al., 2005).

Since our system is asynchronous by nature, the use of synchronization events
would become crucial.

• Furthermore, when we consider a decentralized approach in our architecture, which
is only natural in multi-agent scenarios, the results from DecSC (Lin and Wonham,
1990; Rudie and Wonham, 1992; Yoo and Lafortune, 2004) become of critical
importance and any extension of this work to multi-agent scenarios will have to
consider the implications of several sources potentially enabling/disabling the same
events. In Figure 7.1 we show the general architecture in the decentralized case.

Generally, since controllable events correspond to the start and stop of actions in
our model, each controller policy will be defined over a separate set of events but,
nevertheless, we can always assume that different controllers can actually start the
same behavior, and in that case the combination of the controller policies is not
trivial and the choice of a combination function would pose an interesting problem
in itself.

• Predictive State Representations (Littman et al., 2002; Singh et al., 2004; Wolfe
et al., 2008) are a recent formalism to deal with typical POMDP problems that
work directly on the observations and actions strings that the system generates,
without explicitly using a state representation. Some of the recent work on PSRs
tries to learn a predictive state representation (James and Singh, 2004; Wolfe et
al., 2005; McCracken and Bowling, 2006; Wingate and Singh, 2007) for the system
it is addressing. This would be interesting in situations where the transition logic,
and system states, of the underlying STA is not necessarily known. In fact, the
way PSRs work is closely related to DES since both work on strings of symbols,
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Figure 7.1: Decentralized extension of the work done in this thesis.
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in one case events and in the other observations and actions. In (Wolfe and
Singh, 2006), the options formalism of (Sutton et al., 1999) is approached from a
PSR perspective, and since options provide a way to solve some SMDP problems,
there is certainly room for related work having this thesis’ approach as starting
point.

A recent work that aims at closing the loop by not only planning with PSRs but
also learning the PSR from samples of action-observation pairs can be seen in
(Boots et al., 2010). As future work, we would like to combine this approach
with the models presented in this thesis, particularly obtaining the observer for
the system from samples of the language it generates and then planning over this
observer, which is closely related to the aforementioned paper.

• Finally, the implementation of this approach in real scenarios, e.g. robotic scenar-
ios like the one we presented as a simulated case study, would face some more
challenges that would pose interesting to overcome.

1. One of the challenges is the existence of other processes in the environment
that cause events to fire, and, as discussed previously, how the assumption
of reseting the ages of events at each state change might not necessarily hold.
A common approximation is to consider inter-event times to always be expo-
nentially distributed, which we believe to be too strong for some applications.

2. Unsound observer models can also pose a problem. For the method proposed
in Chapter 6 the lack of knowledge about the system trivially makes it im-
possible to use without relying on additional methods to estimate the system
parameters. But even in Chapters 4 and 5, an observer must have knowledge
about the logic aspect of the system transition structure. If there is some
leeway in choosing some of the events the system uses, it is always a good
idea to try to pick events that univocally identify one state or a small group
of states.

3. Part of the idea of integrating a learning controller in our approach is to pro-
vide some degree of adaptation. However, reinforcement learning algorithms
require the system parameters to be stationary, but usually still perform well
if the change in the parameters is not too fast. The usability of the learning
algorithm in fast changing environments is another hurdle that real problems
would create to the approach, because of the nature of the learning algorithms
used. Nevertheless, using a supervisor is also a way of ensuring that, even
if the parameters change, there are boundaries that the agent/robot will not
pass, keeping itself safe and ensuring continued action. On the other hand,
with development of new algorithms and increase in computational power,
the real applications of reinforcement learning are becoming widespread, with
recent examples like (Peters and Schaal, 2006; Kober et al., 2008; Riedmiller
et al., 2009; Vlassis et al., 2009) proposing interesting and effective applica-
tions of reinforcement learning to robot control,
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4. As mentioned before, the extension to multi agent scenarios would necessarily
have to include communication and synchronization, since our event-based
model is asynchronous by nature. The models used by (Costelha and Lima,
2010) for communication mentioned in Chapter 3 offer an interesting way to
integrate it in an event-based framework, particularly because they account
for message travel time and communication failure.
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Appendix A

Some Fixed Point Results

The existence of a solution to many dynamic programming algorithms like value itera-
tion is supported on the existence of fixed points for the dynamic programming operator
being considered. Under certain conditions, the uniqueness of a fixed point can be guar-
anteed and the iterative application of the operator will converge to that fixed point.
In this appendix we present some fixed point theorems that support classical results of
dynamic programming and some of the results of this work. The results presented in
this chapter can be found in (Istratescu, 1981; Granas and Dugundji, 2003)

A.1 Basic Definitions

We will start with some basic definitions that support the fixed point theorems used.

Definition A.1.1. Let X be a nonempty set and d : X ×X → R.
The function d is called a metric on X (or distance) iff the following properties hold:

1. d(x, y) = 0 iff x = y

2. d(x, y) = d(y, x) for all x, y ∈ S
3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ S

The number d(x, y) is called the distance between x and y and the pair (X, d) is called
a metric space.

An important class of metric spaces are called complete metric spaces.

Definition A.1.2. A metric space (X, d) is called complete if any Cauchy sequence xn
in X has the property that it converges to a point of X.

The notion of norm can be defined as:

Definition A.1.3. Let X be a topological vector space over a topological field K (most
often C or R). A norm on X is any function p : X → R with the following properties:
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1. p(x+ y) ≤ p(x) + p(y)

2. p(ax) = |a|p(x) , a ∈ K
3. p(x) = 0 iff x = 0

We often write a norm p(x) as ‖x‖.
A space X endowed with a norm ‖.‖ is called a normed space. An important class

of normed spaces are called Banach spaces which can be defined as:

Definition A.1.4. A normed space X with the norm ‖.‖ is called a Banach space if X
is a complete metric space for the metric d defined on X by:

d(x, y) = ‖x− y‖

A.2 Fixed Point Theorems

Before referring to fixed point theorems, let us consider some definitions. Suppose (X, d)
is a complete metric space and f : X → X is any function.

Definition A.2.1. The function f is said to satisfy a Lipschitz condition with constant
k > 0 if:

d(f(x), f(y)) ≤ k d(x, y)

holds for all x, y ∈ X.

Definition A.2.2. If f satisfies a Lipschitz condition with 0 < k < 1 it is called a
contraction mapping. If k = 1 the mapping is called nonexpansive.

The fact that an operator is a contraction mapping will guarantee an existence and
uniqueness of a fixed point for the operator, i.e., a point for which any application of
the operator will leave it unchanged. The classical result that guarantees this is called
the Banach fixed point theorem or Contraction mapping theorem.

Theorem A.2.1 (Banach fixed point theorem). If T : X → X is a contraction mapping
with Lipschitz constant 0 < k < 1 on a complete metric space (X, d) then there exists a
unique fixed point x∗ of T and for any point x ∈ X and xn = T nx:

1. d(xn, x
∗) ≤ kn

1−k

2. limxn = x∗

Particularly, this principle is often applied to Banach spaces with the associated
norm inducing the metric. Such is the case of the dynamic programming operators
defined for MDPs and SMDPs in Chapter 2.

Several extensions of the fixed point theorem exist and we’re particularly interested
in one that is supported on the notion of a local power contraction mapping.
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Definition A.2.3 (Local Power Contraction Mapping). Let (X, d) be a complete metric
space and T : X → X be a continuous mapping. The mapping T is called a local power
contraction mapping if there exists a constant k < 1 and for each x ∈ X there exists an
integer n = n(x) such that, for all y ∈ X,

d(T nx, T ny) ≤ k d(x, y)

The fixed point theorem presented previously can be extended for local power con-
traction mappings in the following way:

Theorem A.2.2. If T is a local power contraction mapping then there exists a unique
fixed point of T .
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