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TIMED DES


•  Sample paths can no longer be specified as event sequences {e1, 
e2, ...} or state sequences {x0, x1, ...} but must include timing information 
•  Let tk denote the time instant when the kth transition occurs (with t0 
given) – a timed sample path of a DES may now be described by the 
sequence  

{(x0,t0 ), (x1,t1 ), ...} or {(e0,t0 ), (e1,t1 ), ...}  
•  This way, we can answer questions like: 

•  How many events of a particular type can occur in a given time 
interval? 
•  How long does the system spend in a given state? 

•  The language generated by a timed model consists of a single string. 
Probabilistic strings are introduced by stochastic timed models. Random 
time associated to transitions is typically described in the literature. 
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TIMED AUTOMATA


X is a countable state space 
E is a countable event set 

x0 is the initial state 

XM is a set of marked states 

active event function 

First, let’s slightly change our definition of automaton 
(no definition of timed automaton here yet!) 

is a (possibly partial) state transition function 

we will not be concerned with blocking issues 

€ 

f : X × E → X

€ 

Γ : X → 2E

An automaton is a tuple (X, E, f, Γ, x0) , where 
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TIMED AUTOMATA

The Clock Structure


A DES with a single event 

Kth lifetime of event α 

age of the 
event 

clock or  residual lifetime 
of the event 

(reprinted from [Cassandras, Lafortune]) 
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A DES with two permanently active events 

(reprinted from [Cassandras, Lafortune]) 

Q: Which event occurs next? 
A: Compare clock values and select the smallest one 

TIMED AUTOMATA

The Clock Structure
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(reprinted from [Cassandras, Lafortune]) 

A DES with two not permanently active events 

TIMED AUTOMATA

The Clock Structure
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TIMED AUTOMATA

The Clock Structure


General mechanism for selecting the “next event”: 

Rule 1: To determine the next event, compare the clock values of all feasible 
events at the current state and select the smallest one. 
Rule 2: An event e is activated when: 

•  e has just occurred and remains feasible in the new state 
•  a different event occurs while e was not feasible, causing a transition to a 
new state where e is feasible 

Rule 3: An event e is deactivated when a different event occurs causing a 
transition to a new state where e is not feasible. 
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TIMED AUTOMATA


Definition: Clock Structure or Timing Structure associated with an event 
set E is a set 

of clock (or lifetime) sequences 

Definition: The Score, Ni,k of an event i ∈ E after the kth state transition on a 
given sample path is the number of times that i has been activated in the interval 
[t0, tk]. 

The score of an event i serves as a pointer to its clock sequence vi, which 
specifies the next lifetime to be assigned to its clock when i is activated. 
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TIMED AUTOMATA

Event Timing Dynamics


€ 

x k+1 = f (x k,ek+1),  k = 0,1,...

€ 

{e1,e2,...,ek+1,...}

€ 

?

Untimed view


Timed view


€ 

ek+1 = h(x k,v1,...,vm )

€ 

V = {vi :  i =1,...,m}

€ 

x k+1 = f (x k,v1,...,vm )

Q.: Is it enough?... 
A.: No. We need some other information  

€ 

ek+1 = h(x k,v1,...,vm,•)

assuming m events 

€ 

?
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e’ is the next event, or the triggering event (e’ ∈ Γ(x)) 
t’  is the next event time (corresponding to e’) 
x’ is the next state (x’=f(x,e’)) 

x is the current state  
e is the most recent event, which caused transition into x 
t is the most recent event time (corresponding to e) 

Ni is the current score of event i, Ni ∈ {0,1,...} 
yi is the current clock value of event i, yi ∈ ℜ+ 

Ni
’ is the next score of event i, after e’ occurs 

yi’, is the next clock value of event i, after e’ occurs 

TIMED AUTOMATA

Event Timing Dynamics


Note: x corresponds to xk, x’ to xk+1, and similarly for (e,e’), (t,t’) 
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TIMED AUTOMATA

Event Timing Dynamics


Step 5. With y* defined by (1) determine the next event time: 

€ 

y* =
i∈Γ(x )
min{yi}                         (1)

Step 1. Since x is known, we can evaluate the feasible event set Γ(x). 

Step 2. Associated with each event i ∈ Γ(x)  is a clock value yi. We can then 
determine the smallest clock value among those, denoted by y*: 

Step 3. Determine the triggering event, e’, as the value of i in the previous 
equation that defines y*. We express this as 

€ 

e'=
i∈Γ(x )

arg min{yi}                         (2)

Step 4. With e’ defined by the previous equation, determine the next state: 

€ 

x'= f (x,e')                             (3)

€ 

t'= t + y*                             (4)
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TIMED AUTOMATA

Event Timing Dynamics


Step 7. Determine the new scores values for all new feasible events i ∈ Γ(x’) : 

This process then repeats with x’, e’ and t’ specified. Step 2, however, requires 
the new clock values yi

’. Therefore, at least one more step is needed: 

Step 6. Determine the new clock values for all new feasible events i ∈ Γ(x’) : 

€ 

Ni
' =  

N i +1 if (i = e')∨ i ∉ Γ(x)
N i if (i ≠ e')∧ i ∈ Γ(x)

 
 
 

      i∈ Γ(x')       (6)

Note: y* is the interevent time.  
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TIMED AUTOMATA


Definition: A Timed Automaton is a six-tuple 

(X,E,f,Γ,x0,V) 

where V = {vi : i ∈ E} is a clock structure, and (X,E,f,Γ,x0) is an automaton. 
The automaton generates a state sequence x’=f(x,e’) driven by an event 
sequence {e1,e2,...} generated through 

with the clock values yi, i ∈ E, defined by 

where the interevent time y* is defined as € 

e'=
i∈Γ(x )

argmin{yi}
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TIMED AUTOMATA


and the event scores Ni, i ∈E, are defined by 

In addition, initial conditions are: yi,0 = νi,1 and Ni,0 = 1 for all i ∈ Γ(x0). If i ∉ Γ(x0), 
then yi is undefined and Ni,0 = 0. 

€ 

x'= f x (x,y,N,v1,...,vm )

€ 

y'= f y (x,y,N,v1,...,vm )

€ 

N '= f N (x,y,N,v1,...,vm )
€ 

{(e1,t1),(e2,t2),...}

  

€ 

v1 = ν1,1,ν1,2,...{ }
          
vm = νm,1,νm,2,...{ }
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Def.:The clock structure associated with TD ⊆ T of a marked PN (P,T,A,w,x) is 
a set V = {vj: tj ∈ TD } of lifetime sequences 

vj={νj1,νj2,...}, tj ∈ TD , νjk ∈ R+, k=1,2,...


•  A positive real number νjk  is assigned to tj, meaning that, 
when tj is enabled for the kth time, it does not fire immediately, 
but incurs a firing delay given by νjk ;  during this delay, tokens 
are kept in the input places of tj .

•  T = T0  ∪ TD


immediate
 timed


Def.:A Timed PN is a six-tuple (P,T,A,w,x,V) where (P,T,A,w,x) is a marked PN, 
and V = {vj: tj ∈ TD } is a clock structure.


TIMED PN MODELS
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P-Timed T-Timed 

firing delay di ≥0 associated to place 
pi, ∀ pi∈P 

firing delay di ≥0 associated to 
transition ti, ∀ ti∈T 

when a token is deposited in pi, it 
must stay there for at least a time di  

a token has 2 possible states: 
•  reserved 
•  non-reserved 
regarding firing of ti. 

the token becomes available after 
time di expires 

only available tokens enable 
transitions 

only non-reserved tokens enable 
transitions 

A transition is fired as soon as it 
becomes enabled 

A transition ti is fired after a firing 
delay di that starts when the token 
becomes reserved by ti. 

P-timed and T-timed PNs are equivalent 

TIMED PN MODELS
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Two equivalent PNs modeling a manufacturing system. 
Reprinted from [2]. 

TIMED PN MODELS
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Timed PN 
Dynamics 

v1={v11,v12,...} 

vm={vm1,vm2,...} 

{τ11,τ12, ...} 

{τm1,τm2, ...} 

•  vjk is the lifetime of the event associated to tj , when tj 
becomes ready to be enabled (as soon as input tokens 
become non-reserved) for the kth time , k = 1, 2, ... 
•  τjk is the kth firing time of tj 
•  πik is the time instant when place pi receives its kth token. 

Goal: To express τjk as a function of τjk-1 and νjk .


TIMED PN MODELS
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For Marked Graphs:


pi has only one input transition tr and x(pi)=xi0 initially:


  

€ 

π ik = τ r,k−xi 0
,   pi ∈ O(tr ),   k = xi0 +1,xi0 + 2,…

pi has only one output transition tj :


  

€ 

τ j,k = π ik,   pi ∈ I(t j ),   t j ∈ T0,   k =1,2,…

  

€ 

τ j,k = π ik + ν jk,   pi ∈ I(t j ),   t j ∈ TD ,   k =1,2,…

pi is not the only input place of tj :


  

€ 

τ j,k = max
pi ∈I (t j )

{π ik} + ν jk,   t j ∈ TD ,   k =1,2,…

TIMED PN MODELS
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Q S 

a d 

TIMED PN MODELS OF TIMED QUEUEING SYSTEM


a → t1 va 

d → t3 

vd 

B 

Q I 

s → t2 
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(max,+) algebra 

•  dioid algebra (two operations): 
•  addition:  a ⊕ b = max{a,b} 
•  multiplication: a ⊗ b = a + b 

•  ⊕ and ⊗ are commutative 
•  ⊕ and ⊗ are associative 
•  ⊗ is distributive over ⊕  
•  η = -∞ is the null element of ⊕ 
•  η = -∞ is the absorbing null element of ⊗

•  Idempotency in ⊕: 

a ⊕ a = max{a, a} = a


TIMED PN MODELS OF TIMED QUEUEING SYSTEM
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TIMED PN MODELS OF TIMED QUEUEING SYSTEM


(max,+) algebra model of queueing system
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TIMED PN MODELS OF TIMED QUEUEING SYSTEM


handling the system matrix


Form a graph where: 
Number of nodes is equal to the dimension of the square matrix A. 
Each arc corresponds to a matrix entry, and has an associated weight equal to that 
entry value.  
Example for a 2x2 matrix A 

1 2 a11 a22 

a12 

a21 
Every closed loop in the graph forms a circuit. 
Simple circuits are those where each node is only visited once (e.g., (1,1), (1,2,1), (2,2)). 
The length of a circuit is the number of arcs forming the circuit. 
The weight of a circuit is the sum of arc weights in the circuit. 
Average weight of a circuit = weight / length of the circuit. 
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TIMED PN MODELS OF TIMED QUEUEING SYSTEM


critical circuit of the system matrix


Matrix A has an eigenvalue λ equal to the average weight of its critical circuit. 

Def.: The critical circuit of a matrix A is the circuit with maximum average weight. 

periodicity of the system matrix


Def.: Under the (max,+) algebra, a matrix M is said to be n-periodic iff 
there exists an integer k* such that Mk+n = Mk, for all k > k* 

If there is an unique critical circuit whose length is n, then the matrix B = 
A/w is n-periodic, where w is the average weight of this critical circuit. 

Note: in the (max,+) algebra, A/w is defined so that wB = A. 
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TIMED DES


Other references 
•  G. Cohen, P. Moller, J.-P. Quadrat, M. Viot, “Algebraic Tools for 
Performance Evaluation in Discrete Event Systems”, Proceedings 
of the IEEE, Jan 1989 - original paper on the (max,+) algebra 

Further reading  
•  Queueing systems as timed automata 
•  Event scheduling scheme 
•  More on (max,+) algebra  


