

DISCRETE EVENT DYNAMIC SYSTEMS

Timed DES

Pedro U. Lima

Instituto Superior Técnico (IST) Instituto de Sistemas e Robótica (ISR) Av.Rovisco Pais, 1 1049-001 Lisboa PORTUGAL

> November 2002 All the rights reserved

2002 - © Pedro U. Lima

- Sample paths can no longer be specified as event sequences $\{e_1, e_2\}$
- e_2, \dots or state sequences $\{x_0, x_1, \dots\}$ but must include timing information
- Let t_k denote the time instant when the k^{th} transition occurs (with t_0 given) a timed sample path of a DES may now be described by the sequence

 $\{(x_0, t_0), (x_1, t_1), ...\}$ or $\{(e_0, t_0), (e_1, t_1), ...\}$

- This way, we can answer questions like:
 - How many events of a particular type can occur in a given time interval?
 - How long does the system spend in a given state?
- The language generated by a timed model consists of a *single* string. Probabilistic strings are introduced by *stochastic timed* models. Random time associated to transitions is typically described in the literature.

First, let's slightly change our definition of automaton (no definition of timed automaton here yet!)

An automaton is a tuple (X, E, f, Γ , x_0), where

X is a *countable* state space

E is a *countable* event set

 $f: X \times E \rightarrow X$ is a (possibly partial) state transition function

 $\Gamma: X \rightarrow 2^E$ active event function

2002 - © Pedro U. Lima

 x_0 is the initial state

 X_M is a set of marked states we will not be concerned with blocking issues

TIMED AUTOMATA The Clock Structure

A DES with a single event

$$E = \{\alpha\}, \ \Gamma(\mathbf{x}) = \{\alpha\}, \forall_{x \in X}$$

(reprinted from [Cassandras, Lafortune])

Timed DES

The Clock Structure

Its clock becomes irrelevant in the determination of the next event and it is, therefore, ignored.

 $v_{\alpha,2}$ is discarded when α is deactivated at t_3 .

2002 - © Pedro U. Lima

(reprinted from [Cassandras, Lafortune])

TIMED AUTOMATA The Clock Structure

General mechanism for selecting the "next event":

Rule 1: To determine the next event, compare the clock values of all feasible events at the current state and select the smallest one.

Rule 2: An event *e* is activated when:

- e has just occurred and remains feasible in the new state
- a different event occurs while *e* was not feasible, causing a transition to a new state where *e* is feasible
- **Rule 3**: An event *e* is deactivated when a different event occurs causing a transition to a new state where *e* is not feasible.

Definition: Clock Structure or **Timing Structure** associated with an event set *E* is a set

$$V = \{v_i : i \in E\}$$

of clock (or lifetime) sequences

$$V_i = \{V_{i,1}, V_{i,2}, ...\}, i \in E, V_{i,k} \in \Re^+, k = 1, 2, ...$$

Definition: The **Score**, $N_{i,k}$ of an event $i \in E$ after the k^{th} state transition on a given sample path is the number of times that *i* has been activated in the interval $[t_0, t_k]$.

The score of an event *i* serves as a pointer to its clock sequence v_i , which specifies the next lifetime to be assigned to its clock when *i* is activated.

Untimed view

Q.: Is it enough?...

A.: No. We need some other information •

$$e_{k+1} = h(\mathbf{x}_k, \mathbf{v}_1, \dots, \mathbf{v}_m, \bullet)$$

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima

x is the current state

e is the most recent event, which caused transition into *x t* is the most recent event time (corresponding to *e*)

 N_i is the current *score* of event *i*, $N_i \in \{0, 1, ...\}$ y_i is the current *clock* value of event *i*, $y_i \in \Re^+$

e' is the next event, or the *triggering event* ($e' \in \Gamma(x)$) t' is the next event time (corresponding to e') x' is the next state (x'=f(x,e'))

 $N_i^{'}$ is the next *score* of event *i*, after *e*' occurs y_i', is the next *clock* value of event *i*, after *e*' occurs

Note: x corresponds to x_k , x' to x_{k+1} , and similarly for (e,e'), (t,t')

Step 1. Since *x* is known, we can evaluate the feasible event set $\Gamma(x)$.

Step 2. Associated with each event $i \in \Gamma(x)$ is a clock value y_i . We can then determine the smallest clock value among those, denoted by y^* :

$$y^* = \min_{i \in \Gamma(x)} \{y_i\}$$
(1)

Step 3. Determine the triggering event, e', as the value of *i* in the previous equation that defines y^* . We express this as

$$e' = \arg\min_{i \in \Gamma(x)} \{y_i\}$$
(2)

Step 4. With *e*' defined by the previous equation, determine the next state:

$$\mathbf{x}' = f(\mathbf{x}, e') \tag{3}$$

Step 5. With y^* defined by (1) determine the next event time:

$$t' = t + y^* \tag{4}$$

This process then repeats with x', e' and t' specified. Step 2, however, requires the new clock values y'_i . Therefore, at least one more step is needed:

Step 6. Determine the new clock values *for* all new feasible events $i \in \Gamma(x')$:

$$y'_{i} = \begin{cases} \mathbf{y}_{i} - y^{*} & \text{if } (i \neq e') \land i \in \Gamma(x) \\ \mathbf{v}_{i,N_{i}+1} & \text{if } (i = e') \lor i \notin \Gamma(x) \end{cases} \quad i \in \Gamma(x') \quad (5)$$

Step 7. Determine the new scores values for all new feasible events $i \in \Gamma(x')$:

$$N'_{i} = \begin{cases} N_{i} + 1 & \text{if } (i = e') \lor i \notin \Gamma(x) \\ N_{i} & \text{if } (i \neq e') \land i \in \Gamma(x) \end{cases} \quad i \in \Gamma(x') \quad (6)$$

Note: *y*^{*} is the *interevent* time.

2002 - © Pedro U. Lima

Definition: A Timed Automaton is a six-tuple

 $(X, E, f, \Gamma, x_0, \mathbf{V})$

where **V** = {**v**_{*i*} : *i* \in *E*} is a clock structure, and (**X**,*E*,*f*,*Γ*,*x*₀) is an automaton. The automaton generates a state sequence x'=f(x,e') driven by an event sequence { $e_1, e_2, ...$ } generated through

 $e' = \arg\min\{y_i\}$ with the clock values y_i , $i \in E$, defined by $y'_i = \begin{cases} y_i - y^* & \text{if } (i \neq e) \land i \in \Gamma(x) \\ v_{i,N_{+1}} & \text{if } (i = e) \lor i \notin \Gamma(x) \end{cases} \quad i \in \Gamma(x')$

where the *interevent time* y^* is defined as

$$y^* = \min_{i \in \Gamma(x)} \{y_i\}$$

INSTITUTO SUPERIOR TÉCNICO

and the event scores N_i , $i \in E$, are defined by

$$N'_{i} = \begin{cases} N_{i} + 1 & \text{if} (i = e^{i}) \lor i \notin \Gamma(x) \\ N_{i} & \text{if} (i \neq e^{i}) \land i \in \Gamma(x) \end{cases} \quad i \in \Gamma(x^{\prime})$$

In addition, initial conditions are: $y_{i,0} = v_{i,1}$ and $N_{i,0} = 1$ for all $i \in \Gamma(x_0)$. If $i \notin \Gamma(x_0)$, then y_i is undefined and $N_{i,0} = 0$.

$$\mathbf{v}_{1} = \{\mathbf{v}_{1,1}, \mathbf{v}_{1,2}, ...\} \xrightarrow{\mathbf{x}' = f^{x}(\mathbf{x}, \mathbf{y}, \mathbf{N}, \mathbf{v}_{1}, ..., \mathbf{v}_{m})} \xrightarrow{\{(e_{1}, t_{1}), (e_{2}, t_{2}), ...\}} \xrightarrow{\{(e_{1}, t_{1}), (e_{2}, t_{2}), ...\}} \xrightarrow{\{(e_{1}, t_{1}), (e_{2}, t_{2}), ...\}} \xrightarrow{\{(e_{1}, t_{1}), (e_{2}, t_{2}), ...\}}$$

• A positive real number v_{ik} is assigned to t_i , meaning that, when t_i is enabled for the k^{th} time, it does not fire immediately, but incurs a firing delay given by v_{ik} ; during this delay, tokens are kept in the input places of t_i . • $T = T_0$

ed

Def.: The clock structure associated with $T_D \subseteq T$ of a marked PN (P,T,A,w,x) is a set $\mathbf{V} = {\mathbf{v}_i : t_i \in T_D}$ of lifetime sequences $\mathbf{v}_{i} = \{v_{i1}, v_{i2}, ...\}, t_{i} \in T_{D}, v_{ik} \in \mathbb{R}^{+}, k = 1, 2, ...$

Def.:A Timed PN is a six-tuple (P,T,A,w,x,V) where (P,T,A,w,x) is a marked PN, and $\mathbf{V} = {\mathbf{v}_i : t_i \in T_D}$ is a clock structure.

TIMED PN MODELS

INSTITUTO		
SUPERIOR TÉCNICO	P-Timed	T-Timed
	firing delay $d_i \ge 0$ associated to place $p_i, \forall p_i \in P$	firing delay $d_i \ge 0$ associated to transition t_i , $\forall t_i \in T$
	when a token is deposited in p_i , it must stay there for at least a time d_i	a token has 2 possible states: • <i>reserved</i>
	the token becomes <i>available</i> after time <i>d_i</i> expires	 non-reserved regarding firing of t_i.
	only <i>available</i> tokens enable transitions	only <i>non-reserved</i> tokens enable transitions
	A transition is fired as soon as it becomes <i>enabled</i>	A transition t_i is fired after a firing delay d_i that starts when the token becomes reserved by t_i .

P-timed and *T-timed* PNs are equivalent

TIMED PN MODELS

Reprinted from [2].

2002 - © Pedro U. Lima

- v_{jk} is the lifetime of the event associated to t_j , when t_j becomes ready to be enabled (as soon as input tokens become non-reserved) for the k^{th} time, k = 1, 2, ...
- τ_{jk} is the k^{th} firing time of t_j
- π_{ik} is the time instant when place p_i receives its k^{th} token.

Goal: To express τ_{jk} as a function of τ_{jk-1} and v_{jk} .

TIMED PN MODELS

For Marked Graphs:

 p_i has only one input transition t_r and $x(p_i) = x_{i0}$ initially:

$$\pi_{ik} = \tau_{r,k-x_{i0}}, \ p_i \in O(t_r), \ k = x_{i0} + 1, x_{i0} + 2, \dots$$

 p_i has only one output transition t_i :

 $\tau_{j,k} = \pi_{ik}, \ p_i \in I(t_j), \ t_j \in T_0, \ k = 1,2,\dots$

$$\tau_{j,k} = \pi_{ik} + \nu_{jk}, \ p_i \in I(t_j), \ t_j \in T_D, \ k = 1, 2, \dots$$

 p_i is not the only input place of t_i :

$$\tau_{j,k} = \max_{p_i \in I(t_j)} \{\pi_{ik}\} + v_{jk}, \ t_j \in T_D, \ k = 1, 2, \dots$$

(max,+) algebra

- dioid algebra (two operations):
 - addition: $a \oplus b = \max\{a,b\}$
 - multiplication: $a \otimes b = a + b$
- $\bullet \oplus$ and \otimes are commutative
- \oplus and \otimes are associative
- \otimes is distributive over \oplus
- $\eta = -\infty$ is the null element of \oplus
- $\eta = -\infty$ is the absorbing null element of \otimes
- Idempotency in \oplus :

 $a \oplus a = \max\{a, a\} = a$

(max,+) algebra model of queueing system

$$a_{k} = a_{k-1} + v_{ak}, \ a_{0} = 0$$

$$d_{k} = \max\{a_{k-1} + v_{ak}, d_{k-1}\} + v_{dk}, \ d_{0} = 0$$

$$\int_{a_{k} = \max\{a_{k-1} \otimes v_{ak}, d_{k-1} \otimes -L\}, \ a_{0} = 0$$

$$d_{k} = \max\{a_{k-1} \otimes v_{ak}, d_{k-1} \otimes -L\}, \ a_{0} = 0$$

$$\int_{a_{k} = \max\{a_{k-1} \otimes v_{ak}, d_{k-1}\} \otimes v_{dk}, \ d_{0} = 0$$

$$d_{k} = (a_{k-1} \otimes v_{ak}) \oplus (d_{k-1} \otimes -L), \ a_{0} = 0$$

$$d_{k} = (a_{k-1} \otimes v_{ak} \otimes v_{dk}) \oplus (d_{k-1} \otimes v_{dk}), \ d_{0} = 0$$

2002 - © Pedro U. Lima

handling the system matrix

Form a graph where:

Number of nodes is equal to the dimension of the square matrix **A**.

Each arc corresponds to a matrix entry, and has an associated weight equal to that entry value.

Example for a 2x2 matrix A

Every closed loop in the graph forms a circuit.

Simple circuits are those where each node is only visited once (e.g., (1,1), (1,2,1), (2,2)).

The *length* of a circuit is the number of arcs forming the circuit.

The *weight* of a circuit is the sum of arc weights in the circuit.

Average weight of a circuit = weight / length of the circuit.

critical circuit of the system matrix

Def.: The *critical circuit* of a matrix **A** is the circuit with maximum average weight.

Matrix **A** has an **eigenvalue** λ equal to the average weight of its critical circuit.

periodicity of the system matrix

Def.: Under the (max,+) algebra, a matrix **M** is said to be n-periodic iff there exists an integer k^* such that $\mathbf{M}^{k+n} = \mathbf{M}^k$, for all $k > k^*$

If there is an unique critical circuit whose length is *n*, then the matrix $\mathbf{B} = \mathbf{A}/w$ is *n*-periodic, where *w* is the average weight of this critical circuit.

Note: in the (max,+) algebra, \mathbf{A}/w is defined so that $w\mathbf{B} = \mathbf{A}$.

TIMED DES

Further reading

- Queueing systems as timed automata
- Event scheduling scheme
- More on (max,+) algebra

Other references

• G. Cohen, P. Moller, J.-P. Quadrat, M. Viot, "Algebraic Tools for Performance Evaluation in Discrete Event Systems", *Proceedings of the IEEE*, Jan 1989 - *original paper on the (max,+) algebra*