
2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata 

DISCRETE EVENT DYNAMIC SYSTEMS 

Pedro U. Lima 

Instituto Superior Técnico (IST) 
Instituto de Sistemas e Robótica  (ISR) 

Av.Rovisco Pais, 1 
1049-001 Lisboa 

PORTUGAL 

September 2002 
All the rights reserved 



2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata 

E finite event set (alphabet) 
sequence of events (word, string, trace) 

E={a,b,c} aaa, aabccc, cbabbaaa 

(empty string)   ε  string of no events 
|s| length of a string 

LANGUAGES 

  |ε| = 0 
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A Language over a finite event set E is a set of 
finite length strings formed from events in E. 

A string is obtained from events in E by  concatenation. 

    =rob     =otica     =robotica 

 ε  is the identity element for the concatenation 

 εs = sε = s  

LANGUAGES 
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E  is the set of all finite strings of elements of E,  
including the empty string. 

(Kleene closure or Kleene star operation) 

* 

s=tuv 
t is a prefix of s. 
u is a substring of s. 
v is a suffix of s. 

LANGUAGES 
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* 

In addition to the usual set theoretic operations 
like union, intersection, difference and  
complement with respect to E  we define: 

OPERATIONS ON LANGUAGES 
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AUTOMATA 
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a 

b c 

a 
Example: 

AUTOMATA 

X = {x0, x1, x2} 
E = {a, b, c} 

x0 is the initial state 
XM = {x2} 
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AUTOMATA 



2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata 

a 

b c 

a 

AUTOMATA 
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a 

b 

a Ex.: 
Blocking 

AUTOMATA 
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NON-DETERMINISTIC AUTOMATA 
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NON-DETERMINISTIC AUTOMATA 

     can be uniquely extended from E to E  by: * 
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UNARY OPERATIONS ON AUTOMATA 

Deletes from G all states not accessible or reachable from x0 
by some string in L(G), without affecting L(G) and Lm(G) 
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UNARY OPERATIONS ON AUTOMATA 

Deletes from G all states not coaccessible. 

A state x is coaccessible if there exists a string leading to Xm that 
goes through x 

This operation may shrink L(G) but it does not affect Lm(G) 
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UNARY OPERATIONS ON AUTOMATA 

If G = CoAc(G), G is said to be coaccessible and 

i.e., G is non-blocking. 
If G were non-blocking there would exist accessible states 
which are not coaccessible 

Trim operation 
 Trim(G) = CoAc[Ac(G)] = Ac[CoAc(G)] 
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UNARY OPERATIONS ON AUTOMATA 

G=(X,E,f,Γ,x0,XM) is a trim automaton that marks 

Lm(G) = L ⊆ E* (thus, G generates    ). 

Let us build in two steps an automaton Gcomp that will mark E* \ L 

Complement 

€ 

L(Gcomp ) = E *,   Lm (Gcomp ) = E * \ Lm (G) = E * \ L
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UNARY OPERATIONS ON AUTOMATA 

Complement (cont’d) 
1.  add a new “dead” or “dump” state xd ∉Xm  

 and complete f to make it total 

2.  mark all unmarked states and unmark all marked states in Gtot 
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The product of     and     is the automaton: 

COMPOSITION OPERATIONS ON AUTOMATA 
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The parallel composition of     and     is the 
automaton: 

COMPOSITION OPERATIONS ON AUTOMATA 
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COMPOSITION OPERATIONS ON AUTOMATA 
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COMPOSITION OPERATIONS ON AUTOMATA 

Projection 
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COMPOSITION OPERATIONS ON AUTOMATA 

Inverse Projection 

  

€ 

Pi
−1 : Ei

* → 2(E1  E2 )* for i =1,2

Pi
−1(t) = s∈ (E1E2)* :Pi(s) = t{ }

Given a string in the smaller event set Ei, the inverse projection returns 
the set of all strings in the larger event set E1∪E2 that project, with Pi , to 
the given string. 
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COMPOSITION OPERATIONS ON AUTOMATA 

(Inverse) Projection - Extension to Languages 

  

€ 

Pi(L) =   t ∈ Ei
* :∃s∈ L  (Pi(s) = t){ }

and for Li ⊆ Ei
*,

Pi
−1(Li) = s∈ (E1E2)* :∃t ∈ Li  (Pi(s) = t){ }

Pi[Pi
−1(L)] = L  but in general L ⊆ Pi

−1[Pi(L)]
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COMPOSITION OPERATIONS ON AUTOMATA 

X 

= 

Examples (reprinted from [Cassandras, Lafortune]): 



2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata 

COMPOSITION OPERATIONS ON AUTOMATA 

|| 

= 

Examples (reprinted from [Cassandras, Lafortune]): 
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COMPOSITION OPERATIONS ON AUTOMATA 

The Dining Philosophers example (reprinted from [Cassandras, Lafortune]): 

Ex.: 3 philosophers 

Ex.: automata for 2 philosophers 

Ex.: automata representing resource 
constraints for 2 philosophers 
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COMPOSITION OPERATIONS ON AUTOMATA 

The Dining Philosophers example (reprinted from [Cassandras, Lafortune]): 

|| || || = 

deadlock 



2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata 

OBSERVER AUTOMATA 

A non-deterministic automaton can always be transformed into an 
equivalent deterministic automaton. 
The state space of the deterministic equivalent will be a subset of the 
power set of the state space of the non-deterministic automaton. 

A non-deterministic finite state automaton has an equivalent deterministic finite state 
automaton. 

The resulting equivalent deterministic automaton is called observer (Gobs) 

Example: 
Gnd 

a 

a b 

b 
b 

ε

ε

1 0 

2 3 

Gobs a 

a 

a,b 

b 
{0} {1,2,3} {0,1,2,3} 
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OBSERVER AUTOMATA 

PROCEDURE TO BUILD OBSERVER Gobs OF NON-DETERMINISTIC 
AUTOMATON Gnd 

Set of states reachable 
from any state in S when e occurs 

By definition of 
the extended version of fnd 
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OBSERVER AUTOMATA 

PROCEDURE TO BUILD OBSERVER Gobs OF NON-DETERMINISTIC 
AUTOMATON Gnd (cont’d) 
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AUTOMATA WITH INPUTS AND OUTPUTS 

Moore automaton 

Mealy automaton 

(reprinted from [Cassandras, Lafortune]) 
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AUTOMATA WITH INPUTS AND OUTPUTS 

Conversion from Moore automaton to Mealy automaton 

(adapted from [Cassandras, Lafortune]) 

a 

b 
d 

c 

01 02 

03 

a / 02 

b / 03 

d / 01 
c / 02 
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A language is said to be regular if it can be marked 
by an FSA. 

The class of languages representable by nondeter- 
ministic FSA is the same as the class of languages 
representable by deterministic FSA. 

FINITE STATE AUTOMATA (FSA) 
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FINITE STATE AUTOMATA (FSA) 

•  The class of regular languages R delimits the 
languages that possess automaton representations that 
require finite memory when stored in a computer. 
•  Non-regular languages require infinite memory and can 
not be represented by FSA. However, another finite 
transition structure (Petri Nets) we will study can 
represent some of these non-regular languages (e.g., 

Theorem – The class of languages representable by 
non-deterministic FSA is exactly the same as the class 
of languages representable by deterministic FSA: R  € 

{anbn : n ≥ 0}).
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FINITE STATE AUTOMATA (FSA) 
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Kleene’s Theorem (S. C. Kleene, 1950s) - A language 
can be denoted by a regular expression iff it is a regular 
language. 

FINITE STATE AUTOMATA (FSA) 

Examples for E = {a,b,g}: 
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ANALYSIS OF DES 

•  Most DES analysis problems imply navigating their state 
transition diagrams. 
•  For a deterministic automaton, the corresponding computational 
complexity is O(n), where n is the number of states, unless 
iterations are necessary, in which case it will typically be O(n2). 
•  Usual assumption: |E|<<n. 
•  This may work well for systems with up to a million states (or 
even for n ~ 1029 with special symbolic techniques). 
•  Typically, the first step consists of building automaton models of 
the system components and then obtain the complete model by 
parallel composition. 
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ANALYSIS OF AUTOMATA 

SAFETY 
•  reachability from x of an undesired or unsafe state y: take 
the Ac operation, with x declared as the initial state and look for 
state y in the result → O(n) 
•  presence of certain undesirable strings or substrings in the 
generated language: try to “execute” the substring from all the 
accessible states in the automaton (easy with the state transition 
diagram represented as a linked list) → O(n) 
•  inclusion of the generated language A in a “legal” or 
“admissible” language B: testing A ⊆ B is equivalent to testing 
A ∩ Bc = ∅ . The complement of B is computable in O(nB). The 
intersection is obtained by taking the product of the 
corresponding automata → O(nAnB) 
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ANALYSIS OF AUTOMATA 

BLOCKING 
•  blocking (                 ) or not (                 ) : take the CoAc 
operation of a given accessible automaton G. If any state is 
deleted, then G is blocking, otherwise is non-blocking. → O(n) 
•  if blocking identify deadlock and livelock states: start by 
finding all non-coaccessible states of G. Then: 

•  deadlock states are found by examining the active event 
sets of the non-coaccessible states; 
•  livelock cycles are found by finding the strongly connected 
components of the part of G consisting of the non-
coaccessible states and their associated transitions among 
themselves → O(n) 

€ 

Lm (G)⊂ L(G)

€ 

Lm (G) = L(G)
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ANALYSIS OF AUTOMATA 

STATE ESTIMATION 

•  ε-transitions in a non-deterministic automaton represent events 
that occur in the system modeled by the automaton (e.g., faults, 
absence of a sensor, event occurs at a remote location but is not 
communicated to the site being modeled) but which are not 
observed by an external observer of the system behavior 
•  instead of using ε-transitions and a non-deterministic automaton 
we will now use “genuine” (but non-observable) events and a 
deterministic automaton G with E partitioned in Eo and Euo 
•  Projection P: E* → E0

*  
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ANALYSIS OF AUTOMATA 

STATE ESTIMATION (cont’d) 
• Projection P: E* → E0

*  

• by construction of the observer Gobs: 
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ANALYSIS OF AUTOMATA 

STATE ESTIMATION (cont’d) 

• the state of Gobs reached after string t ∈ P[L(G)] will contain all 
states of G that can be reached after any of the strings in 

In this sense, the state of Gobs is an estimate of the current state of G 



2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata 

ANALYSIS OF AUTOMATA 

STATE ESTIMATION (example - reprinted from [Cassandras, Lafortune]): 

G Gobs 

Euo={ed,u,v} 
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ANALYSIS OF AUTOMATA 

DIAGNOSTICS 

• when the system model contains unobservable events, we may 
be interested to determine if some of those could have ocurred or 
have occurred with certainty.  
•  As we continue observing the system behavior, our uncertainty 
is reduced, but the diagnostic may not be conclusive in some 
cases. 
•  We build a modified observer and call it diagnoser Gdiag. 
•  We consider, for simplicity, only one event ed ∈Euo and attach 
labels to the states of Gdiag stating whether ed has occurred so far 
(label Y) or not (label N) 
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ANALYSIS OF AUTOMATA 

DIAGNOSTICS (cont’d) 

•  key modifications of the construction of Gobs for the purpose of of 
building Gdiag : 

M1: when building UR(x0), 
 (a) attach label N to all states reachable from x0 by 
 unobservable strings in [Euo \ {ed}]*; 
 (b) attach label Y to states reachable from x0 by unobservable 
 strings that contain at least one occurrence of ed; 
 (c) if state z can be reached both with and without 
 executing ed, then create two entries in the initial state of Gdiag : zN 
 and zY. 

M2: build subsequent states of Gdiag by following the rules for Gobs 
(with the above modified way to build unobservable reaches) and by 
propagating label Y  
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ANALYSIS OF AUTOMATA 

DIAGNOSTICS (example) 

G Gdiag 

unobservable event to be diagnosed: ed 

(reprinted from [Cassandras, Lafortune]) 
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LANGUAGES AND AUTOMATA 

Further reading  
•  state space refinement 
•  state space aggregation (with loss of less relevant information) 
•  state space minimization (with no loss of information) 
•  model building for estimation and diagnosis 

Other references  
•   An Introduction to Automata, Languages and Computation, J. 
Hopcroft, R. Motwani, and J. Ullman. Addison Wesley, 1979 
(DEEC Library) 

Acknowledgments to Paulo Tabuada, who helped preparing 
some of the slides in this chapter, for some sessions of an ISR/
IST Reading Group on DES and of ISR/IST Control Theory Group. 


