

DISCRETE EVENT DYNAMIC SYSTEMS

LANGUAGES AND AUTOMATA

Pedro U. Lima

Instituto Superior Técnico (IST) Instituto de Sistemas e Robótica (ISR) Av.Rovisco Pais, 1 1049-001 Lisboa PORTUGAL

> September 2002 All the rights reserved

2002 - © Pedro U. Lima

LANGUAGES

E finite event set *(alphabet)* sequence of events *(word, string, trace)*

- $E=\{a,b,c\}$ aaa, aabccc, cbabbaaa
- ε string of no events *(empty string)*
- |s| length of a string $|\varepsilon| = 0$

A *Language* over a finite event set *E* is a set of finite length strings formed from events in *E*.

A string is obtained from events in E by concatenation.

S1=rob S2=otica S1S2=robotica

 ε is the *identity element* for the concatenation

 $\varepsilon s = s \varepsilon = s$

E^{*} is the set of all finite strings of elements of E, including the empty string.

(Kleene closure or Kleene star operation)

s=tuv t is a prefix of s. u is a substring of s. v is a suffix of s.

Languages and Automata

In addition to the usual set theoretic operations like union, intersection, difference and complement with respect to \vec{E} we define: *Concatenation:* Let $L_a, L_b \subseteq E^*$, then

$$L_a L_b = \{ s \in E^* : s = s_a s_b \text{ and } s_a \in L_a \text{ and } s_b \in L_b \}$$

Prefix-closure: Let $L \subseteq E^*$, then $\overline{L} = \{s \in E^* : \exists t \in E^* \ st \in L\}$ L is said to be prefix - closed if $L = \overline{L}$

Kleene-closure: Let $L \subseteq E^*$, then

2002 - © Pedro U. Lima

$$L^* = \{\varepsilon\} \cup L \cup LL \cup LLL \cup \ldots$$

AUTOMATA

An *automaton* is a tuple $G=(X,E,f,\Gamma,x_0,X_M)$, where X is a set of states (Q) *E* is a set of labels *(event set or alphabet, I or* Σ *)* $f: X \times E \to X$ (transition or next-state function, possibly a partial function, δ) x_0 is the initial state X_{M} is a set of marked states *(final states)* $\Gamma: X \to 2^E$ active event function

$$f$$
 can be uniquely extended from E to E^{*} by:
 $f(x, \varepsilon) = x$
 $f(x, se) = f(f(x, s), e)$ for $s \in E^*$ and $e \in E$.

AUTOMATA

The language generated by $G = (X, E, f, \Gamma, x_0, X_M)$ is: $L(G) = \{s \in E^* : f(x_0, s) \text{ is defined}\}$

The language marked by $G = (X, E, f, \Gamma, x_0, X_M)$ is: $L_m(G) = \{s \in L(G) : f(x_0, s) \in X_m\}$

 $L(G) = \{\varepsilon, a, b, bc, aa, bca, aaa, bcaa, aaaa, bcaaa, ...\}$ $L_m(G) = \{a, bc, aa, bca, aaa, bcaaa, aaaa, bcaaaa, ...\} \subseteq L(G)$

AUTOMATA

Automata G_1 and G_2 are said to be *equivalent* if

$$L(G_1) = L(G_2)$$
 and $L_m(G_1) = L_m(G_2)$.

NON-DETERMINISTIC AUTOMATA

A non-deterministic automaton is a tuple $G_{nd} = (X, E \cup \{\epsilon\}, f_{nd}, \Gamma, x_0, X_M)$, where X is a set of states E is a set of labels $f_{nd}(x,\varepsilon) \subseteq X$ $f_{nd}: X \times E \bigcup \{\varepsilon\} \to 2^X$ x_0 is the initial state $x_0 \subseteq X$ X_{M} is a set of marked states $\Gamma: X \to 2^E$

Languages and Automata

NON-DETERMINISTIC AUTOMATA

f_{nd} can be uniquely extended from E to E^* by: $f_{nd}(x, se) = \{z : z \in f_{nd}(y, e) \text{ for some state } y \in f_{nd}(x, s)\}$ for $s \in E^*$ and $e \in E \cup \{\epsilon\}$.

The language generated by $G_{nd} = (X, E \bigcup \{\varepsilon\}, f_{nd}, \Gamma, x_0, X_M)$ $L(G_{nd}) = \{s \in E^* : \exists x \in x_0 \quad (f_{nd}(x, s) \text{ is defined})\}$

The language marked by $G_{nd} = (X, E \bigcup \{\varepsilon\}, f_{nd}, \Gamma, x_0, X_M)$ $L_m(G_{nd}) = \{s \in L(G_{nd}) : \exists x \in x_0 \ (f_{nd}(x, s) \bigcap X_m \neq \emptyset)\}$

UNARY OPERATIONS ON AUTOMATA

 $Ac(G) = (X_{ac}, E, f_{ac}, x_0, X_{ac,M}) \text{ is the accessible part}$ of *G* where: $X_{ac} = \{x \in X : \exists s \in E^* \quad f(x_0, s) = x\}$ $\begin{bmatrix} X_{ac,M} = X_M \cap X_{ac} \\ f_{ac} = f|_{X_{ac} \times E \to X_{ac}} \end{bmatrix}$

Deletes from *G* all states not *accessible* or *reachable* from x_0 by some string in L(G), without affecting L(G) and $L_m(G)$

UNARY OPERATIONS ON AUTOMATA

$$CoAc(G) = (X_{coac}, E, f_{coac}, x_{0,coac}, X_M)$$
 is the **coaccessible** part of *G* where:

$$\begin{aligned} X_{coac} &= \{ x \in X : \exists s \in E^* \quad f(x,s) \in X_M \} \\ x_{0,coac} &= \begin{cases} x_0 & \Leftarrow & x_0 \in X_{coac} \\ undefined & \Leftarrow & otherwise \end{cases} \end{aligned}$$

 $f_{coac} = f|_{X_{coac} \times E \to X_{coac}}$

Deletes from G all states not coaccessible.

A state x is coaccessible if there exists a string leading to X_m that goes through x

This operation may shrink L(G) but it does not affect $L_m(G)$

If G = CoAc(G), G is said to be coaccessible and

$$-m(G) = L(G)$$

i.e., *G* is non-blocking. If *G* were non-blocking there would exist accessible states which are not coaccessible

Trim operation Trim(G) = CoAc[Ac(G)] = Ac[CoAc(G)]

UNARY OPERATIONS ON AUTOMATA

Complement

G=(*X*,*E*,*f*, Γ ,*x*₀,*X*_M) is a trim automaton that marks $L_m(G) = L \subseteq E^*$ (thus, *G* generates \overline{L}).

Let us build in two steps an automaton G^{comp} that will mark $E^* \setminus L$

$$L(G^{comp}) = E^*, \ L_m(G^{comp}) = E^* \setminus L_m(G) = E^* \setminus L$$

UNARY OPERATIONS ON AUTOMATA

Complement (cont'd)

1. add a new "dead" or "dump" state $x_d \notin Xm$ and complete *f* to make it total

$$f_{tot}(x,e) = \begin{cases} f(x,e) & \text{if } e \in \Gamma(x) \\ x_d & \text{otherwise} \end{cases}$$
$$f_{tot}(x_d,e) = x_d, \forall e \in E$$
so that $G_{tot} = (X \cup \{x_d\}, E, f_{tot}, x_0, X_m\}$ is such that $L(G_{tot}) = E^*, \ L_M(G_{tot}) = L$

2. mark all unmarked states and unmark all marked states in G_{tot}

$$G^{comp} = (X \cup \{x_d\}, E, f_{tot}, x_0, X \cup \{x_d\} \setminus X_m\}$$

The **product** of G_1 and G_2 is the automaton:

$$G_1 \times G_2 = Ac(X_1 \times X_2, E_1 \cap E_2, f, (x_{01}, x_{02}), X_{M1} \times X_{M2})$$

$$f((x_1, x_2), e) = \begin{cases} (f_1(x_1, e), f_2(x_2, e)) & \Leftarrow e \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ undefined & \Leftarrow & otherwise \end{cases}$$

$$L(G_1 \times G_2) = L(G_1) \cap L(G_2)$$
$$L_m(G_1 \times G_2) = L_m(G_1) \cap L_m(G_2)$$

Discrete Event Dynamic Systems

The **parallel** composition of G_1 and G_2 is the automaton:

$$G_1 \parallel G_2 = Ac(X_1 \times X_2, E_1 \cup E_2, f, (x_{01}, x_{02}), X_{M1} \times X_{M2})$$

where

$$f((x_1, x_2), e) = \begin{cases} (f_1(x_1, e), f_2(x_2, e)) & \Leftarrow e \in \Gamma_1(x_1) \cap \Gamma_2(x_2) \\ (f_1(x_1, e), x_2) & \Leftarrow e \in \Gamma_1(x_1) \setminus E_2 \\ (x_1, f_2(x_2, e)) & \Leftarrow e \in \Gamma_2(x_2) \setminus E_1 \\ undefined & \Leftarrow otherwise \end{cases}$$

If $E_1 = E_2$, the parallel composition reduces to the product. If $E_1 \cap E_2 = \{\}$, there are no synchronized transitions and $G_1 \parallel G_2$ is the concurrent behavior or shuffleof G_1 and G_2 .

$$G_1 \parallel G_2 = G_2 \parallel G_1$$
$$G_1 \parallel (G_2 \parallel G_3) = (G_1 \parallel G_2) \parallel G_3$$

2002 - © Pedro U. Lima

Languages and Automata

Projection

$$P_i: (E_1 \cup E_2)^* \rightarrow E_i^* \text{ for } i = 1,2$$

$$P_{i}(\varepsilon) = \varepsilon$$

$$P_{i}(e) = \begin{cases} e & \text{if } e \in E_{i} \\ \varepsilon & \text{if } e \notin E_{i} \end{cases}$$

$$P_{i}(se) = P_{i}(s)P_{i}(e) \text{ for } s \in (E_{1} \cup E_{2})^{*}, e \in (E_{1} \cup E_{2})$$

Inverse Projection

$$P_i^{-1}: E_i^* \to 2^{(E_1 \cup E_2)^*} \text{ for } i = 1,2$$

$$P_i^{-1}(t) = \left\{ s \in (E_1 \cup E_2)^* : P_i(s) = t \right\}$$

Given a string in the smaller event set E_i , the inverse projection returns the set of all strings in the larger event set $E_1 \cup E_2$ that project, with P_i , to the given string.

(Inverse) Projection - Extension to Languages $P_{i}(L) = \left\{ t \in E_{i}^{*} : \exists s \in L \ (P_{i}(s) = t) \right\}$ and for $L_{i} \subseteq E_{i}^{*}$, $P_{i}^{-1}(L_{i}) = \left\{ s \in (E_{1} \cup E_{2})^{*} : \exists t \in L_{i} \ (P_{i}(s) = t) \right\}$

 $P_{i}[P_{i}^{-1}(L)] = L \text{ but in general } L \subseteq P_{i}^{-1}[P_{i}(L)]$ $L(G_{1} || G_{2}) = P_{1}^{-1}[L(G_{1})] \cap P_{2}^{-1}[L(G_{2})]$ $L_{m}(G_{1} || G_{2}) = P_{1}^{-1}[L_{m}(G_{1})] \cap P_{2}^{-1}[L_{m}(G_{2})]$ $\text{therefore } L_{1} || L_{2} = P_{1}^{-1}(L_{1}) \cap P_{2}^{-1}(L_{2})$

Languages and Automata

Examples (reprinted from [Cassandras, Lafortune]):

Examples (reprinted from [Cassandras, Lafortune]):

The Dining Philosophers example (reprinted from [Cassandras, Lafortune]):

Ex.: automata representing resource constraints for 2 philosophers

Ex.: 3 philosophers

The Dining Philosophers example (reprinted from [Cassandras, Lafortune]):

OBSERVER AUTOMATA

A non-deterministic automaton can always be transformed into an equivalent deterministic automaton. The state space of the deterministic equivalent will be a subset of the power set of the state space of the non-deterministic automaton.

A non-deterministic **finite state** automaton has an equivalent deterministic **finite state** automaton.

The resulting equivalent deterministic automaton is called *observer* (G_{obs})

2002 - © Pedro U. Lima

Example:

OBSERVER AUTOMATA

PROCEDURE TO BUILD OBSERVER G_{obs} OF NON-DETERMINISTIC AUTOMATON G_{nd}

$$G_{nd} = (X, E \bigcup \{\varepsilon\}, f_{nd}, x_0, X_m) \qquad G_{obs} = (X_{obs}, E, f_{obs}, x_{0,obs}, X_{m,obs})$$
Step 1: $X_{obs} = 2^X \setminus \{\}$
Step 2: for each state $x \in X$ define the unobservable reach
$$UR(x) = f_{nd}(x, \varepsilon) \quad (\text{set extension} : UR(B) = \bigcup_{x \in B} UR(x))$$
Step 3: Define $x_{0,obs} = UR(x_0)$
Step 4: For each $S \subseteq X$ and $e \in E$, define
$$f_{obs}(S, e) = UR(\{x \in X : \exists x_e \in S [x \in f_{nd}(x_e, e)]\})$$

$$= \{x \in X : \exists x_e \in S [x \in f_{nd}(x_e, e)]\}$$
By definition of the extended version of f_{nd}

2002 - © Pedro U. Lima

OBSERVER AUTOMATA

PROCEDURE TO BUILD OBSERVER G_{obs} OF NON-DETERMINISTIC AUTOMATON G_{nd} (cont'd) Step 5: $X_{m,obs} = \{S \subseteq X : S \cap X_m \neq \{\}\}$ Step 6: Do the above in a breadth - first manner so that only the accessible part of G_{obs} is constructed. The resulting state space $X_{obs} \subseteq 2^X$. The empty subset of X need not be considered, since it is never an accessible state of X_{obs} .

> G_{obs} is a deterministic automaton $L(G_{obs}) = L(G_{nd})$ $L_m(G_{obs}) = L_m(G_{nd})$

Languages and Automata

AUTOMATA WITH INPUTS AND OUTPUTS

AUTOMATA WITH INPUTS AND OUTPUTS

Conversion from Moore automaton to Mealy automaton

(adapted from [Cassandras, Lafortune])

FINITE STATE AUTOMATA (FSA)

A language is said to be *regular* if it can be marked by an FSA.

The class of languages representable by nondeterministic FSA is the same as the class of languages representable by deterministic FSA.

Let L_1 and L_2 be regular languages. Then

$$\overline{L_1}, \ L_1^*, \ L_1^c = E^* \backslash L_1, \ L_1 \cup L_2, \ L_1 L_2, \ L_1 \cap L_2$$

are also regular.

- The class of regular languages \mathcal{R} delimits the languages that possess automaton representations that require finite memory when stored in a computer.
- Non-regular languages require infinite memory and can not be represented by FSA. However, another finite transition structure (Petri Nets) we will study can represent some of these non-regular languages (e.g.,

 $\{a^n b^n : n \ge 0\}).$

Theorem – The class of languages representable by non-deterministic FSA is exactly the same as the class of languages representable by deterministic FSA: \mathcal{R}

Let E be any alphabet. A *regular expression* over E, \mathcal{R}_E and the language it denotes are inductively defined by the following rules:

$$\begin{split} & \emptyset \in \mathcal{R}_E \ \text{ and denotes the empty set (language)} \\ & \varepsilon \in \mathcal{R}_E \ \text{ and denotes the set (language)} \{ \varepsilon \} \\ & e \in \mathcal{R}_E, \ \forall e \in E \ \text{ and denotes the set (language)} \{ e \} \\ & a + b \in \mathcal{R}_E, \forall a, b \in \mathcal{R}_E \ a + b = \{ a \} \cup \{ b \} \\ & a b \in \mathcal{R}_E, \ \forall a, b \in \mathcal{R}_E \ a b = \{ a \} \} \\ & a^* \in \mathcal{R}_E, \ \forall a \in \mathcal{R}_E \ a^* = \{ a \}^* \\ & (a) \in \mathcal{R}_E, \ \forall a \in \mathcal{R}_E \ a \in \mathcal{R}_E \ a \} \end{split}$$

nothing else is a regular expression

FINITE STATE AUTOMATA (FSA)

Kleene's Theorem (S. C. Kleene, 1950s) - A language can be denoted by a regular expression *iff* it is a regular language.

Examples for *E* = {*a*,*b*,*g*}:

 $(a+b)g^* \mapsto L = \{a, b, ag, bg, agg, bgg, aggg, bggg, ...\}$ $(ab)^* + g \mapsto L = \{\varepsilon, g, ab, abab, ababab, ...\}$

ANALYSIS OF DES

- Most DES analysis problems imply navigating their state transition diagrams.
- For a deterministic automaton, the corresponding computational complexity is O(n), where *n* is the number of states, unless iterations are necessary, in which case it will typically be $O(n^2)$.
- Usual assumption: |*E*|<<*n*.
- This may work well for systems with up to a million states (or even for $n \sim 10^{29}$ with special symbolic techniques).
- Typically, the first step consists of building automaton models of the system components and then obtain the complete model by parallel composition.

SAFETY

- reachability from x of an undesired or unsafe state y: take the Ac operation, with x declared as the initial state and look for state y in the result $\rightarrow O(n)$
- presence of certain undesirable strings or substrings in the generated language: try to "execute" the substring from all the accessible states in the automaton (easy with the state transition diagram represented as a linked list) $\rightarrow O(n)$
- *inclusion of the generated language A in a "legal" or "admissible" language B:* testing $A \subseteq B$ is equivalent to testing $A \cap B^c = \emptyset$. The *complement* of *B* is computable in $O(n_B)$. The intersection is obtained by taking the *product* of the corresponding automata $\rightarrow O(n_A n_B)$

BLOCKING

• **blocking** ($\overline{L_m(G)} \subset L(G)$) or not ($\overline{L_m(G)} = L(G)$): take the CoAc operation of a given accessible automaton G. If any state is deleted, then G is blocking, otherwise is non-blocking. $\rightarrow O(n)$

• *if blocking identify deadlock and livelock states:* start by finding all non-coaccessible states of *G*. Then:

- deadlock states are found by examining the active event sets of the non-coaccessible states;
- livelock cycles are found by finding the strongly connected components of the part of *G* consisting of the non-coaccessible states and their associated transitions among themselves $\rightarrow O(n)$

STATE ESTIMATION

• ε -transitions in a non-deterministic automaton represent events that occur in the system modeled by the automaton (e.g., faults, absence of a sensor, event occurs at a remote location but is not communicated to the site being modeled) but which are not observed by an external *observer* of the system behavior • instead of using ε -transitions and a non-deterministic automaton we will now use "genuine" (but non-observable) events and a deterministic automaton *G* with *E* partitioned in E_o and E_{uo} • Projection *P*: $E^* \rightarrow E_o^*$

STATE ESTIMATION (cont'd) •Projection $P: E^* \to E_0^*$ $P(\varepsilon) = \varepsilon$ $P(e) = \begin{cases} e & \text{if } e \in E_0 \\ \varepsilon & \text{if } e \notin E_0 \end{cases}$ $P(se) = P(s)P(e) \text{ for } s \in E^*, e \in E$

•by construction of the observer G_{obs} :

2002 - © Pedro U. Lima

 $L(G_{obs}) = P[L(G)]$ $L_m(G_{obs}) = P[L_m(G)]$

STATE ESTIMATION (cont'd)

•the state of G_{obs} reached after string $t \in P[L(G)]$ will contain all states of G that can be reached after any of the strings in $P^{-1}(t) \cap L(G)$

In this sense, the state of G_{obs} is an *estimate* of the current state of G

STATE ESTIMATION (example - reprinted from [Cassandras, Lafortune]):

Discrete Event Dynamic Systems

2002 - © Pedro U. Lima

Languages and Automata

DIAGNOSTICS

•when the system model contains unobservable events, we may be interested to determine if some of those *could have ocurred* or *have occurred with certainty*.

• As we continue observing the system behavior, our uncertainty is reduced, but the diagnostic may not be conclusive in some cases.

• We build a modified observer and call it diagnoser G_{diag} .

• We consider, for simplicity, only one event $e_d \in E_{uo}$ and attach labels to the states of G_{diag} stating whether e_d has occurred so far (label Y) or not (label N)

DIAGNOSTICS (cont'd)

• key modifications of the construction of G_{obs} for the purpose of of building G_{diag} :

M1: when building $UR(x_0)$,

(a) attach label N to all states reachable from x_0 by unobservable strings in $[E_{uo} \setminus \{e_d\}]^*$;

(b) attach label Y to states reachable from x_0 by unobservable atriage that contain at least one operation of a *i*

strings that contain at least one occurrence of e_d ;

(c) if state *z* can be reached both with and without

executing e_d , then create two entries in the initial state of G_{diag} : zN and zY.

M2: build subsequent states of G_{diag} by following the rules for G_{obs} (with the above modified way to build unobservable reaches) and by propagating label Y

DIAGNOSTICS (example)

unobservable event to be diagnosed: e_d

(reprinted from [Cassandras, Lafortune])

LANGUAGES AND AUTOMATA

Further reading

- state space refinement
- state space aggregation (with loss of less relevant information)
- state space minimization (with no loss of information)
- model building for estimation and diagnosis

Other references

 An Introduction to Automata, Languages and Computation, J. Hopcroft, R. Motwani, and J. Ullman. Addison Wesley, 1979 (DEEC Library)

Acknowledgments to Paulo Tabuada, who helped preparing some of the slides in this chapter, for some sessions of an ISR/ IST Reading Group on DES and of ISR/IST Control Theory Group.