
2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

DISCRETE EVENT DYNAMIC SYSTEMS

Pedro U. Lima

Instituto Superior Técnico (IST)
Instituto de Sistemas e Robótica (ISR)

Av.Rovisco Pais, 1
1049-001 Lisboa

PORTUGAL

September 2002
All the rights reserved

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

E finite event set (alphabet)
sequence of events (word, string, trace)

E={a,b,c} aaa, aabccc, cbabbaaa

(empty string) ε string of no events
|s| length of a string

LANGUAGES

 |ε| = 0

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

A Language over a finite event set E is a set of
finite length strings formed from events in E.

A string is obtained from events in E by concatenation.

 =rob =otica =robotica

 ε is the identity element for the concatenation

 εs = sε = s

LANGUAGES

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

E is the set of all finite strings of elements of E,
including the empty string.

(Kleene closure or Kleene star operation)

*

s=tuv
t is a prefix of s.
u is a substring of s.
v is a suffix of s.

LANGUAGES

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

*

In addition to the usual set theoretic operations
like union, intersection, difference and
complement with respect to E we define:

OPERATIONS ON LANGUAGES

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

AUTOMATA

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

a

b c

a
Example:

AUTOMATA

X = {x0, x1, x2}
E = {a, b, c}

x0 is the initial state
XM = {x2}

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

AUTOMATA

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

a

b c

a

AUTOMATA

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

a

b

a Ex.:
Blocking

AUTOMATA

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

NON-DETERMINISTIC AUTOMATA

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

NON-DETERMINISTIC AUTOMATA

 can be uniquely extended from E to E by: *

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

UNARY OPERATIONS ON AUTOMATA

Deletes from G all states not accessible or reachable from x0
by some string in L(G), without affecting L(G) and Lm(G)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

UNARY OPERATIONS ON AUTOMATA

Deletes from G all states not coaccessible.

A state x is coaccessible if there exists a string leading to Xm that
goes through x

This operation may shrink L(G) but it does not affect Lm(G)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

UNARY OPERATIONS ON AUTOMATA

If G = CoAc(G), G is said to be coaccessible and

i.e., G is non-blocking.
If G were non-blocking there would exist accessible states
which are not coaccessible

Trim operation
 Trim(G) = CoAc[Ac(G)] = Ac[CoAc(G)]

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

UNARY OPERATIONS ON AUTOMATA

G=(X,E,f,Γ,x0,XM) is a trim automaton that marks

Lm(G) = L ⊆ E* (thus, G generates).

Let us build in two steps an automaton Gcomp that will mark E* \ L

Complement

€

L(Gcomp) = E *, Lm (Gcomp) = E * \ Lm (G) = E * \ L

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

UNARY OPERATIONS ON AUTOMATA

Complement (cont’d)
1.  add a new “dead” or “dump” state xd ∉Xm

 and complete f to make it total

2.  mark all unmarked states and unmark all marked states in Gtot

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

The product of and is the automaton:

COMPOSITION OPERATIONS ON AUTOMATA

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

The parallel composition of and is the
automaton:

COMPOSITION OPERATIONS ON AUTOMATA

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

COMPOSITION OPERATIONS ON AUTOMATA

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

COMPOSITION OPERATIONS ON AUTOMATA

Projection

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

COMPOSITION OPERATIONS ON AUTOMATA

Inverse Projection

€

Pi
−1 : Ei

* → 2(E1 E2)* for i =1,2

Pi
−1(t) = s∈ (E1E2)* :Pi(s) = t{ }

Given a string in the smaller event set Ei, the inverse projection returns
the set of all strings in the larger event set E1∪E2 that project, with Pi , to
the given string.

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

COMPOSITION OPERATIONS ON AUTOMATA

(Inverse) Projection - Extension to Languages

€

Pi(L) = t ∈ Ei
* :∃s∈ L (Pi(s) = t){ }

and for Li ⊆ Ei
*,

Pi
−1(Li) = s∈ (E1E2)* :∃t ∈ Li (Pi(s) = t){ }

Pi[Pi
−1(L)] = L but in general L ⊆ Pi

−1[Pi(L)]

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

COMPOSITION OPERATIONS ON AUTOMATA

X

=

Examples (reprinted from [Cassandras, Lafortune]):

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

COMPOSITION OPERATIONS ON AUTOMATA

||

=

Examples (reprinted from [Cassandras, Lafortune]):

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

COMPOSITION OPERATIONS ON AUTOMATA

The Dining Philosophers example (reprinted from [Cassandras, Lafortune]):

Ex.: 3 philosophers

Ex.: automata for 2 philosophers

Ex.: automata representing resource
constraints for 2 philosophers

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

COMPOSITION OPERATIONS ON AUTOMATA

The Dining Philosophers example (reprinted from [Cassandras, Lafortune]):

|| || || =

deadlock

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

OBSERVER AUTOMATA

A non-deterministic automaton can always be transformed into an
equivalent deterministic automaton.
The state space of the deterministic equivalent will be a subset of the
power set of the state space of the non-deterministic automaton.

A non-deterministic finite state automaton has an equivalent deterministic finite state
automaton.

The resulting equivalent deterministic automaton is called observer (Gobs)

Example:
Gnd

a

a b

b
b

ε

ε

1 0

2 3

Gobs a

a

a,b

b
{0} {1,2,3} {0,1,2,3}

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

OBSERVER AUTOMATA

PROCEDURE TO BUILD OBSERVER Gobs OF NON-DETERMINISTIC
AUTOMATON Gnd

Set of states reachable
from any state in S when e occurs

By definition of
the extended version of fnd

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

OBSERVER AUTOMATA

PROCEDURE TO BUILD OBSERVER Gobs OF NON-DETERMINISTIC
AUTOMATON Gnd (cont’d)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

AUTOMATA WITH INPUTS AND OUTPUTS

Moore automaton

Mealy automaton

(reprinted from [Cassandras, Lafortune])

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

AUTOMATA WITH INPUTS AND OUTPUTS

Conversion from Moore automaton to Mealy automaton

(adapted from [Cassandras, Lafortune])

a

b
d

c

01 02

03

a / 02

b / 03

d / 01
c / 02

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

A language is said to be regular if it can be marked
by an FSA.

The class of languages representable by nondeter-
ministic FSA is the same as the class of languages
representable by deterministic FSA.

FINITE STATE AUTOMATA (FSA)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

FINITE STATE AUTOMATA (FSA)

•  The class of regular languages R delimits the
languages that possess automaton representations that
require finite memory when stored in a computer.
•  Non-regular languages require infinite memory and can
not be represented by FSA. However, another finite
transition structure (Petri Nets) we will study can
represent some of these non-regular languages (e.g.,

Theorem – The class of languages representable by
non-deterministic FSA is exactly the same as the class
of languages representable by deterministic FSA: R €

{anbn : n ≥ 0}).

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

FINITE STATE AUTOMATA (FSA)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

Kleene’s Theorem (S. C. Kleene, 1950s) - A language
can be denoted by a regular expression iff it is a regular
language.

FINITE STATE AUTOMATA (FSA)

Examples for E = {a,b,g}:

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF DES

•  Most DES analysis problems imply navigating their state
transition diagrams.
•  For a deterministic automaton, the corresponding computational
complexity is O(n), where n is the number of states, unless
iterations are necessary, in which case it will typically be O(n2).
•  Usual assumption: |E|<<n.
•  This may work well for systems with up to a million states (or
even for n ~ 1029 with special symbolic techniques).
•  Typically, the first step consists of building automaton models of
the system components and then obtain the complete model by
parallel composition.

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

SAFETY
•  reachability from x of an undesired or unsafe state y: take
the Ac operation, with x declared as the initial state and look for
state y in the result → O(n)
•  presence of certain undesirable strings or substrings in the
generated language: try to “execute” the substring from all the
accessible states in the automaton (easy with the state transition
diagram represented as a linked list) → O(n)
•  inclusion of the generated language A in a “legal” or
“admissible” language B: testing A ⊆ B is equivalent to testing
A ∩ Bc = ∅ . The complement of B is computable in O(nB). The
intersection is obtained by taking the product of the
corresponding automata → O(nAnB)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

BLOCKING
•  blocking () or not () : take the CoAc
operation of a given accessible automaton G. If any state is
deleted, then G is blocking, otherwise is non-blocking. → O(n)
•  if blocking identify deadlock and livelock states: start by
finding all non-coaccessible states of G. Then:

•  deadlock states are found by examining the active event
sets of the non-coaccessible states;
•  livelock cycles are found by finding the strongly connected
components of the part of G consisting of the non-
coaccessible states and their associated transitions among
themselves → O(n)

€

Lm (G)⊂ L(G)

€

Lm (G) = L(G)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

STATE ESTIMATION

•  ε-transitions in a non-deterministic automaton represent events
that occur in the system modeled by the automaton (e.g., faults,
absence of a sensor, event occurs at a remote location but is not
communicated to the site being modeled) but which are not
observed by an external observer of the system behavior
•  instead of using ε-transitions and a non-deterministic automaton
we will now use “genuine” (but non-observable) events and a
deterministic automaton G with E partitioned in Eo and Euo
•  Projection P: E* → E0

*

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

STATE ESTIMATION (cont’d)
• Projection P: E* → E0

*

• by construction of the observer Gobs:

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

STATE ESTIMATION (cont’d)

• the state of Gobs reached after string t ∈ P[L(G)] will contain all
states of G that can be reached after any of the strings in

In this sense, the state of Gobs is an estimate of the current state of G

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

STATE ESTIMATION (example - reprinted from [Cassandras, Lafortune]):

G Gobs

Euo={ed,u,v}

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

DIAGNOSTICS

• when the system model contains unobservable events, we may
be interested to determine if some of those could have ocurred or
have occurred with certainty.
•  As we continue observing the system behavior, our uncertainty
is reduced, but the diagnostic may not be conclusive in some
cases.
•  We build a modified observer and call it diagnoser Gdiag.
•  We consider, for simplicity, only one event ed ∈Euo and attach
labels to the states of Gdiag stating whether ed has occurred so far
(label Y) or not (label N)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

DIAGNOSTICS (cont’d)

•  key modifications of the construction of Gobs for the purpose of of
building Gdiag :

M1: when building UR(x0),
 (a) attach label N to all states reachable from x0 by
 unobservable strings in [Euo \ {ed}]*;
 (b) attach label Y to states reachable from x0 by unobservable
 strings that contain at least one occurrence of ed;
 (c) if state z can be reached both with and without
 executing ed, then create two entries in the initial state of Gdiag : zN
 and zY.

M2: build subsequent states of Gdiag by following the rules for Gobs
(with the above modified way to build unobservable reaches) and by
propagating label Y

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

ANALYSIS OF AUTOMATA

DIAGNOSTICS (example)

G Gdiag

unobservable event to be diagnosed: ed

(reprinted from [Cassandras, Lafortune])

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Languages and Automata

LANGUAGES AND AUTOMATA

Further reading
•  state space refinement
•  state space aggregation (with loss of less relevant information)
•  state space minimization (with no loss of information)
•  model building for estimation and diagnosis

Other references
•  An Introduction to Automata, Languages and Computation, J.
Hopcroft, R. Motwani, and J. Ullman. Addison Wesley, 1979
(DEEC Library)

Acknowledgments to Paulo Tabuada, who helped preparing
some of the slides in this chapter, for some sessions of an ISR/
IST Reading Group on DES and of ISR/IST Control Theory Group.

