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Resumo:

Esta tese foca-se no planeamento em ambientes dinâmicos e móveis. Em particular em tare-

fas de percepção activa cooperativa (ACP), onde sensores estáticos e activos devem cooperar

para melhorar a informação perceptual dispońıvel no sistema enquanto, possivelmente, executam

outros tipos de tarefas.

A tarefa de planeamento é formalizada como um processo de Markov parcialmente observável

(POMDP), dado que fornece um método matematicamente sólido e permite modelar as incertezas

no sistema.

Tipicamente, o objectivo em ACP é o ganho de informação, mas, na sua formulação tradicional,

POMDPs são optimizados para reduzir a incerteza apenas se for benéfico para a execução de

tarefas. Apresenta-se um método para modelar a tomada de decisão sob incerteza para ganho

de informação, extendendo POMDPs para recompensar crenças com baixa incerteza e mantendo

funções de valor convexas e lineares por troços. Apresenta-se avaliação experimental e um caso

de estudo de vigilância com robôs.

No entanto, POMDPs são dif́ıceis de solucionar e a sua aplicação em sistemas reais continua

limitado por problemas de escalabilidade. Introduz-se aproximação linear da função de valor em

POMDPs. Desenvolvem-se algoritmos de iteração de valor com funções de valor lineares e propõe-

se uma abordagem para a construção automática de funções de base que explora a estrutura de

modelos factorizados. A performance dos algoritmos é avaliada em problemas ilustrativos.
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Percepção Activa Cooperativa; Sistemas de Robôs Ligados em Rede; Ganho de Informação;

Vigilância Assistida por Rôbos; Funções de Base; Escalabilidade; Função de Valor Linear; It-
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Title: Information Gain and Value Function Approximation in Task Planning Using POMDPs

Abstract:

This thesis focuses on planning in dynamic and mobile environments. In particular in active

cooperative perception (ACP) tasks, in which static and active sensors must cooperate in order

to improve the perceptual information available to the system, while possibly performing other

tasks.

The planning task is formalized as a partially observable Markov decision process (POMDP),

as it provides a sound mathematical framework and allows for modelling the uncertainties in the

system.

Typically, the goal in ACP is to perform information gain as a task itself, but traditional

POMDP formulation is optimized to reduce uncertainty only if it helps task performance. We

present a POMDP framework to model decision-making under uncertainty for information gain.

POMDPs are extended to reward low-uncertainty beliefs while remaining with piecewise linear

value functions. Experimental evaluation is provided and a case study for robotic surveillance is

presented.

However, POMDPs are hard to solve and their applicability in real systems is still limited by

scalability issues. This thesis introduces linear value function approximation in POMDPs. We

develop value iteration algorithms with linear value functions and propose an approach for au-

tomatic basis function construction which exploits factored model structure. We experimentally

evaluate its performance in illustrative problems.

Key-words: Planning Under Uncertainty; Partially Observable Markov Decision Processes;

Active Cooperative Perception; Networked Robot Systems; Information Gain; Robot-Assisted
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Chapter 1

Introduction

Making decisions is at the heart of autonomous task performance, but decisions are

essentially difficult to make. Even we humans many times have many doubts when it

comes to take decisions, and often based on intuitive strategies in opposition to the-

oretically sound reasoning rules. Thus, intelligent decision support systems add some

reasoning to the intuitive based human thinking [5].

In the meantime, technology research led to new applications where autonomous deci-

sion making in challenging environments plays an essential role. For instance, in robotics

research history, areas of application have gone from static industrial environments to

more dynamic and human-inhabited environments. Nowadays, we may find driverless

cars, interactive museum tour-guides robots [6], collaborative robots that perform service

tasks for humans [7], among several other examples. In these scenarios the planning pro-

cess involves being aware of the changes in the environment and act according to those

changes in order to perform some given tasks. However, in real problems there is un-

certainty associated with sensors and actuators. For instance, a robot must take into

account on its planning process that its sensors are noisy and it may fail to observe

some event in the environment. Also, its actions can have uncertain effects. We will

look at the planning problem in the presence of uncertainty from an artificial intelli-

gence perspective, in order to compute sequence of actions which guides the system to

desired states. Typically, a goal of a planning problem is to reach some goal state. We

will consider a broad definition of goal, such that it can include some desired level of

information about the environment.

1
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environment

agent

action

state

observation

Figure 1.1: Diagram of an agent. The agent live in an environment which is at a
particular state, it receives information about the state and acts in the environment

according to the information received [1].

1.1 Planning

A planning problem in artificial intelligence is usually described as follows: given a

description of the current state of some system, a set of actions that can be performed

on the system and a description of a goal set of states for the system, find a sequence of

actions that can be performed to transform the system state into one of the goal states

[8]. An agent is a general concept, which may include robots and intelligent computer

programs. Agents interact with the environment as shown in Figure 1.1. In planning

agents are considered as acting in an environment which is at a particular state at every

moment. The agent may interact with the environment by acting within it, and therefore

influences how the state changes. It chooses which actions to execute dependent on the

current state of the environment [9].

In practice the outcome of actions and the information that the agent receives from

the environment are not certain. Therefore, when planning for real world problems,

inevitably, an agent must deal with uncertainty. For instance, in our diagram of an

agent’s operation, if the environment where the agent lives is stochastic, i.e., there are

several different possible outcomes for each action, then the agent must plan ahead how

to act upon each different possible next state.

In the field of artificial intelligence (AI) planning has been tackled for a long time. Classic

AI planning algorithms focus on the task of finding a sequence of actions to take a system

to a goal state in controlled, static environments, but are no longer applicable when we

take agents out of controlled environments. Decision-theory [10] provides a framework

for evaluating multiple plans under uncertainty (i.e, with uncertain outcomes), based

on probability theory and utility theory. However, decision-theory does not tackle the

problem of planning, which under this framework would be formalized as the task of
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constructing a plan with maximum expected utility. From this, both frameworks were

merged [11] in order to model planning under uncertainty. In another context, Markov

Decision Processes (MDPs) became popular in the operations research community. In

a MDP, there is a reward associated with each possible world state, and the goal of an

agent is to compute the plan that maximizes the long-term cumulative reward.

MDP-based techniques have been used to model decision making in several problems.

Under this framework, we model decision making in stochastic environments, where

outcomes of actions are uncertain. When we extend it to problems where we add un-

certainty to what we observe, we enter into the field of Partially Observable Markov

Decision Processes (POMDPs) [12, 13]. POMDPs are modeled in a similar way as

MDPs, with a reward associated with every state. But in POMDPs we also take into

account uncertainty in sensing, and we no longer know the true state of the environment

at every moment. POMDPs have been used in problems where agents need to reason

over uncertainty, in numerous applications, such as robot navigation [14], controlling

the temperature of chemical sensors [15] or in customer relationship management [16],

among others [17].

POMDPs establish a sound mathematical framework to model decision-making under

uncertainty in several problems. POMDPs provide a principled way to model the inter-

action between agents and the environment, and allows to directly model uncertainties

associated with the system, as encoding the goal of a particular task. With a model

of the environment, we may compute policies that tell agents how to act based on the

observations the system receives.

1.2 Information-Gathering

So far, we described the planning goal as reaching some goal states. Even when planning

under uncertainty, the system typically will act in a way to reduce its uncertainty about

the environment only if that improves task performance. However, in some systems

information gain can be an objective itself and planners should plan for reaching some

particular information state. Multi-objective problems can combine both objectives and

plan balance regular task objectives with information objectives.

1.2.1 Networked Robot Systems

An example of challenging environments where planning is crucial for task performance

and information objectives play an important role are the scenarios of networked robot
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(a) Person localization

?
?

(b) Person identification

Figure 1.2: Example of a robot cooperating with a camera network for (a) person
localization and (b) person identification.

systems (NRS) [18], defined as any distributed system which consists of a multitude

of networked robots and other devices and which, as a whole, is capable of interacting

with the environment through the use of perception and actions for the performance of

tasks [19]. A system of networked mobile and static sensors can substantially improve

situational awareness compared to a single sensor or a network of static sensors. However,

the benefit of mobile sensors is maximized if actions, such as positioning a mobile sensor,

are carefully planned and executed [20]. In our work, we consider the problem of planning

in NRS, in which mobile robots carrying sensors interact with each other as well as with

static sensors present in the environment to accomplish certain tasks [21] (as illustrated

in Fig.1.2). For instance, in a shopping mall, we can consider a NRS where cameras

detect humans in need of help, but also detect a fire eruption or an abnormal activity

which requires assistance. Robots might be used both to improve the confidence of event

detection and to provide assistance for any of the above situations.

1.2.2 Active Cooperative Perception

We take a comprehensive approach to this problem, denoted here as active cooperative

perception (ACP) [22]. In our context, cooperative perception refers to the fusion of

sensory information among the static surveillance cameras and each robot, with the

goal of maximizing the amount and quality of perceptual information available to the

system. Active perception means that an agent considers the effects of its actions on its

sensors, and in particular it tries to improve their performance. This can mean selecting

sensory actions, for instance pointing a pan-and-tilt camera or choosing to execute a

computationally expensive vision algorithm. Other effects might require reasoning about

the future, such as adjusting a robot’s path planning: given two routes to reach a goal

location, take the more informative one, for instance. Combining the two concepts,
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active cooperative perception is the problem of active perception involving multiple

sensors and multiple cooperating decision makers.

There are many benefits of cooperation between sensors, in particular when some are

mobile. An obvious advantage is that a mobile sensor can move to regions in which

fixed sensors have no coverage. However, even when such coverage exists, it might not

be sufficient, as illustrated in Fig. 1.2. First, while a person might be observed by a

surveillance camera (Fig. 1.2a, where the uncertainty of the camera’s measurements

is indicated in green), additional sensor readings by the robot (blue) result in a more

precise estimate of the person’s location (red). Second, often not all relevant visual

features required for person identification might be reliably detected by the fixed sensors

(Fig. 1.2b), in which case the up-close and adjustable field of view of a mobile sensor

can provide the required extra information.

This is a challenging environment for planning algorithms, as it goes further than deal-

ing with uncertainty associated with the robot. There is uncertainty associated with

everything in the environment, which must be considered when making decisions. In

particular, it is important that the agent considers uncertainty in sensing and the effects

of its actions on its observations of the environment. Decision-theoretic methods, in par-

ticular POMDPs, provide a comprehensive approach to model the interaction between

an active sensor and the environment.

1.3 Complexity

The expressiveness of POMDPs to model decision-making under acting and sensing

uncertainties comes at a cost. Solving a MDP is P-complete [23], meaning that it

can be solved in polynomial time. However, adding the sensing uncertainty in the

decision process increases its complexity. It has been proved that finding optimal policies

for POMDPs is PSPACE-Complete for finite horizon [23] and undecidable for infinite-

horizon [24]. Thus, unless P = PSPACE, POMDPS are inherently harder to solve.

In general, a POMDP suffers from two reasons for its limited scalability, usually called

curse of dimensionality and curse of history [25]. The first refers to the dimension of

the problems meaning that it is more complex to compute policies for problems with a

higher number of states. In turn, the second is associated with the fact that algorithms

consider all possible future scenarios and compute policies for all cases.

As a consequence research has focused on proposing approximate methods which may

alleviate the complexity of computing policies while maintaining good policy quality.

Computing policies for reduced models which approximate the original [26, 27], reducing
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the space of possible policies [28] or computing sub-optimal value functions within some

error from the optimal solution are common approaches [4, 28, 29].

1.4 Contributions

This thesis presents contributions in two directions, related to planning using decision-

theoretic algorithms. First, it tackles decision-making under uncertainty for information

gain. Here, the main contributions are:

• A POMDP based decision-theoretic framework for information-gain, POMDP-IR

(POMDPs with Information Rewards), that extends POMDPs to reward low-

uncertainty beliefs. This extension comes at the cost of extending the action

space, with information rewarding actions which have no effect on the state of the

environment, but rewards the agent for reaching a particular level of knowledge.

We show how these information rewards have to be set based on a desired level of

certainty.

• An experimental evaluation in a toy problem showing the behavior of POMDP-IR

in multi-objective problems with information-gain, and an experimental compar-

ison with state of the art methods for information-gathering with POMDPs in a

benchmark problem.

• Analysis of agent’s behavior in a robot assisted surveillance case study in which

a robot assists a network of surveillance cameras to identify a person. Though

performed in simulation, the setup of the case study is based in a real scenario,

with observation models obtained from real data.

These contributions were published in Spaan et al. [30].

Second, the main contributions about linear value function approximation in POMDPs

are:

• Formalization of a point-based POMDP solver extension with linear value function

approximation. With minor changes we can adapt the backup operator to use

linear value functions. Moreover, by exploiting specific properties of POMDPs and

linear value functions we present techniques which lead to more efficient operations.

In particular, a procedure that, under certain conditions, exploits independence

between observation factors to speed up the backup of the value function, and a

projection method that reduces the approximation error directly over belief points.
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• An automatic procedure to automatically construct suitable sets of basis functions

for POMDPs with linear value functions. This method captures the dynamics of

each vector update, exploits factored transitions and basis functions. We test

it experimentally against the only method that exploits POMDP’s dynamics to

construct sets of bases, and show that we compare favorably.

• An empirical evaluation of linear value function approximation in POMDPs. Be-

sides proving the effects of previous contributions, we provide a study on the effect

of different basis functions for the same problem. Moreover, we show scalability

gains for larger problems.

These contributions were partially published in Veiga et al. [31, 32].

1.5 Thesis Outline

• Chapter 2 introduces the existing framework of decision-theoretic planning under

uncertainty. We will go from MDP and their solutions to the partially observable

case, with exact and approximate solutions.

• Chapter 3 presents an approach to deal with information gain in active cooperative

problems. We review the information-gathering problem and formalize it in a

decision-theoretic framework. The POMDP-IR framework is presented, which

extends classic POMDP solving methods to information-gathering. We illustrate

our framework on a toy problem, and compare against other POMDP framework

for information gain. Furthermore, a case study of information-gathering in a

robot-assisted surveillance is presented.

• Chapter 4 introduces an approach to linear value function approximation in POMDPs.

We will extend the concept of linear value functions from MDPs to POMDPs, and

exploit model structure to efficiently reduce the size of value functions. We adapted

a point-based POMDP solver and experimentally tested the performance of our

methods.

• Finally, in Chapter 5 we present general conclusions and outline directions for

future research.



Chapter 2

Decision-theoretic planning

As introduced in Chapter 1, the focus of this thesis is on decision-making for autonomous

agents under the presence of uncertainty. We model the decision making problem un-

der the Markov decision process model [33, 34]. This chapter provides an overview of

decision-theoretic planning under uncertainty in stochastic environments, starting with

the fully observable case, in which the agent can with full certainty identify the state of

the environment. Finally, we will review the general case in which the agent can only

obtain noisy information about the state of the environment, formalized as partially

observable MDPs, following Spaan [1].

2.1 Markov Decision Processes

A MDP models the interaction between an agent and a stochastic environment when the

agent needs to take decisions. It can be viewed as an extension of Markov chains with

a set of decisions and state-based rewards (or costs). The agent influences the world

through the actions it executes, attempting to change the world state to achieve a given

objective. The MDP provides a framework to compute plans, by computing utilities.

Formally, a MDP is specified as a tuple (S, A, T, R, γ) where:

• S is a finite set of |S| environment states that can be reliable identified by the

agent;

• A is a finite set of |A| actions available to the agent;

• T : S × A × S → [0, 1] is a state transition model of the environment. It gives

for each state s ∈ S and action a ∈ A a probability distribution over world states,

8
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environment

agent

action a

state s

observation s
reward r

Figure 2.1: Diagram of a MDP agent interacting with the environment

representing the probability that the resulting state is s′ when the the world is at

a state s and a given action a is taken: T (s′, a, s) = p(s′|s, a);

• R : S ×A→ ℜ is a reward function that specifies the expected immediate reward

R(s, a) received by the agent for taking an action a in a state s.

• γ is the discount factor, which is used to weight rewards received over time. There-

fore, rewards received in a distant future are less valued.

In a MDP, at every timestep t the environment is in a state s ∈ S, the agent takes

an action a ∈ A and receives a reward R(s, a). When performing an action, the state

changes according to the transition model p(s′|s, a). MDPs possess the Markov property,

i.e., at each transition the probability of reaching any state s′ depends only in the current

state s and the current action a.:

p(st+1|st, st−1, . . . , s0, at, at−1, . . . , a0) = p(st+1|st, at) (2.1)

This means that the current state must provide enough information in order to predict

the next state. Thus, in a MDP we can forget about all previous states since the future

state is conditionally independent of all previous states and actions.

In order to automate decision making, there should be any measure on how good or

bad is the behavior of the agent. This is encoded in the reward function, which gives

a numerical value to the combination of being at some state and take some action.

Typically, reaching good states or performing good actions will be rewarded with positive

values, while bad actions and/or states receive negative values. The reward function is

also useful to define priorities, when an agent can perform several tasks. For instance, in
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a surveillance task it is more important to detect fires than abandoned objects, therefore

it receives a higher reward for correctly detecting a fire.

A measure of the long-term reward is usually called a criterion of optimality, and reflects

the way how we want to evaluate our solutions. There are two main changes between

criteria, whether there is a finite horizon or an infinite horizon for decision making. And

also, if rewards are discounted or not.

A finite horizon means that the agent only plans for N steps ahead, and nothing matters

after the end of this horizon. This can influence how the agent behaves, for instance,

if an agent needs to take higher risks in order to reach his goals. In an infinite horizon

case, it might decide to take safer decisions to reach its goals. Thus, a first criterion is

to measure the expected cumulative reward, under a finite-horizon model, in which the

performance of the agent is measured by the expected cumulative reward after acting

for a finite number of steps, usually known as the planning horizon:

E

[
h−1∑

t=0

Rt

]
(2.2)

where E[.] denotes the expectation operator, h is the planning horizon and Rt is the

reward received at timestep t.

Under an infinite-horizon model, h =∞, the cumulative reward might become infinite,

making different policies indistinguishable under a numerical point of view. Therefore

a discount is introduced, which models the concept that reward received earlier in the

agent’s lifetime are more valuable than later rewards. In this case, the optimality is

measured by the expected discounted cumulative reward:

E

[
∞∑

t=0

γtRt

]
(2.3)

where γ is the discount rate, 0 ≤ γ ≤ 1.

Thus, the discount factor has two roles: ensuring that a reward received in the near

future is more valuable than a reward received in the far future, and ensuring that the

performance measure has a finite sum. In the following we will assume an optimality

criterion based on the expected discounted cumulative reward, and though we use a

notation with a horizon length, those notions are general, even if h =∞.

Given this, unlike classic planners, MDPs do not need to compute a long-term plan for

each starting state, but rather computes an optimal policy, i.e., a mapping from states
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to actions, which tell the best action to take at every single state. A policy π : S → A

is a mapping between states and actions, and π(s) indicates the action a ∈ A the agent

must perform when the environment is in state s ∈ S, when following policy π. The

quality of a policy is measured by the long-term expected reward the agent receives by

following it, or in another words, by the expected utility of the possible environment

histories generated by that policy. An optimal policy π∗ : S → A is the one which

maximizes the considered performance measure.

To the performance measure we call it the value function associated with each policy,

V π : S → ℜ, which maps a state s ∈ S to a real value. The value function indicates how

valuable how good it is to follow a policy π when starting a plan at state s.

Using the optimality criterion (2.3) the value function of state s, V π(s) is:

V π(s) = E

[
∞∑

t=0

γtRt(s, π(s))

]
. (2.4)

Such value function may be rewritten as:

V π(s) = R(s, π(s)) + E

[
∞∑

t=1

γtR(st, π(st))

]
. (2.5)

The expectation operator averages over the stochastic transition model, which leads to

the following recursion, known as the Bellman recursion [35]:

V π(s) = R(s, π(s)) + γ
∑

s′∈S

p(s′|s, π(s))V π(s′) (2.6)

The policy π corresponding to a particular value function can be easily extracted by the

equation:

π(s) = argmax
a∈A

[
R(s, a) + γ

∑

s′∈S

p(s′|s, a)V (s′)

]
(2.7)

which instructs the agent to take the action which maximizes not only the immediate

reward, but which as part of a long run policy maximizes the sum of immediate reward

and future discounted rewards.
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2.1.1 Value Iteration

As mentioned, the goal in an MDP is to find the optimal policy, i.e., the one which

maximizes the value function. Therefore, we may rewrite the Bellman recursion to find

the optimal value function V ∗(s):

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑

s′∈S

p(s′|s, a)V ∗(s′)

]
(2.8)

This is called the Bellman equation, and forms the basis for solving MDPs. If there

are n possible states, then there are n Bellman equations, one for each state. These

n equations contain n unknowns. Thus, if those were linear equations it would be

straightforward to solve them using linear algebra. However, the equations include the

nonlinear max operator, which induces nonlinearity in the equations. Besides, for large

numbers of states it might not be feasible to a system with such a large number of

equations. Therefore, a successive approximation technique has been introduced, called

value iteration, which turns (2.8) into an update, computing the optimal value function

of each state by iterating over successive steps into the future. First the value function is

initialized at the optimal value function V ∗
0 , defined as the maximum reward the agent

gets when it can take only one action:

V ∗
0 (s) = max

a∈A
R(s, a) (2.9)

The value function is then iterated over time, following the rule:

Vn+1(s) = max
a∈A

[
R(s, a) + γ

∑

s′∈S

p(s′|s, a)Vn(s
′)

]
(2.10)

This operation is known as a Bellman backup [35], denoted as HMDP , and converges to

the fixed point V ∗. We may rewrite (2.10) as:

Vn+1 = HMDPVn (2.11)

Value iteration is proved to converge for the optimal value function when n → ∞, in

which case it is possible to extract the optimal policy. In practice, it is iterated until the

value function has converged, i.e., until the largest state value update during one step

iteration is below a certain threshold. If the difference between two successive iteration

is bounded by:
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‖Vn+1 − Vn‖ ≤
ǫ(1− λ)

2λ
(2.12)

then the difference to the optimal value function [34] is bounded by:

‖V ∗ − Vn+1‖ ≤ ǫ/2 (2.13)

The algorithm for value iteration solving of MDPs is shown in Algorithm 1.

Algorithm 1 MDP Value iteration

Input: ǫ
Output: An approximate to optimal value function V ∗ with Bellman error less than
ǫ
Set V (s) = 0 for all s ∈ S
repeat
V ′ ← V
for all s ∈ S do
V (s)← maxa∈A

[
R(s, a) + γ

∑
s′∈S p(s′|s, a)V ′(s′)

]

until maxs∈S |V
′(s)− V (s)| ≤ ǫ

2.1.2 Policy Iteration

Policy iteration is an alternative method which searches for solutions in the policy space.

This method alternates iteratively between calculation of the expected value for a given

policy (2.6), and the improvement of that policy using a greedy one-step look-ahead

value calculation (2.7). Policy iteration is guaranteed to converge for the optimal policy.

Algorithm 2 MDP Policy Iteration

Input: ǫ, π0
i← 0
repeat
i← i+ 1
for all s ∈ S do
Solve V (s) = R(s, πi−1(s)) + γ

∑
s′∈S p(s′|s, πi−1(s))V (s′)

for all s ∈ S do
πi(s)← argmaxa

[
R(s, a) + γ

∑
s′∈S p(s′|s, a)V (s′)

]

until πi = πi−1

2.1.3 Linear Value Function Approximation

In the MDP framework, a popular approach to compactly represent value functions, and

overcome the curse of dimensionality, is the use of linear value function approximation.
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Linear value functions are defined as value functions represented by a linear combination

of basis functions, inspired by work on function approximation [36].

When approximating value functions by linear regression the space of allowable value

functions V ∈ H ⊆ ℜ|S| is defined via a set of basis functions H = {h1, . . . , hk}. A linear

value function is a function defined over a set of basis functions that can be written as

V (s) =
∑k

j=1 ωjhj(s) for some coefficients ω = (ω1, . . . , ωk). H is the linear subspace of

ℜ|S| spanned by the basis functions H. If basis functions are represented as an |S| × k

matrix H, then an approximate value function is represented by Hω.

The assumption to approximate value functions using basis functions is that we can

represent the value function within H. In the value iteration algorithm, whenever we

take a step that takes the value function outside this space, we must project it back into

the space by finding the value function in the space which is closest to the result.

In practice, the value iteration with approximate linear value functions alternates be-

tween the application of the Bellman operator and projecting the results back to space

H, as follows:

V̄n+1 = TMDPHωn (2.14)

Hωn+1 = ΠV̄n+1 (2.15)

where TMDP is the Bellman backup operator for MDPs, Π is the projection operator

which brings the value function representation back to H and V̄i is an intermediate value

function at time step i.

Definition 2.1. A projection operator is a mapping Π : ℜ|S| → H. Π is said to be a

projection operator w.r.t. a norm p if: ΠV̄ = Hω∗ such that ω∗ ∈ argminω
∥∥Hω − V̄

∥∥
p
.

The choice of the norm used in the projection operator is crucial for its properties. In the

MDP framework several norms have been studied. The L2 seems a natural choice but

was proven to diverge for some cases [37]. Weighted L2 seems to be a valid alternative

which meets the given criteria [38]. An approach using a projection operator in L∞ norm

was proposed in [39]. This can be solved by linear programming, but takes a number of

constraints linearly dependent on the number of states, which might be impracticable

for large state spaces. It is argued that the use of factored MDPs can contribute to

represent those constraints more efficiently, and contribute to reduce the computational

cost of the algorithm.
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When using a L2 norm this is a problem of least squares. By definition, parameter

estimation with least squares for a model y ≈ Xβ is given by [40]:

β̂ = argmin
β

‖Xβ − y‖2 (2.16)

= (XTX)−1XT y (2.17)

It directly follows that the solution for the projection operator is given by:

ω̂n+1 = argmin
ω

∥∥Hω − V̄n+1

∥∥
2

(2.18)

= (HTH)−1HT V̄n+1 (2.19)

We may also formulate the problem of parameter estimation with a L∞ norm:

ω̂n+1 = argmin
ω

∥∥Hω − V̄n+1

∥∥
∞

(2.20)

Although this formulation defines a non-linear mapping, it may be solved by linear

programming [41]:

variables ω1, . . . , ωn, φ

minimize φ

subject to φ ≥

nh∑

i=1

ωihi(s)− α(s),

φ ≥ α(s)−

nh∑

i=1

ωihi(s), s = 1, . . . , |S|

(2.21)

The constraints in this linear program ensure that φ ≥ |
∑nh

i=1 ωihi(s)− α(s)| for each

state, or equivalently, that φ ≥ ‖
∑nh

i=1 ωihi − α‖. This LP has nh + 1 variables but |S|

constraints, which can make it impractical for large state spaces.
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2.2 Partially Observable Markov Decision Processes

In the previous section we described MDPs, which assume that the agent has complete

knowledge of the environment state, or in other words, that the environment is fully

observable to the agent. A more realistic assumption would be to say that the agent’s

observation of the environment is incomplete, due to noise and uncertainty in sensing.

In this case, we say that the environment is partially observable, and the agent does

not know in which state it is in. Thus, Partially Observable Markov Decision Processes

(POMDPs) [12] have been introduced as an extension to MDP settings to deal with

uncertainty in state observation. Figure 2.2 depicts a POMDP agent interacting with the

environment, note the difference to Figure 2.1: instead of receiving the actual state from

the environment, the agent receives an observation, which is captured by a probabilistic

model.

environment

agent

action a

state s

observation o
reward r

Figure 2.2: Diagram of a POMDP agent interacting with the environment

Formally, a POMDP is a tuple (S, A, T, R, Z, O, γ), where:

• S is the state space, A is the action space, T is the transition function, R the reward

function and γ the discount factor as defined in the MDP case (Section 2.1);

• Z is a finite set of observations available to the agent;

• O : S × A × Z → [0, 1] is an observation function. It gives for each state s′ ∈ S

and action a ∈ A a probability distribution over observations, representing the

probability that the agent receives an observation o when the world is in state s

and an action a is performed: O(z, s′, a) = p(o|s′, a).

Under this framework, the system is no longer Markovian, since observations do not

provide unique state identification and some sort of memory needs to be provided to

the system such that the agent is able to infer from it what might be the world current



Decision-theoretic planning 17

state. One possible implementation would be to maintain an history of observations,

but that such implementation would grow indefinitely over time, turning it impractical

for large problems.

Researchers have shown that it turns out that it is sufficient for an agent to maintain a

probability distribution over states, called belief, such that it keeps the same information

as saving the complete observation history. The belief b(s) is a probability distribution

over the state space S, denoting the probability that the environment is in state s ∈ S.

As it is a probability distribution, it must sum to 1, thus a belief can be represented

with a finite vector with size |S| − 1, where |S| is the size of the state space. Every time

the agent takes an action and receives an observation the belief is update by the Bayes’

rule:

boa(s
′) = p(s′|o, a, b) =

p(o|s′, a)

p(o|b, a)

∑

s∈S

p(s′|s, a)b(s) (2.22)

where p(o|a, b) =
∑

s′∈S p(o|s′, a)
∑

s∈S p(s′|s, a)b(s) is a normalizing constant.

The belief b is itself a Markovian signal, as its dynamics depends on the previous belief,

the action taken and the current observation. Given that the belief is fully observable

to the agent, solving a POMDP can be transformed into solving an MDP defined on

the space of belief states, i.e., a belief-state MDP [13]. Although solving a POMDP can

be reduced to solving a MDP, this is a continuous MDP, which increases complexity of

computing solutions.

Formally, a belief-state MDP is a completely observable continuous-space MDP, defined

as a tuple (B, A, r, τ, γ) where B is the set of belief states, A is the set of actions, r

is the reward function constructed from the MDP reward taking expectations according

to the belief state and γ is the discount factor:

r(b, a) =
∑

s∈S

b(s)R(s, a) (2.23)

and τ is the belief state transition function:

τ(b, a, b′) = p(b′|b, a) =
∑

o∈O

p(b′|b, a, o)p(o|b, a) (2.24)

where p(b′|b, a, o) = 1 if SE(b, a, o) = b′ or p(b′|b, a, o) = 0 if SE(b, a, o) 6= b′. SE is the

state estimator, which updates the belief state as defined in (2.22)
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2.2.1 Value Function

Following a belief-state MDP formulation, we may represent solutions like in the fully

observable MDP. The goal is also to compute an optimal plan such that the agent

successfully completes its tasks. However, in the MDP framework policies maps states

to actions, while in POMDPs policies maps beliefs to actions: π : B → A. The quality of

a policy π(b) is measured by by a value function V π(b) which is defined as the expected

future discounted reward the agent can gather by following π starting from a belief b

with the planning horizon h:

V π(b) = Eπ

[
h−1∑

t=0

γtr(bt, π(bt))

∣∣∣∣b0 = b

]
. (2.25)

An optimal policy π∗ is the one which maximizes the value function V π. The expected

operator averages over the belief transition model, and like in the MDP framework we

can rewrite the equation, leading to the recursive Bellman equation. The optimal value

function satisfies the Bellman optimality equation, V ∗ = HPOMDPV
∗:

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑

b′

τ(b, a, b′)V ∗(b′)

]
(2.26)

= max
a∈A

[
r(b, a) + γ

∑

o∈O

p(o|b, a)V ∗(bao)

]

The solution is optimal when (2.26) holds for every belief b in the space defined by the

state space S. The value function defined over the belief space may contain infinitely

many values, as the belief space is continuous. Fortunately, it has been proved that in

such framework the value function presents a particular structure [13]. It shows that

value functions for finite-horizon POMDPs are piecewise linear and convex (PWLC).

Thus, value functions can be represented by a finite set of vectors {αi
n}, i = 1, . . . , |Vn|,

and each vector has an action a(αi
n) ∈ A associated. The action to execute under a

particular policy is the one associated with the maximizing vector for a particular belief.

Given a set of vector {αi
n}

|Vn|
i=1 at stage n, the value for a belief b is given by:

Vn(b) = max
{αi

n}i
b · αi

n (2.27)

Given that value functions are represented by a finite set of vectors, we easily note that

vectors divide the belief space into regions. Each region is associated with a particular
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maximizing vector, and thus with a particular action. We say that the maximizing vector

dominates the set of vectors for that particular region. In Figure 2.3 we see a practical

example of a value function, represented as a set of vectors. This value function for a

two-state problem has 3 different regions, each one dominated by a vector. The upper

surface of the vectors is the PWLC function corresponding to the value function.

V

α1

α2

α3

b(1, 0) (0, 1)

Figure 2.3: Example of a Value Function with two states.

2.2.2 Value Iteration

We have seen that solving a POMDP is equivalent to solve a belief-state MDP, where we

account for transitions between beliefs, instead of transitions between states. We are able

to keep under the MDP framework, since transitions between beliefs form a Markovian

signal. Given this, it is possible to apply value iteration methods to POMDPs, through

the belief MDP implementation. However, those are defined over continuous spaces,

since the belief space is continuous, and value iteration needs to be adapted to this

condition.

Recalling, in value iteration the goal is to compute the policy which maximizes the

value function. In a POMDP the value function is parametrized by a finite number of

hyperplanes (α-vectors) over the belief space. This set of vectors partition the belief

space into regions, each one associated with a given action, corresponding to the vector

which maximizes the value function in this region. In a fully observable MDP value

iteration computes the optimal value function by considering successive steps, looking

one step deeper into the future at each iteration, considering all possible actions that

the agent can take at each action. In a POMDP value iteration also looks successive

into the future, considering all possible actions and observations for an agent.
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The idea behind value iteration in POMDPs is that we can backup α-vectors iteratively

such that at iteration n the value function is parametrized by a finite set of vectors

{αi
n}, i = 1, . . . , |Vn|. We can compute the value of a belief b by (2.27) and the policy

is obtained by finding the action associated with the maximizing vector:

π(b) = a

(
argmax
{αk

n+1
}k

b · αk
n+1

)
(2.28)

2.2.3 Exact value iteration

One way to apply value iteration is to generate all possible next stage vectors, while

removing the set of dominated vectors. These methods are called exact value iteration

methods, as they search in the whole belief space for all possible vectors. Monahans’s

enumeration algorithm [42] builds an intermediate set of vectors, and combines all pos-

sible actions and observations the agent might receive.

We start by defining gao vectors, which represent the vectors resulting from back-

projecting αk
n for a particular action a and observation o:

gkao(s) =
∑

s′

p(o|s′, a)p(s′|s, a)αk
n(s

′) (2.29)

And we can define the backup operator as:

HPOMDPVn =
⋃

a

Ga, with (2.30)

Ga =
⊕

o

Go
a, and (2.31)

Go
a =

{
1

|O|
αa
0 + γgkao

}

k

(2.32)

where
⊕

and
⋃

represent the cross-sum and union operators.

The overall complexity of one iteration is O(|V | × |A| × |O| × |S|2 + |A| × |S| × |V ||O|),

and |A||V ||O| new vectors are generated, which easily explode the memory demand for

large problems.

One step to overcome this is by noting that many of the newly generated vectors will

not be part of the value function, as its maximizing region will be empty. Since the

value function at intermediate stages is a lower bound for the optimal value function,
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it is safe to remove dominated vectors, as those will not influence the dominant set of

vectors at future iterations. Therefore, an additional step is included in value iteration

methods to prune such vectors:

Vn+1 = prune (HPOMDPVn) (2.33)

The prune operator may be implemented by solving a linear program [43].

To improve the way to prune vectors a more clever algorithm was presented, called

Incremental Pruning [44]. It is noted that the pruning step can be more efficiently

written as:

prune (A⊕B ⊕ C) = prune (prune (A⊕B)⊕ C) (2.34)

so we may rewrite part of (2.32) as:

Ga = prune

(
⊕

a

Ga

)
, with (2.35)

= prune
(
G1

a ⊕G2
a ⊕G3

a ⊕ . . .⊕G|O|
a

)
(2.36)

= prune
(
. . . prune

(
prune

(
G1

a ⊕G2
a

)
⊕G3

a

)
. . .⊕G|O|

a

)
(2.37)

Despite the improvements generated by the introduction of pruning steps, in practice,

exact value iteration is only feasible for small problems. Moreover, the complexity of

the linear programs used in for pruning depend on the size of the set of vectors Vn and

the vectors’ dimensionality, thus becoming too complex for larger problems.

2.2.4 Approaches to Approximation

The intractability of exact solutions led to several approximations to POMDP solving.

We will outline the most common approaches to approximation. We focus on approaches

in the partially observable setting, although similar approaches may be found in fully

observable MDPs. Note that, although we split this section into different approximation

methods, they are not exclusive. For instance, model or policy approximation indirectly

also induce an approximated value functions in the sense that it might differ from the

value function computed with exact methods. Nonetheless, approximation methods are

grouped according to their main focus.
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2.2.4.1 Model approximation

In model approximation methods, the approximation does not takes place in the POMDP

solving, but rather it attempts to reduce the complexity of the model itself. For instance,

clustering the state, observation and/or actions spaces might be a form of model ap-

proximation. One approach is to transform a partially observable model into a region

observable, in which the agent knows in which region the true state of the system is [26].

We are still able to solve a reduced POMDP with existing solving methods. Approxi-

mations which use the underlying MDP as an approximation to the original POMDP

model have been proposed [45, 46]. State partitioning was explored in the context of

fully observable MDPs, with techniques that may be extended to POMDPs as well [47].

2.2.4.2 Policy approximation

Policy approximation schemes approximate optimal solutions by searching for policies in

a reduced policy space. Naturally, such methods should be more useful in problems with

large action spaces. This helps to alleviate the problem of finding solutions to POMDPs

by simplifying the policy optimization problem, as a consequence of restricting the al-

lowed space of policies to the agent [48]. Examples of policy approximation methods

are memoryless policies [49, 50], policies based on truncated histories [51, 52] and finite

state controllers with bounded size [53]. In the framework of reinforcement learning,

gradient-based approaches [54], which follows the gradient of parametrized policy space,

have been proposed [55–57].

2.2.4.3 Value function approximation

Lastly, a popular family of approximation methods is the value function approximation.

Generally, this can be defined as the set of methods which compute sub-optimal value

functions, which yield sub-optimal policies. Typically, approximated value functions are

less complex and easier to compute. For instance, a family of approximations already

mentioned as model approximators, which use the underlying MDP, may also be seen

as value function approximation, given that, in the end, the resulting value function is

also sub-optimal [48].

One of the major sources of intractability is the domain size of a value function in a

POMDP, the continuous belief space. Given the PWLC property of the value function

exact solutions can still be found by enumerating all possible vectors and pruning useless

vectors, at the cost of high computational complexity. Grid-methods [58] approximate

the value function by discretization of the belief space in a grid pattern, then interpolate
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over those to compute values of beliefs not in the grid, but the number of points can

grow exponentially and many points might be unreachable. The popular family of

point-based methods [59] also approximates by computing value functions over a subset

of belief points. They compute solutions for the reachable parts of the belief space,

which are sampled beforehand by letting the agent interact with the environment. By

working on a reduced set of belief points, these methods end up reducing the number of

vectors used to represent the value function, which makes computation simpler.

2.2.5 Point-based value iteration

By dropping the requirement for optimal solutions and look instead for approximate op-

timal solutions, new methods for POMDP solving have been developed. Those methods

compensate the loss of optimality with their ability to scale better than exact meth-

ods. Most common methods are heuristic approaches [28, 60, 61], policy search [62],

grid-based methods [63] and point-based methods.

While exact algorithms search for solutions in the whole belief space, point-based meth-

ods plan over a finite subset of beliefs B ⊂ ∆(S), and expect that those results extend

for the whole belief space. Methods differ in the way that belief points are sampled,

which vary from sampling points to let the agent interact with the environment.

Point-based methods take from equation (2.32) and derive an equation to compute the

value function at each particular belief b:

Vn+1(b) = max
a

[
b · αa

0 + γb ·
∑

o

argmax
{gkao}k

b · gkao

]
(2.38)

= max
gba

b · gba, (2.39)

with gba = αa
0 + γ

∑

o

argmax
{gkao}k

b · gkao (2.40)

Finally, the backup operator which selects the maximizing vector for the belief b becomes:

backup(b) = argmax
{gba}a∈A

b · gba (2.41)

The value function at the next step is the union of all the vectors resulting from backup

all the belief points in the set B.
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HPBV IVn =
⋃

b∈B

backup(b) (2.42)

All point-based methods share the backup(b) operation and differ in two main aspects.

Algorithm 3 outlines a generic point-based algorithm, where the COLLECT method

selects the new belief points, possibly depending on the current value function Vn and

a previous set of beliefs B. The UPDATE method decides at which belief points are

backed up, generating new value functions..

Algorithm 3 General Point-Based POMDP Solver

t← 0
Initialize V0

Initialize b
while stopping condition not met do
Bnew ← COLLECT (Vt, B,N)
for U iterations do
Vt+1 ← UPDATE(Vt, B,Bnew)
t← t+ 1

B ← B ∪Bnew

The most know point-based methods for solving POMDPs are Point-Based Value Itera-

tion [59], Perseus [64], Heuristic Search Value Iteration [65], Point-Based Error Minimiza-

tion Algorithm [66], Forward Search Value Iteration [67] and Successive Approximation

of the Reachable Space under Optimal Policies [68].

As mentioned, those methods differ on the collection and update stages. The original

PBVI method expands the belief set by maximizing the L1-norm between beliefs already

in the set and their successors, whereas PERSEUS performs random forward simulation

starting from an initial belief distribution. HSVI and GapMin use the bound uncertainty

heuristic that search for points that maximize the gap between bounds of the value

function. PEMA is a variation of PBVI that searches for belief points which minimize

the approximation error between a point-based backup and a complete backup. Finally,

FSVI guides the belief collections by following the policy of the underlying MDP.

In this set of methods we can find three different update strategies. The most straight-

forward is the full backup strategy, which executes a backup on every belief in the set of

belief points. Instead, the newest points strategy applies, at each iteration, the backup

operator only to the new points in the set. The asynchronous backup, used solely by

the PERSEUS method, uses a random order of backups, but ensuring that the value

of each belief are improved after each iteration. Table 2.1 summarizes the most known

point-based algorithms. A thorough and more detailed survey on point-based POMDP

solvers may be found in the paper by Shani et al. [4].
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Algorithm Collect Update

PBVI L1-norm full backup

Perseus Random asynchronous backup

HSVI Bound uncertainty newest points backup

GapMin Bound uncertainty full backup

PEMA error minimization full backup

FSVI MDP heuristic newest points backup

Table 2.1: Outline of point-based algorithms, with the associated collection and up-
dating method [4]

2.2.6 PERSEUS

We highlight here the PERSEUS method, as it will be our method of reference for

POMDP solving throughout this thesis. PERSEUS is a randomized algorithm, which

can be read with two different meanings. In one sense, it collects belief points by

randomly exploring the environment, thus collecting only reachable points. In the other

hand, in the update stage it randomly chooses the order of belief points at which it

updates the value function. The method saves additional computation by keeping track

of the non improved beliefs during the update stage, consisting of the points b ∈ B̃

whose new value V ′(b) is still lower than V (b). At each backup, all points whose value is

improved by the new vector are removed from the set B̃. This ensures that the method

does not need to compute backups for all belief points, while requiring that the value of

all points, at least, does not decrease at each iteration. One typical convergence criteria

is the difference between successive value function-estimates, i.e., maxb∈B(V
′(b)−V (b)).

The procedure for POMDP solving with PERSEUS is shown in Algorithm 4.

2.3 Model Representation

So far, we have assumed a (PO)MDP models with a flat representation that enumer-

ates all possible states, observations and actions. In this section we will review the use

of factored model representation that allows for a compact but exact representation of

transition, observation and reward functions. Moreover, linear value function approxi-

mation is extended to factored models, such that basis functions with reduced scope can

be compactly represented.
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Algorithm 4 Perseus

Function Perseus
B ← RandomExplore(n)
V ← PerseusUpdate(B, ∅)o

Function RandomExplore(n)
B ← b0
b← b0
repeat
sample a ∈ A
sample o ∈ O following the P (o|b, a) distributions
b← ba,o

B ← B ∪ b
until |B| = n

Function PerseusUpdate(B,V)
repeat
B̃ ← B
V ′ ← ∅
while B̃ 6= ∅ do
sample b ∈ B̃
α← backup(b, V )
if α · b ≥ V (b) then
B̃ ← {b ∈ B̃ : α · b < V (b)}
αb ← α

else
B̃ ← B̃ − b
αb ← argmaxα∈V α · b

V ′ ← V ′ ∪ αb

V ← V ′

until V has converged

2.3.1 Factored models

The definition of the state space in a Markovian problem is of extreme importance,

since it defines how we model a description of the world. Usually it is considered a state

space S consisting of a discrete and finite set of states, without assuming any structure.

However, we may consider for each particular problem a number of different features

which characterize the environment. If each feature is represented by a variable Xi, the

factored state X of the system may be seen as a cross-product of all state variables:

X = X1 ×X2 × . . .×Xk (assuming an environment with k features). In the same way,

the action space A and the observation space O may also be decomposed such that

each action a and observation o correspond to a joint-instantiation of variables. Such

representation is called a factored representation [69, 70], which allows for the transi-

tion, observation and reward functions to be defined in terms of state variables, actions
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variables and observations variables (instead of simply states, actions and observations).

This also prevents the need to explicitly define all states in the problem, which grow

exponentially with the number of variables.

t t+ 1 X1

X1 X ′
1

X2

X2 X ′
2

A1

A1

A2

O′
1

O′
2

P (X ′
1|X1, X2, A1)

P (X ′
2|X2, A1, A2)

P (O′
1|X1, A1)

P (O′
2|X2, A2)

x1

x1

x1

x1

x̄1

x̄1

x̄1

x̄1

x2

x2

x2

x2

x̄2

x̄2

x̄2

x̄2

a1

a1

a1

a1

ā1
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Figure 2.4: Example of a Dynamic Bayesian Network which encodes the states and
transitions of a MDP problem [2].

To compactly represent transition and observation functions usually they are represented

as a dynamic Bayesian network (DBN) [71, 72]. DBNs take advantage and exploit con-

ditional independence, which refers to the fact that some variables are probabilistically

independent of each other when other variables values are held fixed.

Transitions and observation probabilities (P (s′|s, a) and P (o|s, a)) are expressed in a

DBN, by an acyclic directed graph. The graph is explicitly divided in two parts,

corresponding each one to a timestep, being one immediately posterior to the other.

Nodes represent state, action and observation variables and edges probabilistic depen-

dencies. Dependencies go either from the previous to the current timestep or from

the current to the same timestep. Each node in the posterior timestep has a condi-

tional probability table (CPT) which defines the conditional probability distribution

P (X ′
i|Γ(X

′
i)), where Γ(Xi) is the scope of variable Xi in the DBN or, in other words,

the set of parent variables of Xi. If the scope of a variable is a subset of all the

state variables, than the table can has a smaller dimension. Therefore, the transi-

tion function of the model may be factorized in a product of smaller conditional dis-

tributions. For instance, in the example of Figure 2.4 the scopes of state variables

are Γ(X1) = {X1, X2} and Γ(X2) = {X1}. If we consider the state as a whole the

transition function is represented as P (X ′
1, X

′
2|X1, X2, A1, A2). However, by using a

factored representation the transition is reduced to the product of the transitions of

variables X1 and X2: P (X ′
1, X

′
2|X1, X2, A1, A2) = P (X ′

1|X1, X2, A1) ·P (X ′
2|X2, A1, A2).

The same procedure is used for the observation function : P (O′
1, O

′
2|X

′
1, X

′
2, A1, A2) =

P (O1|X
′
1, A1) · P (O′

2|X
′
2, A2).



Decision-theoretic planning 28

X1X1
X2

X2

A1

A1

A2

R1

R1

R2

R1(X1, X2, A1)

R2(X2, A1, A2)

x1

x1

x1

x1

x̄1

x̄1

x̄1

x̄1

x2

x2

x2

x2

x̄2

x̄2

x̄2

x̄2

a1

a1

a1

a1

ā1
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Figure 2.5: Example of how to encode the reward function of a MDP in a Dynamic
Bayesian Network [2].

The reward function may also take advantage of a factorized representation and be

compactly represented exploring the concept of additive separability [73]. For example,

the reward function in Figure 2.5 R(X1, X2, A1, A2) may be represented as the sum

of two smaller reward functions, each one depending on a smaller subset of variables:

R(X1, X2, A1, A2) = R1(X1, X2, A1) +R2(X2, A1, A2).

2.3.2 Algebraic Decision Diagrams

This allows for a compact model representation, but (PO)MDPs are usually a fast mixing

process, which leads to complex value functions. Algebraic Decision Diagrams (ADDs)

naturally capture the independencies in the Bayesian network and creates compact repre-

sentations for value functions. They extend from decision trees, where nodes are labeled

by state variables and edges are labeled by possible values of the state variables. To

obtain the value of a particular instances of states, than one should follow the respective

path through the tree, until a leaf is found. Leafs contains the value for that particular

state.

By avoiding explicit enumeration of the state space, ADDs have been efficiently used for

MDP [74] and POMDP [2] solving. Moreover, it was shown that point-based POMDP

solving can be performed more efficiently when using ADD as data representation. A

number of alternative formulations for the backup operator have been proposed in the

literature. In particular, we highlight the work of Shani et al. [75], which presents point-

based methods with an ADD-based implementation with a more efficient formulation for

the backup operator. They note that most of the computed gao vectors are dominated

by others, and their computation could be avoided if we knew a priori the maximizing

action a and vector αk. Instead, they use (2.26) to find them and only then build the



Decision-theoretic planning 29

Algorithm 5 Backup Operator with ADDs, backup(b, V )

a∗ ← ∅, v∗ ← −∞
for each o ∈ Ω do α̃∗

o ← nil
for all a ∈ A do
Qa(b)← 0
for all o ∈ Ω do
b′ ← τ(b, a, o)
αo ← argmaxα∈V α · b′

Qa(b)← Qa(b) + αo · b
′

if Qa(b) > v∗ then
a∗ ← a, v∗ ← Qa(b)
for each o ∈ Ω do α∗

o ← αo

return ra∗ + γ
∑

o g
α∗
o

a,o

output of the backup operator. It is shown that, although the complexity of each backup

does not change, in practice computational times are reduced.

2.3.3 Factored linear value functions

In the context of linear value function approximation, factored models allows for efficient

computations. In MDPs, a factored linear value function is defined as a linear function

over the basis set H, where the scope of each hi is restricted to some subset of variables,

i.e., V (x) =
∑k

i=1 ωihi(ci), where Ci ⊆ X. The idea is that it is possible to take

advantage of representing value functions as a linear combination of functions, each of

which refers only to a small number of variables. Then, instead of a matrix representation

it is possible to represent value functions and the value iteration process in a more

compact way. The Bellman recursion using a factored representation becomes:

Vn+1(x) = R(x, a) + γ
∑

x′∈X

p(x′|x, a)
∑

i

ωn
i hi(c

′
i) (2.43)

= R(x, a) + γ
∑

i

ωn
i

∑

x′∈X

p(c′i|Γ(c
′
i), a)hi(c

′
i) (2.44)

Here, Vn+1(x) is composed of the sum of functions with restricted scope: the reward

function and the backprojection of basis functions. It is assumed that the domains of

rewards and basis functions are restricted to subsets of the state space. The reward func-

tion has its own scope, and the projection of each basis function has a scope restricted

to the parents of its own scope.
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Active Perception with POMDPs

In Chapter 1 we introduced the concept of ACP, mainly in the context of NRS. In

ACP, the goal is typically to increase the available information by reducing the un-

certainty regarding the state of the environment, e.g., mobile sensor location, event

detection). In a POMDP, if more information improves task performance, its policy will

take information-gaining actions. For instance, a better self-localization estimate for a

mobile sensor will improve the quality of fusing its information in the global frame with

other sensors’ information, or less uncertainty on the detection of an event reduces the

risk of a wrong detection. However, in a traditional POMDP model, state-based rewards

allow for defining many tasks, but do not explicitly reward information gain.

In this chapter we will study how to directly reward information gain. Information gain

is not usually seen in POMDPs as a goal itself, but rather as a way to achieve task

performance. We will present the POMDP-IR framework which can serve for many

ACP in NRS, based on the idea that we can reward the agent for reaching a certain

level of belief regarding a state feature, at the cost of extending the action space.

3.1 Information Gain in POMDPs

Regular state-based rewards allow for defining many tasks, but do not explicitly re-

ward information gain [22]. However, if more information improves task performance,

the POMDP policy will take information-gaining actions. For instance, a better self-

localization estimate can help a robot to navigate faster to a certain destination. Indeed,

a key point of the POMDP framework is that it will only reduce uncertainty when it is

beneficial for the task performance, but not for information gain per se. Araya-López

et al. [76] note that “One can argue that acquiring information is always a means, not

30



Active Perception with POMDPs 31

an end, and thus, a “well-defined” sequential-decision making problem with partial ob-

servability must always be modeled as a normal POMDP.” They observe that in some

applications, such as surveillance tasks or the exploration of a particular area, it is not

clear how the information will be used by whoever is designing the system.

For instance, we may explicitly model the classification of a particular target as an ob-

jective, which induces a well-defined state-based task [77]. If we consider a more general

surveillance setting, considering non-standard POMDP models could be beneficial. In

particular, often no model will be available of how human operators evaluate and act

upon the output of the surveillance system. Without a detailed description of all the

surveillance objectives the problem cannot be cast as a well-defined POMDP. In such

cases, the proposed methodology can be used to actively reduce uncertainty regarding

certain important state features.

It is important to note that in many applications the user of the system might not be

interested in reducing uncertainty in general, but only with respect to some features in

the environment. For instance, consider the examples presented in Fig. 1.2, in which a

robot provides information to either localize a target more accurately or to identify a

person. In both cases, the robot’s own location might be uncertain as well, but that is

irrelevant to the user of the system.

3.1.1 Running example: Patrol

To clarify the concepts presented in this section we include a small illustrative example,

shown in Fig. 3.1a, dubbed Patrol. Imagine that we have a corridor environment in

which a surveillance robot has to patrol between the two ends of the space (represented

by stars). However, in the middle of the corridor an alarm device is present, which

can be in two different configurations, red and green, where a red color means that the

attention of a human operator is required.

This can be seen as a multi-objective problem, where the task of the robot is to patrol the

environment while keeping track of the state of the alarm. The latter can be formalized

as maintaining a low-uncertainty belief regarding the state of the alarm device. The

robot can pause to observe the alarm, which delays the original patrol task. Each task

is valued by its reward function and the system designer defines the balance between

these objectives.

Fig. 3.1b presents a DBN representation of this problem (where the shaded nodes in-

dicate the POMDP-IR extensions discussed in Section 3.2). This model is based on

a simple robot navigation model, with a state factor Y = {1, 2, 3} denoting the robot
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(a) Environment
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RIR

Legend:

States
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Actions

Reward

(b) DBN representation with information rewards

Figure 3.1: Patrol example. (a) Illustration of the problem, showing a corridor of
length 3, a robot which has to travel between two goal nodes (marked by stars) and
an alarm device in the middle. (b) Dynamic Bayesian Network representation of the
problem with state factors Y = robot position, C = alarm color and G = current goal.

The shaded nodes indicate the POMDP-IR additions to the model.

position in order from left to right, and a state factor G = {left, right} representing the

current goal. The latter represents the left or the right end of the corridor (see Fig. 3.1a),

and flips when the current goal is reached. To account for the alarm, we introduce a

state factor C, which models the alarm color and hence has two possible values, red

or green. The initial position of the robot is the leftmost end of the environment and

the initial belief regarding alarm color is uniform. The model assumes that the alarm

turns red with probability 0.2, and once it does, it returns to green with probability 0.1.

The action space is defined as {move left ,move right , look alarm} and when moving the

probability of reaching the target location is 0.8 while the robot stays in the same loca-

tion with probability 0.2. The reward for reaching the current goal is 0.3 for a corridor

length of 3. It is not straightforward how to implement a reward function in order to

perform information gain. As discussed in Section 3.1, state-based rewards do not allow

for explicitly rewarding information gain. We return to this problem in Section 3.3.1

where we show how to model it in the POMDP-IR framework, which we introduce next.

3.2 POMDPs with Information Rewards

In this section we present the main contribution of this chapter, a framework for reward-

ing low-uncertainty beliefs without leaving the classic POMDP framework for efficiency

reasons.
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3.2.1 Models for Active Perception

From the perspective of active perception, as the belief is a probability distribution over

the state space, it is natural to define the quality of information based on it. Now, for

belief-based rewards one can define the reward ρ directly on the belief space:

ρ : ∆(S)×A→ R. (3.1)

Araya-López et al. [76] mention several convex functions that are typically used for

maximizing information, such as the Kullback-Leibler divergence (also known as relative

entropy) with respect to the simplex center c, i.e., a uniform belief (DKL(b||c)),

ρKL(b, a) =
∑

s

b(s) log

(
b(s)

c(s)

)
= log(|S|) +

∑

s∈S

b(s) log(b(s)), (3.2)

or the distance from the simplex center (DSC)

ρdsc(b, a) = ‖b− c‖m , (3.3)

where m indicates the order of the metric space.

We could use the belief to define a measurement of the expected information gain when

executing an action. For instance, a common technique is to compare the entropy

of a belief bt at time step t with the entropy of future beliefs, for instance at t + 1.

If the entropy of a future belief bt+1 is lower than bt, the robot has less uncertainty

regarding the true state of the environment [78]. Assuming that the observation models

are correct (e.g., unbiased) and observations are independent, this would mean we gained

information. Given the models, we can predict the set of beliefs {bt+1} we could have

at t + 1, conditional on the robot’s action a. If we adjust the POMDP model to allow

for reward models that define rewards based on beliefs instead of states, i.e., r(b, a), we

can define a reward model based on the belief entropy.

However, a non-linear reward model defined over beliefs like the entropy significantly

raises the complexity of planning, as the value function will no longer be piecewise linear

and convex, as V0 = max{αa
0
}a b ·α

a
0 no longer holds, and therefore we are no longer able

to apply classic solvers to such problems. Moreover, if we want to model problems with

two different kinds of goals, both information gain and task performance, reward models

defined only over beliefs are not convenient to model such goals.
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3.2.2 Rewarding Low-Uncertainty Beliefs

We introduce a different way to reward information gain, while remaining in the classic

POMDP framework with PWLC value functions, as discussed in Section 2. Instead of

direct reward over beliefs, we introduce the addition of “information-reward” actions

to the problem definition, which allow for rewarding the system to obtain a certain

level of knowledge regarding particular features of the environment. In this way, we

achieve a similar objective as defining reward functions over negative belief entropy,

while remaining in the classic POMDP framework.

Hence, the goal of our work is to reward the system to have beliefs that have low

uncertainty with respect to particular state factors of interest. For convenience, we

assume these are the first l state factors (with l ≤ k), and hence can be denoted

X1, X2, . . . , Xi, . . . Xl. For simplicity, for the moment we assume that each Xi is bi-

nary, having values xi and xi. The idea is that we can expand the action space in such

a way to allow for rewarding reaching or maintaining a particular low-uncertainty belief

over each Xi. In the binary case, we can model this by considering actions that assess

whether Xi = xi.

We now define our POMDP-IR model by extending the standard POMDP definition (as

provided in Section 2.2) with information-reward actions.

Definition 3.1 (Action space). We call the original, domain-level action space of the

agent Ad. For each Xi, i ≤ l, we define

Ai = {commit,null}.

The action space of the POMDP-IR is

AIR = Ad ×A1 ×A2 × . . .×Al.

Given this definition, at each time step the agent simultaneously chooses a regular

domain-level action and an action for each state factor of interest. These actions have no

effect on the state transitions nor on the observations, but do affect rewards. The null

action is added to give the agent the option to not make any assertions regarding the

information objectives. It is provided for modeling convenience, as it allows the system

designer to consider the agent’s task without information objectives.

In the Patrol example, as we are interested in the state of the alarm, C, we denoteX1 =

C and set l = 1. The action space is now defined as {move left ,move right , look alarm}×

{commit,null}.
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Definition 3.2 (Information rewards). We call the original reward function of the

POMDP Rd. The POMDP-IR’s reward function RIR is the sum of Rd and a reward Ri

for each Xi, i ≤ l:

RIR(X,A) = Rd(X,Ad) +

i=l∑

i=1

Ri(Xi, Ai).

Each Ri(Xi, Ai) is defined as

Ri(xi, commit) = rcorrecti ,

Ri(xi,null) = 0,

Ri(xi, commit) = −rincorrecti ,

Ri(xi,null) = 0,

with rcorrecti , rincorrecti > 0.

The upshot of this reward function is that at every time step, the agent can choose to

either execute only a domain-level action (Ai = null), or in addition also receive reward

for its belief over Xi (Ai = commit). Intuitively, rcorrecti is the reward the agent can

obtain for guessing the state of Xi correctly, and rincorrecti is the penalty for an incorrect

guess. We choose rcorrecti and rincorrecti in such a way that the agent only benefits from

guessing when it is certain enough about the state of Xi. When the agent is not certain

enough, it can simply choose the null action (in combination with any domain-level

action). However, the possibility of obtaining information rewards by having a low-

uncertainty belief over Xi will steer the agent’s policy towards such beliefs.

3.2.3 Choosing the Information Rewards Parameters

From Definition 3.2 we can see that the expected reward for each information-rewarding

action is:

Ri(b, commit) = bi(xi)r
correct
i − (1− bi(xi))r

incorrect
i , (3.4)

Ri(b,null) = 0, (3.5)

using a short-hand notation bi(xi) to indicate bi(Xi = xi). Thus, the expected reward

of choosing commit is only higher than the null action when

bi(xi)r
correct
i − (1− bi(xi))r

incorrect
i > 0, (3.6)
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which, by rearranging, becomes:

bi(xi) >
rincorrecti

rcorrecti + rincorrecti

. (3.7)

This inequality indicates the range over which the agent will execute a commit action,

and we can see that the values of rcorrecti and rincorrecti are decisive to determine this

range.

If we assume that we want to reward the agent for having a degree of belief of at least β

regarding a particularXi, i.e., bi(xi) > β > 0, β is computed according to Equation (3.7),

and therefore:

β =
rincorrecti

rcorrecti + rincorrecti

, (3.8)

⇔ rcorrecti =
(1− β)

β
rincorrecti . (3.9)

Equation (3.8) tells us the relation between rcorrecti and rincorrecti . Their precise values

depend on each problem, and on the insight of the system designer (just as the domain-

level rewards), taking into account his knowledge of the models and the environment and

calibrating it with the original reward model Rd. For instance, in the Patrol example,

if the robot is rewarded too much for maintaining a low-uncertainty belief regarding the

alarm, it will prefer to look at the alarm constantly, ignoring its patrol task.

The effectiveness of this scheme depends on whether in the particular POMDP reaching

a particular β is possible at all, due to sensory limitations. For instance, if an agent’s

sensors do not observe Xi at all, or provide too noisy information, beliefs in which

bi(xi) > β can be unreachable given an initial belief state. In point-based POMDP

methods that operate on a pre-defined belief set, this condition can be checked easily,

and β be adjusted accordingly.

A second option is to define several β levels for an Xi, which reward the agent for

reaching different levels of certainty. Care needs to be taken, however, to ensure that

the agent will try to reach the highest β possible. For instance, Table 3.1 defines possible

values for rcorrecti and rincorrecti for different values of β, computed using different criteria.

As the potential reward for higher β is higher as well, the agent is guided to reach the

highest certainty level possible.
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DKL(b||c) (3.2) DSC, m = 1 (3.3) DSC, m = 2 (3.3) DSC, m =∞ (3.3)
β rcorrecti rincorrecti rcorrecti rincorrecti rcorrecti rincorrecti rcorrecti rincorrecti

0.60 0.03 0.04 0.20 0.30 0.02 0.03 0.10 0.15
0.75 0.19 0.57 0.50 1.50 0.12 0.38 0.25 0.75
0.90 0.53 4.78 0.80 7.20 0.32 2.88 0.40 3.60
0.99 0.92 91.00 0.98 97.02 0.48 47.54 0.49 48.51

Table 3.1: Example rewards for varying β.

3.2.4 Extensions and Variations

When defining the POMDP-IR framework in Section 3.2.2, we assumed binary state

factors for simplicity. Our framework can be easily generalized to multi-valued state

factors, by defining one or multiple commit actions for a state factor Xi. In the binary

case, we assign a positive reward to one element in the domain of Xi, and a negative

one to the other. In the multi-valued case, a single commit action can result in positive

reward for multiple values of Xi when each of those values is equally desirable, by trivial

generalization of Definition 3.2. In the case that distinct values of Xi differ in desired

reward, the definition of the information-reward action can be extended to

Ai = {commit1, commit2, . . . , commitj ,null}.

In this way, certain values of Xi can be rewarded differently, and sets of values that

share the same reward can be grouped under the same commitj action.

In our framework, we considered the general case in which an agent at each time step

can opt for a commit action or not: information rewards are obtainable at each time

step. However, possible use cases of the POMDP-IR framework might consider other

scenarios. For instance, it might be desirable to reward the agent only a single time

for each commit action. Such a scenario is easily implemented by adding a Boolean

bookkeeping variable that keeps track whether a commit action has been performed or

not. By making the information reward dependent on the value of this variable, the

agent will optimize its course of action to execute commit only once.

In a similar vein, in certain active-sensing or sensor-management scenarios an agent

might have to decide whether to execute commit after a predefined number of steps. By

encoding the time step as an extra state factor or by defining time-dependent action

spaces, the POMDP-IR framework can be used in these types of scenarios as well.
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3.3 Experiments

We perform an extensive experimental evaluation of the POMDP-IR framework. First,

we illustrate how information rewards influence agent behavior in the Patrol example.

Second, we compare the performance of POMDP-IR against ρPOMDPs [3] on the Rock

Diagnosis problems.

3.3.1 Information Rewards in the Patrol Example

At this point we return to the Patrol example presented in Section 3.1.1. In this

example we want to solve a problem where an agent needs to perform a patrol an

environment while at the same time considering the uncertainty regarding the state of

an alarm device. This illustrates the tradeoff between task performance and information

gain that we want to tackle.

3.3.1.1 Model

The POMDP model is an extension of the model presented in Section 3.1.1 and is

depicted in Fig. 3.1b. The domain-level action space is Ad = {move left , move right ,

look alarm} and we extend it with an information-reward action regarding the alarm

state factor C, A1 = {commit,null}. The reward function is a sum of rewards for both

types of actions, RIR = Rd+R1, according to Definition 3.2. R1 rewards the robot if its

belief whether the alarm is red exceeds the threshold β. The reward values will depend

on each particular problem, namely the environment size and the threshold defined in

each case. Information reward values depends on the value of β used in each experiment,

and is up to the system designer to choose a criteria for those values. In our particular

case, values are taken from the first column of Table 3.1. The patrol reward encoded in

Rd is 0.3 for corridor length 3 and 0.5 for corridors of length 5. We keep initial conditions

and models constant for all experiments to be able to showcase the effect of the belief

threshold(s).

3.3.1.2 Results

Single threshold

Considering that the original behavior of the robot would be to patrol the corridor up

and down, we note a change in its behavior in Figs. 3.2a and 3.2b, as it continues to

perform the patrolling task, but with some intermediate stops (as seen in the 2nd row
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(a) Threshold β = 0.75
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(b) Threshold β = 0.9
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(c) Threshold β = 0.99
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(d) β = 0.75, corridor of length 5
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(e) Thresholds β1 = 0.75 and β2 = 0.9
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Figure 3.2: Patrol problem results. Each figure shows belief evolution (top row),
robot position (2nd row), true alarm color (3rd row) and received rewards (bottom

row). Corridor length is 3 except for (d).
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Figure 3.3: Performance measures for Patrol problem with 5 alarms, and variable
number of commit actions with β = 0.9.

of plots). The bottom row details the patrol (Rd) and information reward (R1) the

robot receives. Fig. 3.2a shows results where the threshold is set to β = 0.75 and the

robot clearly tries to keep maintain up-to-date information on the alarm, by looking at

it every time it passes by. In this case the threshold is such that the robot has enough

time to continue performing the original patrolling task and still return to the alarm

position before its belief falls below the threshold. On the contrary, we note that with

β = 0.9 (Fig. 3.2b), the threshold is higher than in the first case and thus the behavior

changes slightly. Every time the robot observes a green alarm it continues performing

the patrolling task. However, if it observes a red alarm, it decides to stay and keep

looking at it. On the other hand, with β = 0.99 (Fig. 3.2c) the threshold is so high

that even if the robot stays looking at the alarm, it will never get to levels above the

threshold. Therefore, it will only focus on patrolling, illustrating the need to choose the

thresholds carefully. In Fig. 3.2d we extend the simulation to a corridor length of 5,

with β = 0.75. In this setting the behavior is similar to the previous results, except for

the fact that when the robot decides to look at the alarm it spends 2 time steps.

Multiple thresholds

Next, we test a model with two information-reward actions, each corresponding to a

different threshold. We see in Figs. 3.2e and 3.2b that the behavior of the robot is

equivalent to the maximum threshold it can reach. For instance, in Fig. 3.2e with

β1 = 0.75 and β2 = 0.9 the robot’s behavior is equivalent to Fig. 3.2b (β = 0.9). On

the other hand, in Fig. 3.2f the thresholds β1 = 0.75 and β2 = 0.99 are set, but as seen

before the system will ignore the second threshold as the belief will never reach it, and

therefore its behavior will be as if there were only one threshold β = 0.75.
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Scalability

Our approach inflates the action space, which will lead to increased computation time.

Therefore, it is also important to measure the computational impact of adding information-

reward actions to problems, shown in Fig. 3.3. Note, however, that POMDP solving

scales linearly with the number of actions, compared to exponentially with the number

of observations. To allow for a fair comparison we must compare models with the same

domain actions and a variable number of information-reward actions. We create a Pa-

trol model which includes 5 alarms and test the planner’s performance when including

different number of commit actions. We note that the planner’s performance degrades

exponentially, as expected, although with more commit actions the system will receive

higher value (not shown).

3.3.1.3 Discussion

With this toy problem we showed the advantages of our approach, by directly incorpo-

rating the concept of information gain in a classical POMDP setup. We can observe

that although information-reward actions do not directly affect state transitions they

have a clear effect on the robot’s general behavior, as it will change its physical actions

according to not only the original task to solve, but also to the uncertainty level in the

system and the thresholds.

As expected, the robot faces a tradeoff between patrol task completion and information

gain regarding the alarm. However, this is dependent on a number of different param-

eters, the desired certainty level in particular. Generally, when it is possible to reach

the desired threshold the robot will interrupt patrolling to observe the alarm and get

information. On the contrary, if the desired level is unreachable or if it is so low that the

belief converges to a value above the threshold without the need for direct observation,

the robot does not need to waste time looking at the alarm and only performs the patrol

task.

3.3.2 Comparison With ρPOMDPs on the Rock Diagnosis Problem

Next, we compare our work to a POMDP-based framework for information gain, the

ρPOMDP framework [3]. We present results in a scenario where information gain plays

an important role: the Rock Diagnosis problem [3], which is a variation of the Rock

Sampling problem [65].
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The approach in ρPOMDPs extends POMDPs to allow for direct belief-based rewards.

It is noted that the belief-MDP formulation already accounts for a reward over beliefs,

(r(b, a) =
∑

s∈S b(s)R(s, a)) , but formulated in terms of state-based reward, in order to

maintain the PWLC property. Therefore, ρPOMDPs generalize POMDPs in order to be

able to deal with other types of belief-based rewards, under the assumption that those

rewards are convex. Algorithms are modified in order to deal with rewards represented

as a set of vectors. For PWLC reward functions, this is an exact representation. For

non-PWLC rewards it is an approximation which improves as the number of vectors

used to represent it increases. As we saw in Section 3.2 our approach also considers the

belief-MDP formulation, but in a way that represents rewards for information gain in

terms of state-based rewards, allowing us to use existing methods without changes.

In Araya-López [3]’s experiments an extension of point-based methods is used to accom-

modate this generalization and tested with different reward functions. For comparison

we present here their results with two different reward functions, entropy (PB-Entropy)

and linear (PB-Linear). The entropy-based reward is the Kullback-Leibler divergence

with the uniform distribution as reference, while the linear-based reward is an approxi-

mation of the entropy-based reward which corresponds to the L∞-norm of the belief.

3.3.2.1 Rock Diagnosis problem definition

The Rock Diagnosis is an information-gathering problem, in which a rover receives a

set of rock positions and must perform sampling procedures in order to reduce uncer-

tainty regarding the type of several rocks spread in an environment. Each rock can have

a good or a bad value and we want the system to be capable of returning low-uncertainty

information regarding each rock’s type. Hence, our objective is to produce policies which

guide the rover through the environment, allowing it to observe each rock’s type. The

map of the environment is considered to be a square grid with size p and there are q

rocks in the environment to analyze. We refer to [3] for further details on the Rock

Diagnosis problem.

In the original formulation the domain-level action space is Ad = {north, east , south,

west , check1 , check2 , . . ., checkq} and in our POMDP-IR formalization we use the ex-

tension described in Section 3.2.4 to include a set of information-reward actions for each

rock: Ai = {commit1, commit2,null}, with 1 ≤ i ≤ q. In this case, commit1 and commit2

encode the action that a rock is good or bad, respectively. The intuition is that the

policy will try to reduce the uncertainty regarding each rock’s type, in order to get a

higher value, thereby achieving the problem’s final objective.
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ρPOMDP POMDP-IR POMDP-IR

(Perseus) (Symbolic Perseus)

Method return [nats] β return [nats] β return [nats]

q = 3; p = 3

PB-Entropy 1.58± 0.25 0.6 2.065± 0.099 0.6 1.978± 0.092

PB-Linear 2.06± 0.03 0.9 2.079± 0.000 0.9 1.988± 0.223

0.99 1.815± 0.334 0.99 2.035± 0.124

q = 3; p = 6

PB-Entropy 0.76± 0.09 0.6 1.763± 0.463 0.6 1.386± 0.000

PB-Linear 0.79± 0.08 0.9 1.790± 0.417 0.9 1.580± 0.213

0.99 1.662± 0.390 0.99 1.156± 0.114

q = 5; p = 7

PB-Entropy 0.37± 0.09 0.6 — 0.6 1.580± 0.313

PB-Linear 0.53± 0.03 0.9 — 0.9 1.553± 0.298

0.99 — 0.99 1.737± 0.456

Table 3.2: Rock Diagnosis results, comparing POMDP-IR with ρPOMDP [3].

3.3.2.2 Experimental Setup

We computed policies for this problem using Perseus [64] and Symbolic Perseus [2], with

γ = 0.95 and ǫ = 10−3, where ǫ is the convergence criterion used both by Perseus and

Symbolic Perseus. We ran a set of 10 repetitions of 100 trajectories of 100 steps, re-

sampling the belief set containing 5000 beliefs at each repetition. Given the information-

gathering nature of this problem, the performance criterion used to evaluate the agent’s

behavior should also be an information measure. In particular, the Kullback-Leibler

divergence between the belief distribution and the uniform distribution is used (3.2).

In this problem the performance criterion only considers the available information at

the end of the trajectory, as the objective is to disambiguate the state of all the rocks’

types. Therefore, we present results as the average of the Kullback-Leibler divergence

of the belief distribution in the last time step at each trajectory. The unit used to

measure information is nat (natural unit for information entropy), since we use natural

logarithms. Also note that the target variable is the rock type, thus our information

measure considers only the belief over state factors which represent each rock’s type.

Therefore, the maximum possible final reward is q log(2), precisely when there is no

uncertainty regarding any rocks’ type.
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(c) Map with q = 5; p = 7.

Figure 3.4: Rock Diagnosis computation times. ρPOMDP timings are taken from
[3] and hence cannot be compared directly.

3.3.2.3 Results

We present in Table 3.2 a set of results for different maps with varying values of β, and

also, for comparison, results presented by [3]. The implementation of POMDP-IR with

flat Perseus could not handle the larger map (q = 5; p = 7).

We can see that, in general, POMDP-IR achieves better results than the two ρPOMDP

variations. The total return with ρPOMDP deteriorates with increasing problem size

due to sampling a larger state space with the same number of belief points. However,

we note that POMDP-IR results worsen less, which may be explained by the fact that

ρPOMDPs approximate the reward function with linear vectors, imposing some error

on the original reward function. This results in a loss of quality in larger problems, since

the same number of points is used to approximate a higher dimensional belief space. In

turn, we directly consider reward over states, thus staying in the traditional POMDP

formulation. Using fewer approximations we can achieve better performance.
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Our results show better performance in the smaller map, with similar results with

Perseus and Symbolic Perseus. Note the particular case of Perseus with q = 3, p =

3, β = 0.9 where we always achieve perfect information about all rocks in the environ-

ment. There is a trend for Perseus to perform slightly better than Symbolic Perseus.

However, we note that Symbolic Perseus implements an additional approximation by

maintaining a factored belief representation which may explain the difference in results.

We may then state that, although our focus is on adding information rewards to regular

POMDPs, we also improve performance on these pure information-gathering problems.

The problem size can be an issue, as we see in the largest scenario that could not be han-

dled using a flat method like Perseus. However, our focus is on factored representations

and we showed that we can perform well using Symbolic Perseus.

We also include a comparison between average computation times in Fig. 3.4, where we

included ρPOMDP timings reported by Araya-López [3] which precludes direct compar-

isons. The increase in computation time in POMDP-IR implementations is a natural

consequence of the increase in the action space size (as the growth is exponential in the

number of action factors), but we present a reasonable tradeoff between computation

time and average value in this particular case.

3.4 Case-study: Robot-Assisted Surveillance

The main motivating application for our research is robot-assisted surveillance. In such

scenarios, a robot can be seen as a mobile extension of a camera network, helping to

improve confidence of detections. For instance, due to several reasons (lighting, distance

to camera, capture quality, etc.) the image quality may vary from camera to camera,

leading to different uncertainty rates when detecting robots, persons or different features

in the environment. Also, in a surveillance system the camera network will typically not

cover all the environment, leaving some blind spots. Such problems can be solved or at

least improved by using mobile sensors, which can move to provide (improved) sensing

in particular areas.

In our case study we are interested in a surveillance system which detects persons with

a particular feature. Feature detection is achieved through image processing methods

that detect persons moving in the environment. In our case, for simplicity, we consider

as feature whether a person is wearing red upper body clothing. Note that our methods

are rather independent of the actual feature detector used, as long as false positive and

false negative rates can be estimated.
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(a) (b) (c)

Figure 3.5: Experimental setup. (a) Robot Pioneer 3-AT with camera and laser range
finder onboard. (b) Example of an image captured by the camera network. (c) Feature

detection by the robot.
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3.4.1 Model and Experimental Setup

We implemented our case study in a testbed for NRS [79], which consists of a camera

network mounted on the ceiling of the lab (Fig. 3.5b), and mobile robots (Pioneer 3-AT)

with onboard camera and laser range finder (Fig. 3.5a). The POMDP controllers are

computed using Symbolic Perseus [2].

Fig. 3.6 depicts a graphical representation of the model for time steps t and t + 1. As

before, we encode the environment in several state variables, depending on how many

people and features the system needs to handle. The locations of people and robot

are represented by a discretization of the environment, for instance a topological map.

Graphs can be used to describe topological maps with stochastic transitions and hence

sets of nodes represents the robot location Y and k people locations P1 through Pk. In

particular, we run our experiments in the lab shown in Fig. 3.5, building a discretized

8-node topological map for navigation and position identification. Besides a person’s

location, we represent a set of m features where each feature f is associated with a

person, for instance whether it matches a visual feature. We assume each person has at

least one feature, hence m ≥ k, and features are represented by variables F1 through Fm.

We assume a random motion pattern for each person, as we do not have prior knowledge

about the person’s intended path, in which the person can either stay in its current

node with probability 0.6, or move to neighboring nodes with the remaining probability

mass split equally among them. Such a representation allows us to model movement

constraints posed by the environment (for instance, corridors, walls or other obstacles).

We also need to take into account the uncertainty in the robot movement due to possible

errors during navigation or unexpected obstacles present in the environment. In this

model when the robot moves either it arrives at its destination with probability 0.6 or

stays in the same node with probability 0.4. The value of the feature nodes F1, . . . , Fm

have a low probability of change (0.01), as it is unlikely that a particular person’s

characteristics changes. For each state variable we define a set of observations. Each

observation op1 ∈ OP
1 through opk ∈ OP

k and oy ∈ OY indicates an observation of a person

or robot close to a corresponding pk ∈ PK resp. y ∈ Y . The observations of ∈ OF

indicate whether a particular feature is observed.

The key to cooperative perception lies in the observation model for detecting features.

The false negative and false positive rates are different at each location, depending

on conditions such as the position of sensors, their field of view, lighting, etc. For

detecting certain features, mobile sensors have a higher accuracy than fixed sensors,

although with a smaller field of view. Therefore, the observation model differs with

respect to person and robot location. In particular, if a person is observed by the robot
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(illustrated in Fig. 3.5c) the probability of false negatives P (OF = of̄ |F = f) or false

positives P (OF = of |F = f̄) is low. This is an important issue in decision making, as

the presence of a mobile sensor will be more valuable in areas where fixed sensors cannot

provide high accuracy. In Fig. 3.7 we show the uncertainty related to observations for

each node considered. Note that the observation uncertainty has been estimated for the

fixed sensors but we assume a constant observation model for the mobile sensor.

This concludes the basis for the models used in our case study. In the following, we

will present a formalization of this models with information-gain actions. We present

simulations results using the POMDP-IR framework. A previous approach for the same

case-study, but using a slightly different model can be found in Spaan et al. [20].

3.4.2 Experiments with Information Rewards

Here we apply the POMDP-IR framework to the robot-assisted surveillance problem,

showcasing its behavior in larger and more realistic problem domains. In this prob-

lem there are no concurrent goals, unlike the Patrol problem, where we had to per-

form information gain while performing other tasks. Therefore, in this model we in-

clude two possible sets of information-reward actions, A1 = {commit1,null}, A2 =

{commit2,null}.
1 A1 encodes the action that the person is wearing red, while A2 relates

to the opposite (asserting that state factor F1 is false).

We present in Fig. 3.8 some experiments where the threshold is β = 0.75 (Exp. A and

Exp. B) and β = 0.6 (Exp. C and Exp. D). For each experiment, we show the robot’s

path, initial position of robot and person, cumulative reward, and the evolution of the

belief over the feature of interest.

Exp. A presents a case in which a person wearing red is detected in an area with low

uncertainty. We note that the belief increases rapidly, and the robot does not need

to approach the person for the system to have enough information to start applying

information-reward actions. The belief crosses the threshold at time step 4, and from

that moment on the commit1 action is applied, indicating that the system decides to

classify this person as wearing red. The cumulative reward does not have a linear shape

as the reward for the information-reward action is higher as the belief increases.

Exp. B shows a case where a person is detected not wearing red in an area with higher

uncertainty. Therefore, the system decides to move the robot near the person to observe

what is happening before executing commit2 actions. In both experiments with β = 0.75

1An alternative option would be to implement the extension described in Section 3.2.4.
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Figure 3.8: POMDP-IR simulation results for the case study. Experiments A and B:
β = 0.75. Experiments C and D: β = 0.6. Action commit1 corresponds to asserting

that the person is wearing red while action commit2 asserts the opposite.
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we see that, in fact, the threshold is respected, and commit actions are taken only when

the belief crosses the specified value.

In the case in which β = 0.6 the system takes into account the different threshold. In

Exp. C a person wearing red is detected in a higher uncertainty area. The robot moves

towards the person for better identification, but from the moment when the belief crosses

the threshold, the action commit1 is chosen. In Exp. D the system detects the person

without red clothing (action commit2) and the robot moves but stops half way (c.f.

Exp. B).

3.4.3 Discussion

The case study presented shows an example of a real-world problem where information

gain performs an important role. In general, the behavior of the system is as expected,

as both in simulation as well as in the reality the system tries to optimize the robot

behavior in order to detect information in the system. When the networked cameras

do not provide enough information the controller asks the robot to move towards the

person.

3.5 Related Work

In this section, we present an overview of the relevant literature. We discuss related

work in applying POMDPs to robotic applications, followed by a discussion of how work

in active sensing relates to our contributions. Finally, we discuss how the POMDP-IR

framework compares to related POMDP models for rewarding information gain.

3.5.1 POMDPs in a robotic context

Techniques for decision-theoretic planning under uncertainty are being applied more

and more to robotics [80]. Over the years, there have been numerous examples demon-

strating how POMDPs can be used for mobile robot localization and navigation, see for

example work by Roy et al. [29], Simmons and Koenig [81]. Emery-Montemerlo et al.

[82] demonstrate the viability of approximate multiagent POMDP techniques for con-

trolling a small group of robots to catch an intruder, while more recently Amato et al.

[83] use similar frameworks in larger multi-robot domains to perform cooperative tasks.

Messias et al. [84] models asynchronous sequential decision-making for teams of soccer

robots, later extended to partially observable scenarios [85]. Capitán et al. [86] show

how POMDP task auctions can be used for multi-robot target tracking applications.
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These types of applications are potentially suited for the POMDP-IR framework, as

they typically involve reasoning about the belief regarding the target’s location.

A relevant body of work exists on systems interacting with humans driven by POMDP-

based controllers. Fern et al. [87] propose a POMDP model for providing assistance

to users, in which the goal of the user is a hidden variable which needs to be inferred.

POMDP-based models have been applied in a real-world task for assisting people with

dementia, in which users receive verbal assistance while washing their hands [88], and

to high-level control of a robotic assistant designed to interact with elderly people [89,

90]. Merino et al. [91] develop a real-time robust person guidance framework using

POMDP policies which includes social behaviors and robot adaptation by integrating

social feedback. Interacting with humans whose goals and objectives might need to be

estimated provides opportunities for the POMDP-IR approach.

3.5.2 Active sensing

Active sensing is typically defined as the problem of finding control strategies that dy-

namically adapt sensing parameters as the sensor interact with the environment [92].

Information gain has been studied in literature under the this framework [93], which can

be formalized as acting so as to acquire knowledge about certain state variables.

A large amount of research effort has been put in approaches to robot localization using

active methods. Burgard et al. [78] propose an active localization approach providing

rational criteria for setting the robot’s motion direction and determining the pointing

direction of the sensors so as to most efficiently localize the robot, while Roy et al. [94]

use environment information to minimize uncertainty in navigation. Velez et al. [95]

add informative views of objects to regular navigation and task completion objectives.

Another aspect which may be included in active sensing is where to position sensors to

maximize the level of information of observations. Krause and Guestrin [96] and Krause

et al. [97] exploit submodularity to efficiently tradeoff observation informativeness and

cost of acquiring information, while Krause et al. [98] apply such methods to sensor

placement in large water distribution networks. More recently, Natarajan et al. [99]

maximize the observation of multiple targets in a multi-camera surveillance scenario.

Active sensing problems typically consider acting and sensing under uncertainty, hence

POMDPs offer a natural solution to model such problems. Work on active sensing

using POMDPs includes collaboration between mobile robots to detect static objects

[100], combining a POMDP approach with information-theoretic heuristics to reduce

uncertainty on goal position and probability of collision in robot navigation [14] or

distributed decision processes for multirobot systems in which robots decide how to act
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in the environment and what to communicate with others [101]. Spaan and Lima [102]

consider objectives such as maximizing coverage or improving localization uncertainty

when dynamically selecting a subset of image streams to be processed simultaneously.

In the field of computer vision, Atanasov et al. [103] use POMDPs for planning to detect

semantically important objects and estimates their pose by actively controlling the point

of view of a mobile depth camera.

3.5.3 POMDP frameworks for rewarding information gain

Multi-objective problems which include information gain have recently been proposed

with POMDP formulations. Different criteria have been proposed and used for decision-

making for uncertainty minimization. Mihaylova et al. [93] review some of these criteria

in the context of active sensing. They consider a multi-objective setting, linearly trading

off expected information extraction with expected costs and utilities. Similar to our

setting, the system designer is responsible for balancing the two objectives.

Using the belief MDP formulation, it is possible to directly define a reward r(b, a) over

beliefs. While we may assume this function to be convex, which is a natural property

for information measures, there is still the need to approximate it by a PWLC func-

tion [76]. Thus, we cannot directly model non-linear rewards as belief-based without

approximating such functions.

Eck and Soh [104] introduce hybrid rewards, which combine the advantages of both

state and belief-based rewards, using state-based rewards to encode the costs of sensing

actions and belief-based rewards to encode the benefits of sensing. Such a formulation

lies out of a traditional solver’s scope. While we also consider multi-objective problems,

solving our models is independent of which solver is used. We are interested in an

approach that while staying in the standard POMDP framework, and thus with PWLC

value functions, is still able to perform multi-objective problems, where only some tasks

are related to information gain. We do that without using purely belief-based rewards,

such that our framework can be plugged in any traditional solver. Also, we are able to

impose thresholds on the amount of uncertainty we desire for particular features in the

environment.

Similar to our commit actions, Williams and Young [105] propose the use of submit ac-

tions in slot-filling POMDPs, in which a spoken dialog system must disambiguate the

internal state of the user it is interacting with. In this framework there is no clear separa-

tion between domain-level actions and information-reward actions like in the POMDP-IR

framework. The submit actions lead to an absorbing state, which indicates a final goal

for the system. Our system is intended to be parallel to normal task execution, hence
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the commit actions do not have any effect on the state of the environment. Furthermore,

in contrast to their work, we provide guidance on how such actions should be rewarded.

3.6 Discussion

In this chapter we presented an approach to deal with information gain in active coop-

erative perception problems, which involve cooperation between several sensors and a

decision maker. We based our approach on POMDPs due to their natural way of dealing

with uncertainty, but we face the problem of how to build a POMDP which explicitly

performs information gain.

There are several ways to reward a POMDP for information gain, such as using the

negative belief entropy. Although resulting value functions are shown to remain PWLC

if the reward is PWLC [76], that is not generally the case in belief-based rewards such

as negative entropy. Moreover, we are interested in modelling multi-objective problems

where the system must complete a set of different tasks, in which only part of them

might be related to direct information gain. However, that can be cumbersome with a

belief-dependent reward implementation.

We proposed a new framework, POMDP-IR, which builds on the classic POMDP frame-

work, and extends its action space with actions that return information rewards. These

rewards depend only on a particular state factor, and are defined over states, not be-

liefs. However, their definition ensures that the reward for information-reward actions

is positive only if the belief regarding the state factor is above a threshold. In this way,

we stay inside the classic POMDP framework and can use solvers that rely on PWLC

value functions, but we are still able to model certain information-gain tasks.

The fact that extra actions have no effect on the transitions nor on the observations can

be used to improve the efficiency of POMDP-IR. In fact, the result of a backup operation

depends only on domain actions and not on information-rewarding actions. Satsangi

et al. [106] extended our work and presented a decomposed maximization procedure

that reduces the computational cost of extending the action space.

We illustrated our framework on a toy problem and included a case study on robot

surveillance, demonstrating how our approach behaves in such environments. Besides

the fact that they represent realistic scenarios, they are challenging as they include

multiple sensors, both active and passive ones, in a multi-objective scenario.

We compared against the ρPOMDP model in a benchmark domain and showed that we

compare favorably. ρPOMDPs extend the POMDP formalism to allow for belief-based
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rewards. In practice, this rewards are approximated by a set of tangent vectors. This

ensures that the actual reward remains PWLC and existing solvers can be used with

minor modifications. In another extension to our work, Satsangi et al. [106] showed that

the ρPOMDP and POMDP-IR approaches are mathematical equivalent. They note that,

given a belief-based reward, a ρPOMDP model can be translated to a POMDP-IR, but

not the other way around. This conclusion, in addition to results of our experimental

comparison, show the flexibility of our approach.



Chapter 4

Value Function Approximation

In the previous chapter we have introduced a framework for active perception under a

decision-theoretic framework, in particular by using POMDPs. However, POMDPs are

hard to solve, and become intractable with larger problems. Several steps have been

taken forward in the last few years with new solvers which can manage larger problem

domains, but there is plenty of room for innovations. Thus, this chapter focus on scaling

up POMDP solving by using linear value function approximation. This approximation

scheme has been popular in MDPs but under-explored in POMDPs. We will review

methods used in MDPs and explore theirs applicability in POMDPs.

The main contributions of this chapter are the application of linear value function ap-

proximation in POMDPs, a new approach for automatic basis function generation, and

an empirical evaluation of its use in POMDP solving.

4.1 Related Work

As its name suggests, linear value function approximation fits in this family of approxi-

mations. As the state space increases, also the size of each of the vectors composing the

value function increases. Mostly developed in MDPs, this approximation family tackles

this problem by defining vectors over features instead of states, assuming that a small set

of features is sufficient to model the system’s behavior. Our work presents contributions

for for this approximation field, in particular on its extension to POMDPs.

55
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4.1.1 Linear Value Function Approximation

The idea of approximating value functions through a linear change of basis was proposed

for dynamic programming [37, 107] and then extended to reinforcement learning methods

[108–111]. It was also shown that linear value function approximation in reinforcement

learning is equivalent to a form of linear model approximation [112].

In the context of fully observable MDP, alternatives for value iteration [38], policy it-

eration [113] and linear programming [114] solvers with value function approximation

were proposed, which exploit factored structures to restrict the scope of basis functions.

Improvements to such approaches have been later presented, which proposed alternative

projection methods to compute basis function weights [39] and extensions to multiagent

planning [115]. The improvement of value function approximation methods lies in two

subproblems: weight optimization and basis construction. In the context of MDPs, sev-

eral projection methods for weight optimization have been studied, taking into account

its influence in the algorithm convergence properties [116].

Outside the fully observable framework, Guestrin et al. [117] proposed an extension to

partially observable settings. However, no results are provided for their implementation

and they focus on exact algorithms, such as incremental pruning.

The major line of research looks to improve POMDP solving by scaling in the state

space. However, a few authors also look into large observation spaces. Mostly by

building schemes to reduce its dimension, either by aggregating observations which are

indistinguishable from the decision maker point of view [118], by applying data summa-

rization techniques to obtain a reduced observation space with an arbitrarily size chosen

by the user [119], by pruning some observations while minimizing the loss of value [120].

4.1.2 Basis Function Construction

The problem of basis construction is, in many cases, left for the system’s designer.

However, even if the designer has good knowledge of the problem’s dynamics this is not

necessarily an easy task. Thus, automated methods have been presented which look

for sets of basis functions that represent the value function more accurately. We review

existing literature on this topic for the fully and partially observable MDPs.

4.1.2.1 MDPs

Although a few simple rules arise from experience [39] there were some attempts to ob-

tain sets of basis functions automatically and update them online. Patrascu et al. [121]
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Algorithm 6 Krylov Iteration (R,T a,z)

H ← R
for each Hi ∈ H do
for each a ∈ A, o ∈ Ω do
if T a,zFi is linearly independent of all Hj ∈ H then
H ← H ∪ T a,zHi

return H

greedily chooses searches for basis functions which reduce the approximation error in

approximated linear programming methods. Poupart and Boutilier [122] uses a similar

procedure for incremental construction of suitable basis functions for linear approxima-

tion in weakly couple models. In turn, Parr et al. [123] derives new basis functions from

the Bellman error of the previous set of basis functions.

4.1.2.2 POMDPs

In the POMDP context, given the little work on linear value function approximation, few

approaches may compare to ours. The most similar is the use of Krylov iteration, which

is part of a group of methods which attempt to construct basis functions by dilation of

the reward function, i.e., they compute sets of bases by expanding (by multiplication) the

reward function through the transition matrix operator. This group of methods, in turn,

are part of a wider range of methods which compute invariant spaces of linear operators

[124, 125]. Krylov iteration is particularly interesting as it is one of the few methods used

in model compression in POMDPs which provided good results. In particular, it was

used as a mean to obtain linear mappings which define a subspace in which compressed

value functions lie [126]. In practice, this mapping defines a set of basis functions for

the compressed space, thus may be used for automatic basis function construction. We

present in Algorithm 6 a procedure to obtain a set F of basis functions with Krylov

iteration.

An alternative with early stopping conditions was later proposed [127], dubbed truncated

Krylov iteration (Algorithm 7). With this formulation, Krylov iteration is ran, retaining

only the first k vectors. By retaining basis vectors which are far from being linear

combination of prior vectors, the algorithm tries to increase the space spanned by basis

vectors as most as possible.

Given its iterative nature, both Krylov iteration versions can be computational demand-

ing. We will propose an alternative approach to basis function construction which is less

demanding, as is not an iterative procedure.
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Algorithm 7 Truncated Krylov Iteration (R,T a,z,k,ǫ)

H ← ∅
basisSet← R
while basisSet 6= ∅ and nh < k do
remove vector x from basisSet with largest error ‖x−

∑
i ciHi‖2

H ← H ∪ x
for each a ∈ A, o ∈ Ω do
basisSet← basisSet ∪ T a,zx

return H

4.2 Linear Value Function Approximation Extension to

POMDPs

Despite various work on fully observable MDPs, there was little attention to extending

this framework into the partially observable setting. In particular, only Guestrin et al.

[117] proposed to adapt this idea to POMDPs but did not report any experimental

results.

Recall that a value function in an infinite-horizon POMDP can be approximated arbi-

trarily well by a finite set of α-vectors. The key idea on linear value function approx-

imation in POMDPs is that we can approximate each vector as a linear combination

of basis functions. Thus, α-vectors are approximated by α̃-vectors, written as a linear

combination of basis functions hi:

α̃(x) =

nh∑

i=1

ωα,ihi(ci). (4.1)

For some intuition, we present in Figure 4.1 an illustrative example of a two-state value

function with a set of two basis functions, H = {h1,h2}. Consider the state space

of the problem as S = (s1, s2), then each basis function is represented as a vector

hi = [hi(s1) hi(s2)]. In this case basis functions are individual indicators for each state:




h1 = [c1 0];

h2 = [0 c2].
(4.2)

Then, by weighting on each basis function the final vector is obtained:
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V

h1
h2

c1

c2
ω1c1

ω2c2α̃

b(1, 0) (0, 1)

Figure 4.1: Example of a vector representation with basis functions with two states.

α̃ = ω1h1 + ω2h2 (4.3)

= ω1

[
c1

0

]
+

[
0

c2

]
(4.4)

=

[
ω1c1

ω2c2

]
(4.5)

Each vector values can be set by controlling the weights of each basis function. Note

that in this simple example the set of bases fully spans the state space, thus we call it

a complete set of bases, and controlling the weights is equivalent to controlling the full

vector. Typically this will not be the case and the set of weights which best represent a

full vector must be obtained.

As we have mentioned, in the general case basis function have smaller scopes. For

illustration, Figure 4.2 shows an example of a choice of basis function for a factored

model, with its respective DBN. In this example each basis function has a different

scope, in particular:

• C1 = Γ(h1) = {X1, X2},

• C2 = Γ(h2) = {X3},

• C3 = Γ(h3) = {X4}.
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X1

X2

X3

X4

X ′
1

X ′
2

X ′
3

X ′
4

O1

t t+ 1

h1

h2

h3

Figure 4.2: Example DBN with basis.

The most important information to retrieve from basis functions is their scope and

relation between their values, rather than the specific mapping from bases to state

values. For instance, in our two-state example we can choose any parameters c for the

basis functions that the weights would balance to accurately represent any vector. It is

more important to know how it ranks with the other values in this vector, i.e., what is

the relative importance of each state at each basis function.

Finally, this is a general formulation such that any classic algorithm to solve POMDPs

can be adapted to work on the subspace H. At each value iteration step we can com-

pute all new α-vectors which make up the new value function V n+1 and then project

those onto H. Keeping that in mind, we will focus on the use of linear value function

approximation in a particular class of solvers, point-based algorithms.

4.3 Point-Based Methods With Linear Value Function Ap-

proximation

Recall that the original formulation for point-based POMDP methods [59, 64, 68] states

that we can update the maximizing vector at each belief point b with the operator

backup(b) (Section 2.2.5):
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backup(b) = argmax
{gba}a∈A

b · gba, with (4.6)

gba = R(s, a) + γ
∑

o

argmax
{gkao}

b · gkao, and (4.7)

gkao(s) =
∑

s′

p(o|s′, a)p(s′|s, a)αk
n(s

′). (4.8)

In order to accommodate linear value function approximation two key some steps must

be rewritten. We start with the gao computation, obtained by replacing (4.1) in (4.8):

g̃kao(x) =
∑

x′

p(o|x′, a)p(x′|x, a)α̃(x) (4.9)

=
∑

x′

p(o|x′, a)p(x′|x, a)

nh∑

i=1

ωk,ihi(c
′
i) (4.10)

=

nh∑

i=1

ωk,i

∑

x′

p(o|x′, a)p(x′|x, a)hi(c
′
i). (4.11)

Note that the newly computed g̃ao vectors might not be in the space spanned by the

basis functions. Thus, if at this point we project these vectors back into the subspace

H, we end up with a vector of weights ωk
ao which represent the linear approximation of

g̃ao vector:

ωk
ao = Πg̃kao (4.12)

Given this, we can perform the rest of the backup operator in the reduced subspace.

First, we can reformulate (4.7) to accommodate an approximated formulation:

g̃ba = R̃+ γ
∑

o

argmax
g̃kao

b · g̃kao (4.13)

= R̃+ γ
∑

o

argmax
g̃kao

b ·

nh∑

i=1

ωk
ao,ihi (4.14)
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Algorithm 8 Point-Based Backup With Linear Value Function Approximation

for all a ∈ A do {independent of b, can be cached}
ωR ← Project R(s, a) vectors to H.
for all o ∈ O do
Compute gkao vectors using (4.11).
ωk
ao ← Project gkao vectors to H.

for all a ∈ A do
Compute ωb

a vectors using (4.18).
Find the maximizing vector backup(b) using (4.16).

At this point, we can also reformulate two key operations to use approximate represen-

tations: the inner product between vectors and belief points:

b · α̃ =
∑

x∈X

nh∑

i=1

ωα,ihi(x)b(x) (4.15)

=

nh∑

i=1

ωα,i

∑

ci∈Ci

hi(ci)bi(ci). (4.16)

and the sum of two vectors represented by basis functions:

nh∑

i=1

ω1,ihi(x) +

nh∑

j=1

ω2,jhj(x) =

nh∑

i=1

(ω1,i + ω2,i)hi(x). (4.17)

Therefore, computing the gba vectors (4.7) can be performed using solely a reduced

representation with weight vectors:

ωb
a = ωR + γ

∑

o

argmax
ωk

ao




nh∑

i=1

ωk
ao,i

∑

ci∈Ci

hi(ci)bi(ci)


 . (4.18)

Here, ωR and ωk
ao represent the projections onto the space spanned by the basis functions

of, respectively, the immediate reward R(s, a) and gkao vectors which result from (4.11).

The inner product is performed using an approximated representation as in (4.16), and

summation of weight vectors as in (4.17).

Algorithm 8 summarizes the steps needed to perform the backup step for each belief point

using a general point-based method with linear value function approximation. Note that

in this formulation the projection operator is called |A||O|k times. Depending on the

size of the problem and on the complexity of this operator this might be computational

expensive. The efficiency of the backup operator also depends on the data representation

used for the factored vectors.
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Algorithm 9 Point-Based Backup With Linear Value Function Approximation, Opti-
mized For ADDs

a∗ ← ∅, v∗ ← −∞
for each o ∈ Ω do α̃∗

o ← nil
for all a ∈ A do
Qa(b)← 0
for all o ∈ Ω do
b′ ← τ(b, a, o)
α̃o ← argmaxα̃∈V α̃ · b′

Qa(b)← Qa(b) + α̃o · b
′

if Qa(b) > v∗ then
a∗ ← a, v∗ ← Qa(b)
for each o ∈ Ω do α̃∗

o ← α̃o

return Π(ra∗ + γ
∑

o g
α̃∗
o

a,o)

In respect to data representation, an ADD-based implementation (Section 2.3.2) is a

natural choice for factored basis functions and linear value functions. It is useful to

exploit model structure in factored linear value functions given that basis functions will

often be restricted to a subset of the whole state space. Thus, ADDs naturally capture

and take advantage of the factored nature on most of the operations with factored linear

value functions. Moreover, as noted in Section 2.3.2, the backup operator can be more

efficiently computed. In Algorithm 5 we present the optimized backup operator from

Algorithm 5 slightly modified to deal to factored linear value functions. Here, the inner

products can be efficiently performed according to (4.16). In this formulation, the only

vector which is not in the space spanned by basis functions is the final result of the

backup. Therefore, there is only one projection operator per backup, at the end of the

process.

Besides being based on a more efficient formulation, both on its process and on data

representation, Algorithm 9 has the particular advantage of reducing the number of

projections needed to compute at each backup. This can result in large computational

gains, given the complexity of projections. We will further study the usage of projection

operators in POMDPs in Section 4.4.

4.4 Belief-based Projection Methods

In Section 2.1.3 the projection operator Π is introduced in the context of MDPs. This

operator finds the best weighted combination of basis functions, which induces the closest

value function in V according to a pre-defined mapping. In particular, remember that

Π is defined w.r.t to a norm.
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V

b1 b2 b3

α α̃

ǫs
ǫsǫv ǫv ǫv

(1, 0) (0, 1)

Figure 4.3: Projection Errors example. α is the original vector and α̃ the approx-
imated one. ǫs are errors in state-based projections. ǫv are errors in belief-based

projections.

In terms of its representation, a vector in a POMDP value function is equivalent to a

value function in a MDP, i.e., both are represented in memory as |S|-dimensional vec-

tors. Therefore, projection methods used for value functions in MDPs can be translated

to project vectors in POMDPs. In the remaining we will name those as state-based

projections, as a reference to the fact that they minimize the projection error of the

vector itself.

State-based projections offers a practical way to project vectors back to the space

spanned by the set of basis functions. However, note that value functions in POMDPs

are defined over the belief space. Therefore, projections may be performed in an alter-

native way, which in turn minimizes the induced error in the value function. We name

it belief-based projections.

Definition 4.1. A belief-based projection operator is a mapping Π : ℜ|S| → H. Π

is said to be a projection operator w.r.t. a norm p if: α̃ = Πα = Hw∗ such that

w∗ ∈ argminw
∥∥V α̃ − V α

∥∥
p
. V β is the value function induced by a vector β in the

belief set, V β(b) = b · β.

This projection method is best suited to POMDP solvers which work in a subset of

belief points such as point-based methods. Figure 4.3 shows a graphical explanation for

both projection methods and the respective errors they try to minimize. In the case

in which the original vector can be approximated with no error, i.e., it is inside the

subspace H, then the projection result is the same for both methods. The complexity

of a state-based projection is dependent on the size of the state space. In turn, the

complexity of belief-based projections is dependent on the size of the belief space. Note

that both projections are related:
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‖ǫv‖ =
∥∥∥V α̃ − V α

∥∥∥ = (4.19)

‖Bα̃−Bα‖ = (4.20)

‖B (α̃−α)‖ = (4.21)

‖Bǫs‖ (4.22)

where B is a matrix with all belief points. Each row of the matrix represents one belief

point.

In the particular case that the belief set is composed of all the extreme points in the

belief simplex, then both projections are equivalent. The projection error with belief-

based projections is bounded by the error of state-directed projection: from (4.19) it

follows that ‖B (α̃−α)‖p ≤ ‖B‖p ‖α̃−α‖p. When p =∞, then ‖B‖∞ = 1. The most

used norms in the context of state-based projections are the L2 and L∞ norms. We

derive similar formulations for both norms, in the context of belief-based projections.

L-2 norm Following the least squares solution for parameter estimation previously

presented (2.16), it directly follows for belief-based projections:

ω = argmin
ω
‖Bα̃−Bα‖2 (4.23)

= argmin
ω
‖BHω −Bα‖2 (4.24)

= ((BH)T (BH))−1(BH)TBα (4.25)

L-∞ norm Similarly, we can apply the same reasoning of (2.20) to the belief-based

equation, ω = argminω ‖Bα̃−Bα‖∞, and solve it with the following linear program:

variables ω1, . . . , ωn, φ

minimize φ

subject to φ ≥

nh∑

i=1

ωibk · hi − bk ·α,

φ ≥ bk ·α−

nh∑

i=1

ωibk · hi, k = 1, . . . , |B|

(4.26)
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The linear program for the L∞ norm has nh + 1 variables but 2|B| constraints, which

offers an alternative for state-based projections which has 2|S| constraints. Comparing

to state-based projections this formulation has a few more operations (inner products),

whose computational demand can be alleviated when using ADD to represent data.

Nonetheless, in many problems it happens that the size of the belief set needed to

accurately represent the reachable part of the belief simplex is smaller than the state

space. In these cases the gains obtained in the optimization due to fewer constraints

can be larger than the loss incurred.

4.5 Automatic Basis Function Construction

When using linear value function approximation the choice of basis functions is crucial

to the success of such approximation schemes. In this section we will study the dynamics

of value iteration in POMDPs and from its structure derive a good set of basis functions.

In the MDP framework some approaches were presented to dynamically build a good

set of basis functions, either previous to problem solving, or by updating over each

iteration. Although POMDP methods may be inspired by those, their direct application

is not straightforward, given the increased complexity in POMDP value functions. In

this section we introduce an approach for basis function generation by exploiting model

structure.

We propose to take advantage of factored models to automatically search for a good set

of basis functions, i.e., a set of bases which takes the approximated value function, lying

in the subspace H, as close as possible to the original value function.

First, we combine equations (4.7) and (4.8) and rewrite the result in a matrix form:

gba = ra + γ
∑

o

argmax
{gk

ao}

b · gkao (4.27)

gkao = Paoαk
n (4.28)

where Pao is a transition-observation |S| × |S| matrix, with each element P ao(s′, s) =

p(o|s′, a)p(s′|s, a).
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Replacing α-vectors in (4.28) by their approximated version we obtain:

gkao = Paoα̃k
n (4.29)

= Pao

nh∑

i=1

wk
i hi (4.30)

=

nh∑

i=1

wk
i P

aohi (4.31)

We note here that gba vectors are formed by a sum of two groups of vectors: the reward

vector and the sum of a set of gao vectors, which are backprojected copies of αk
n for each

a and o. Intuitively, this gives a hint on how to choose a good set of basis functions.

First, the reward should be representable by the set of bases. Second, note that each

gao vector is the result of a linear transformation, therefore, when using an approximate

representation, we want the result of this transformation to be as close as possible to

the space spanned by the set of basis vectors. In this case we can say that the set of

basis vectors should span the space in the direction of the eigenvectors of each matrix

P ao, for each a and o. Note, however, that the space spanned by the eigenvectors

of transition-observation matrix is the same space spanned by the eigenvectors of the

transition matrix, as those have the same dimension. Given that the transition matrix

only depends on the action and not in the observation, this reduces the computations

needed at this step:

gkao =

nh∑

i=1

wk
i T

aΩaohi (4.32)

where Ta is the |S|× |S| transition matrix, and Ωao is a diagonal matrix whose diagonal

is the observation function.

Using a full matrix representation brings no clear advantage unless we find the transition

matrix to be rank deficient. However, we may take advantage of transition representa-

tions to more efficiently represent the set of basis functions.

First, we rewrite the gao vectors by replacing (4.1) in (4.8):

gkao(x) =
∑

x′

p(o|x′, a)p(x′|x, a)αk
n(x

′) (4.33)

=

nh∑

i=1

ωk,i

∑

x′

p(o|x′, a)p(x′|x, a)hi(x
′) (4.34)

=

nh∑

i=1

ωk,ig
i
ao(x) (4.35)
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Given that we are dealing with factored models, we may rewrite part of the equation

taking into account independence between features of the model. First, remember that

the scope of each basis function can be restricted to a subset Ci, thus we rewrite hi(x
′) =

hi(c
′
i). Also, we can replace both observation and transition functions by their factored

representation. Note that we can split dependencies in two cases: state factors which are

in the observations scope, and those which are not. Let us name those sets Xo and Xō

(mathematically, Xo ⊆ Γ(O) and Xō * Γ(O)), respectively, and exploit independence

between state transitions to separate summations.

giao(x) =
∑

x′
ō

∑

x′
o

p(x′
ō|Γ(x

′
ō), a)p(o|x

′
o, a)p(x

′
o|Γ(x

′
o), a)hi(c

′
i) (4.36)

=

∑

x′

1

. . .
∑

x′

l

∑

x′
o

p(x′
1|Γ(x

′
1), a)× . . .× p(x′

l|Γ(x
′
l), a)×

× p(o|x′
o, a)p(x

′
o|Γ(x

′
o), a)× hi(c

′
i)

(4.37)

The backprojection of a basis function can be split into two sub-projections. Given

the context, it would be interesting if we could exploit basis functions’ scope according

to independence in transitions. In the following, we depict two cases, one where basis

functions have the same scope as observations (C ′
i = X ′

o), and other where its scope is

not in that set (C ′
i = X ′

1<i<l).

giao(x) = 



∑

x′

1

. . .
∑

x′

l

p(x′
1|Γ(x

′
1), a) . . . p(x

′
l|Γ(x

′
l), a)×

×
∑

x′
o

p(o|x′
o, a)p(x

′
o|Γ(x

′
o), a)hi(x

′
o)

if C ′
i = X ′

o

∑

x′

i

p(x′
i|Γ(x

′
i), a)hi(x

′
i)

×
∑

x′
o

p(o|x′
o, a)p(x

′
o|Γ(x

′
o), a)

if C ′
i = X ′

1<i<l

(4.38)
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This can be even more simplified, taking into account that
∑

x′
o
p(o|x′

o, a)p(x
′
o|Γ(x

′
o), a) =

K here is constant, independent of i, and , for any j,
∑

x′

j
p(x′

j |Γ(x
′
j), a) = 1.

giao(x) =




∑

x′
o

p(o|x′
o, a)p(x

′
o|Γ(x

′
o), a)hi(x

′
o) if C ′

i = X ′
o

K
∑

x′

i

p(x′
i|Γ(x

′
i), a)hi(x

′
i) if C ′

i = X ′
1<i<l

(4.39)

Again, at this step we can switch to a matrix notation and follow the same reasoning as

with full matrices.

giao =




Ta

x′
o
Ωao

x′
o
hi if C ′

i = X ′
o

KTa
x′

i
hi if C ′

i = X ′
1<i<l

(4.40)

where Tx′

j
: p(x′

j |Γ(x
′
j), a) and Ωx′

j
: p(o|x′

j , a). Both cases represent a linear transfor-

mation from R|C′

i| to R|Γ(C′

i)|.

As stated before, to minimize the projection error every giao vector should be as close as

possible to the subspace spanned by the basis functions. That is to say that each vector

resulting from the linear transformation (4.40) should point in the same direction of the

respective basis vector hi. Given that often these factored transition matrices might be

rectangular we choose to use the right singular vectors of Ta to build the set of bases

for the transformation.

We use the right singular vectors, given that for any m× n transformation matrix, the

right singular vectors form an orthogonal basis for Rn, which is the subspace we are

interested to span in each transformation.

Our methodology is summarized in Algorithm 10, which returns the set of basis functions

H. This procedure is dependent on the structure of the model, in particular on the

dependencies of observation factors. However, in problems with structure which allows

to explore independencies it is possible to find a compact space to represent the value

function, as we will see in the following.

4.6 Exploiting Factored Observation Spaces

In most of the literature on improving POMDP solvers, the focus is on scaling the

state space. Although this is a very important issue in scalability and application in

real systems we can argue that the size of the observation space is also becoming the

limit to scalability. State and observation spaces influence scalability in different ways.
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Algorithm 10 Automatic Construction of Basis Functions

H ← ∅
for all a ∈ A do
X ′

o ← Γ(Oa)
USV T ← svd(Tx′

o
)

H ← H ∪ V
for all X ′

j /∈ X ′
o do

USV T ← svd(Tx′

j
)

H ← H ∪ V
H ← H ∪Ra

return linearly independent columns of H

Larger state spaces increase the complexity in computations and the memory needs

during the solving process. Backups in value iteration are composed of a sequence of

mathematical operations, involving mostly inner products and sums of vectors. Each

vector is |S|-dimensional, thus the complexity of those operators and the size of each

vector increases directly with the state space. On the other hand, the observation space

influences the number of new vectors computed at each iteration, as well as the scope of

each gao vector. Although the increased complexity with the state space has been tackled

in different ways, there has been little work considering the complexity of observation

spaces, in particular by exploiting factored observation variables. We will exploit the use

of factored linear value functions to take advantage of independencies between variables.

Let us now consider that we have an observation space represented in a factored way.

Also, assume that we are able to write the factored state space S as the cross product

of subsets of variables Ui. Each subset Ui contains the parents of observation i in the

DBN (that is, u′
i ∈ Γ(Oi)). We will also assume that all subsets are disjoint (∀ i, j :

U ′
i ∩ U ′

j = ∅). The key idea is that, since basis functions are defined over a subset of

the state space, we may exploit similarities between the scope of basis functions and

the structure of the DBN, although imposing some restrictions on the choice of basis

functions.

Looking at Equation 4.11 we can replace both observation and transition functions by

their factored, thus independent, representation. Additionally, we will assume that for

each problem we define nO basis functions, each one with domain Ui, that is, the domain

of the basis functions is the same as of the observation variables. From this, we get the

following:
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gkao(x) =

nO∑

i=1

ωk,i

∑

u′

1
∈Γ(O1)

. . .
∑

u′
nO

∈Γ(OnO
)

p(o1|u
′
1, a)× . . .× p(onO

|u′
nO

, a)×

× p(u′
1|Γ(U

′
1), a)× . . .× p(u′

nO
|Γ(U ′

nO
), a)

× hi(u
′
i). (4.41)

Due to the independence between variables we can rewrite (4.41) as follows:

gkao(x) =

nO∑

i=1

ωk,i




∑

u′

1
∈Γ(O1)

p(o1|u
′
1, a)p(u

′
1|Γ(U

′
1), a)


×

. . .×




∑

u′
nO

∈Γ(OnO
)

p(onO
|u′

nO
, a)p(u′

nO
|Γ(U ′

nO
), a)




× hi(u
′
i). (4.42)

In this representation, at iteration i all terms are constant except for term i, which

includes the corresponding value of the basis function. Therefore, we can consider a set

of auxiliary vectors defined as:

daoi(x) =
∑

u′

i∈Γ(Oi)

p(oi|u
′
i, a)p(u

′
i|Γ(U

′
i), a), (4.43)

faoi(x) =
∑

u′

i∈Γ(Oi)

p(oi|u
′
i, a)p(u

′
i|Γ(U

′
i), a)hi(u

′
i), (4.44)

and replace them in (4.42):

gkao(x) =

nO∑

i=1

ωk,i

nO∏

j=1
j 6=i

faoi(x)daoj (x) (4.45)

=

nO∑

i=1

ωk,ifaoi(x)

nO∏

j=1
j 6=i

daoj (x). (4.46)

Given that we can precompute these auxiliary vectors prior to performing value iteration,

it is possible to reduce the number of numerical operations needed during computation

of gkao vectors, thereby reducing the complexity of this step.

This technique can help in practice to alleviate some of the computational cost involved

in gao computation, while imposing some assumptions on the model. Although may be

seen as too limitative, assumptions on the models are not rare. For instance, similar to
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ours but in the context of mixed-observable MDPs, Drougard et al. [128] also assume

that an observation variable is available for each hidden state variable. Moreover, they

note that if that is not the case of the original model it is possible to reconstruct the

model in a way that original observations can be equivalently modeled as a Cartesian

product of observations, each one depending on one state variable.

4.7 Experiments

To test the viability of the contributions in this chapter, we performed a series of illus-

trative experiments. We start by a description of the models used in our benchmark

problems and provide empirical evaluations of our methods using linear value function

approximation.

4.7.1 Model Description

We test our method on the network management problem [2] and a variation of the fire

fighting problem [129]. We will briefly describe the models used for each problem.

4.7.1.1 Network Management

In the network management problem a system administrator must maintain a network

of machines. At any stage each machine can be in a state up or down and the available

options for the system administrator are to reboot, ping any machine or do nothing. An

observation is received every time a machine is pinged: the agent observes the correct

state of the pinged machine with probability 0.95.. The agent receives a positive reward

for each working machine (1 for all machines and 2 for a particular machine assigned

as server), a small 0.1 cost for pinging machines, and a higher 2.5 cost for rebooting.

When a machine is down it stays down with high probability (0.95). If it is up, then it

transitions to down with probability 0.333 if the parent is also down, or 0.1 if parent is

up. We tested on this problem with two configurations: 3legs and cycle (Figure 4.4)

4.7.1.2 Fire Fighting

The fire fighting problem models a team of agents that have to extinguish fires in a

number of houses. We consider a variation of the problem with a fixed number of 2

agents, and increasing number of m houses. Each house can be in one of 3 fire levels

(fl0, f l1, f l2). Each agent can go to any of the houses and observes whether there are
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(a) cycle (b) 3legs
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(c) Dynamic Bayesian network.

Figure 4.4: Network management problem. (a)(b) Illustration of the problem, show-
ing different configurations. Shaded node represents the server machine and arrows
represent connections in the network.(c) Dynamic Bayesian network representation of

the problem. State factors Xi represent the state of each machine i.

flames or not at its actual location. Flames are observed with probability 0.275, 0.5 and

0.775 if the fire at that location is, respectively, in level 0, 1 or 2. If any fire fighter is

present at a house, its fire level will lower one level with probability 0.8, otherwise it will

increase with probability 0.6. If both firefighters go to the same house, its fire level will

certainly decrease to the lowest level, i.e., with probability 1. Agents receive a negative

reward equivalent to the level of the fire at each house, R(Hi) = [0 − 1 − 2].
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(a) Problem illustration.
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(b) Dynamic Bayesian network.

Figure 4.5: Fire fighting problem.(a) Illustration of the problem. Squares represent
agents, while circles represent houses. Each agent can act in one single house per
timestep, but it can move freely between houses. (b) Dynamic Bayesian network rep-
resentation of the problem. State factors Hi represent the fire level at each house i.
For visualization purposes we show the dynamics of the problem for a single action

A = (1, 3), meaning that Agent 1 goes to house 1 and agent 2 goes to house 3.

4.7.1.3 Experimental Setup

Table 4.1 shows the dimension of the models we tested with. Unless mentioned otherwise,

all network management models are run with a belief set of 1000 points and fire fighting

models with 500 belief points. Value iteration is run for 50 iterations, and results are

averaged over 100 runs of 50 steps each.
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Network, n machines Fire fighting, m houses

n |S| |A| |O| m |S| |A| |O|

4 16 9 2 3 27 6 4

7 128 15 2 4 81 10 4

10 1024 21 2 5 243 15 4

13 8192 27 2 6 729 21 4

16 65536 33 2 7 2187 28 4

Table 4.1: Problem sizes. |S|, |A|, |O|, represent, respectively, the number of states,
actions and observations for each problem.

All results are obtained with an implementation of the point-based POMDP solver

Symbolic Perseus [2], adapted to use linear value functions. For better analysis of our

results we introduce some terms used through this section:

• Average sum of discounted rewards: the sum of all rewards obtained by the agent

averaged over all runs of the problem, computed as
∑

t γ
tRt

N
, where N is the total

number of runs.

• Solution size: a measure of the space needed to store the value function in memory.

It is measured as the total of values stored to represent the value function. For

a flat problem representation, that would be |S||V |, where |V | is the number of

vectors in the value function. For a value function representation using ADDs

that means the total number of leafs, summed over all vectors. Finally, with linear

value functions it is measured as nh|Ṽ |+ |H|, where |Ṽ | is the number of vectors in

the approximated value function and |H| is the number of leafs used to represent

the set of basis functions as ADDs.

4.7.2 Comparing Basis Functions

Our first test consists of running the algorithm with several different basis functions

in the fire fighting problem with 3 houses. We considered a number of basis functions

equal to the number of state factors (the number of houses) and each basis’ scope is

restricted to each house: Γ(h1) = {X1}; Γ(h2) = {X2}; Γ(h3) = {X3}. Basis for all

houses are equal at each trial, and we experiment with different mappings from basis to

state values, i.e., how much the basis function valuates each value of a state factor. The

table in Figure 4.6a shows the different mappings tested.

We ran value iteration for each mapping, and computed the average sum of discounted

rewards for the policy obtained at each iteration. In Figure 4.6b we present the average
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# hi(Xi)

1 [−1 1 −1]
2 [0 −1 −2]
3 [2 1 0]
4 [2 0 −1]
5 [5 −2 −5]
6 [3 1 −1]

(a) Basis functions

0 10 20 30 40 50
−30

−25

−20

−15

−10

Value Function at Iteration n

A
ve

ra
ge

 S
um

 o
f D

is
co

un
te

d 
R

ew
ar

ds

 

 

Basis1
Basis2
Basis3
Basis4
Basis5
Basis6

(b) Average sum of discounted re-
wards
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Figure 4.6: Fire fighting problem. (a) Basis functions tested. (b), (c) Comparison of
different basis functions.

sum of discounted rewards for each mapping over all iterations, and in Figure 4.6c

the total solution size needed to represent the value function, for each iteration step.

Our results show that the choice of bases influences the method’s performance. If we

remember that the reward function for this problem (with 2 agents and 3 houses) is

Ri(Xi) = [0 − 1 − 2], we can compare the performance of each basis function with its

similarities to the reward function. As Guestrin et al. [130] stress for the MDP case, the

success of the technique depends on the ability to capture the most important structure

in the value function with a good choice of basis functions.

In our experiments, we distinguish between those bases which are related to the reward

function, and those which are not. For instance, all bases except for basis 1 assign a

higher value to lower fire levels, and decreasing values for increasing fire levels. Indeed,

we notice that the performance of basis 1 is one of the worst in the test in terms of policy

quality. It is also important to be aware of numerical issues resulting from the choice

of basis functions. In contrast to expectation, bases 2 and 3 do not perform well, when

comparing with others in the test. In particular, basis 2 is a direct translation of the

reward function to a basis function. We note that having a value of 0 in a basis function

results in numerical issues when projecting vectors onto the space spanned by the basis

functions. These results show how important the choice of basis functions is for the
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Figure 4.7: Two-stage DBN for the modified fire fighting problem with one observa-
tion factor for each state factor, where Xi = {0, 1, . . . , k − 1}; Oi = {0, 1, . . . , l − 1}.
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Figure 4.8: Factored observations (log-scale y-axis)

success of linear value function approximation, highlighting how beneficial it is to have

fully automated methods to construct basis functions, such as the one we presented in

Section 4.5.

4.7.3 Factored Observations

We introduced a method to speed up computation of gkao by exploiting a factored repre-

sentation of the observation model, and tested with a modified model of the fire fighting

problem. This model includes one observation factor for each state factor, as we assumed

in Section 4.6, and has 2 agents and 3 houses. Figure 4.7 shows the respective DBN

for this modified model. In Figure 4.8 we compare the average computation time for
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each gkao vector when using (4.11) and (4.46). The implementation of this test is based

on the adapted fire fighting problem, represented in the DBN shown in Figure 4.7. We

compare different instances with a constant number of observations (2 observation levels

per house), while we increase the number of states (by increasing one fire level at the

time).

The average time of computing gao vectors does not increase while exploiting factored

observations (using (4.46)), in contrast to what happens in the traditional way using

(4.11). We conclude that there is an excellent speedup in this step with an increasing

number of states, confirming our hypothesis. Since we reduce the number of operations

over the state space, its size is the most significant parameter that affects the efficiency

of speeding up this step.

4.7.4 Comparing Projection Methods

In Figure 4.9a we compare the time it takes to project a vector into the subspace H in

the network management problem, with a 3legs configuration, with increasing number

of machines. We test our belief-based projection with two sets of belief points with 500

and 1000 beliefs against a state-based projection. Also, in Figure 4.9b we compare the

evolution of the Bellman error, ‖Vn+1 − Vn‖, over the steps of value iteration for the

network problem with a 3legs configuration with 13 machines. Here we compare the

performance of plain Symbolic Perseus against its extension with linear value function

approximation with state and belief-based projections.

We conclude that we can achieve a speedup in the projection operation by using a

belief-based method, while performing better in terms of convergence. The smaller the

belief set size, the larger the gain in computation time. This is as expected given that,

although we need to perform additional inner products to form the set of constraints, our

linear program also takes less constraints, therefore performing faster. We also note that

the evolution of the Bellman error is similar to the one without linear value function

approximation. This shows that our projection method adapts better to point-based

methods, as approximates the value function on this set.

4.7.5 Basis Function Construction

In this section we compare our automated procedure using Krylov iteration methods as

the baseline. Krylov iteration finds basis functions by expanding the reward function

through the transition matrix. Used in the POMDP framework for model compression,

we choose it as a baseline due to the similarities with our work. A detailed description
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of this method may be found in Section 4.1.2.2. Table 4.2 shows the dimension of the

sets of basis functions obtained with our procedure for different models of the problem

domains we are testing, and we compare our performance in terms of problem solving

against that of Krylov basis, in particular with the truncated version of the method.

In Figure 4.9 we compare policy quality for the network problem with 7 machines in

a 3legs configuration. Our method proves to be competitive with Krylov iteration, by

maintaining a good policy quality. Krylov basis yield better results when the set of basis

functions grows, but can only provide better results than our method for sets with 20

or more basis vectors. Note that, for this problem size, we obtain a set with 8 basis

vectors.



Value Function Approximation 80

Network, n machines Fire fighting, m houses

n 4 7 10 13 16 m 3 4 5 6 7

nh 5 8 9 14 17 nh 19 33 51 73 99

Table 4.2: Size nh of set of basis functions found automatically with our method.

SVD Truncated Krylov Iteration

t(s) nh t(s)

0.255

5 14.16

10 97.45

15 266.36

20 489.18

Table 4.3: Time comparison with Krylov Iteration in 3legs network problem with 7
machines (128 states). SVD Basis is our method with fixed number of basis functions

(8 basis for this problem)
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Figure 4.9: Policy quality comparison with Krylov Iteration in 3legs network problem
with 7 machines (128 states). SVD Basis is our method with fixed number of basis

functions (8 basis for this problem)

We also compare, for the same model with 7 machines, the computational time needed

by both methods to generate sets of basis functions, Table 4.3. Krylov basis are gener-

ated by an iterative method, involving several matrix multiplications. Even for a small

problem like the one we tested this makes a difference to our method, which involves

less complexity.

This shows that we can obtain a set of basis which provides good results with less

computational cost which, in turn, leads to further computational savings in problems

solving because reduces the complexity of the projection operators.
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Figure 4.10: Average and standard deviation time to perform a backup operation
(Algorithm 5) in the network management problem with n machines.

4.7.6 Scaling POMDP Solving

In this set of experiments we will see how our value function approximation scheme

scales up in POMDP solving.

First, we present in Figure 4.10 the evolution of the average and standard deviation

time to perform a backup operation in Symbolic Perseus, with and without value func-

tion approximation, in the network management problem with increasing number of

machines. When scaling up problem size we also can achieve computational gains in

this operation. In our backup operator we perform one additional step, the projection

of vectors. However, it is important to note that some steps inside this operator, such

as inner products, can be efficiently performed with factored vectors.

Finally, we compared both methods directly in terms of value iteration computation

times, policy quality and size. Figure 4.11 and 4.12 show, respectively, results for the

network management problem and the fire fighting problem. We report the running

time of 50 iterations, the average summed discount reward and solution sizes (computed

as the total numbers of values needed to store the value function).

Network Management

In both configurations of the network management problem a couple of notes are in

order. The most noticeable, for any problem size we can reduce solution size by orders

of magnitude, which can go up to 3 in the problem with 16 machines. Remember

that in this domain the set of basis function is very compact which can explain such

a difference in representing the value function. This is due to the structure of the

problem, as each state factor (each machine) is only connected to its parent in the
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(b) Running times
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(d) Average sum of discounted re-
wards
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(e) Total # of values stored
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Figure 4.11: Network management problem with increasing number of machines and
cycle (a),(d),(f) and 3legs (b),(c),(e) topologies. Comparison with Symbolic Perseus

and its extension with linear value function approximation.

network. There is a small decrease in the policy performance, which would be expected

given the approximation nature of our method. However, we can consider that there

is a good tradeoff between a small decrease in policy quality against a huge decrease

in solution size. Moreover, we can achieve a reduction in the computation time. For
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visualization purposes we show plots in a logarithmic scale, but we note that for larger

problems we can cut computation time in half, which is already an important gain.

Fire Fighting
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(b) Average sum of discounted re-
wards
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Figure 4.12: Fire fighting problem with 2 agents and increasing number of houses.
Comparison with Symbolic Perseus and its extension with linear value function approx-

imation.

The fire fighting problem has a more complex structure. We note the higher number of

basis functions (see Table 4.1), when comparing with the network problem. Therefore,

it should not be surprising that gains for this problem are smaller than in the previous

problem. This shows how important the structure of the problem is when automatically

capturing a good set of basis functions. Also, for smaller problems we perform worse in

terms of computation time. Nonetheless, when scaling up this problem, the computation

time of our method grows slower, leading to best results in larger problems. We can

also reduce the solution size for all problem sizes, with almost 2 orders of magnitude

difference in the larger problem. In this problem, the average reward is similar for the

approach with or without linear value function approximation.
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4.8 Discussion

In this chapter we covered linear value function approximation techniques applied to

POMDP solving. As previously formulated, this has been a dimensional reduction tech-

nique popular in the MDP framework, but under-explored in POMDPs. Bringing such

techniques to POMDPs seems a natural step, which had not been taken so far. We be-

lieve the reason for that gap, as we found, is that direct application of MDP based linear

value function approximation techniques is not straightforward in POMDPs. Therefore,

we identified points where we can use POMDP properties to improve linear value func-

tion approximation in this framework. Methods for compact representation of value

function can, in principle, be plugged in to any solver. We focus in point-based meth-

ods, given the good performance they have shown in literature.

We conclude that approximating value functions through a set of basis functions is

feasible in practice. We are able to improve POMDP solving by reducing the size of

solutions, while being competitive in running times. In approximate value iteration

algorithms, there are steps that take the value function outside the space spanned by

the basis functions. Therefore, one important operation is the projection of vectors

onto this space, which is a key step in these approximation schemes. The complexity

of this step is dependent on the complexity of the set of basis function used. Moreover,

a good set of basis functions (i.e., a set which captures the most important structure

of the problem) is also important to reduce the difference between the original and

approximated value functions.

Poupart [2] states that their compressed POMDPs, obtained by Krylov iteration, can be

solved more effectively if the POMDP has good myopic policies. This has been supported

by experimental results presented by Pajarinen et al. [131], which compared several

methods including Perseus with truncated Krylov iteration. Similarly, our linear value

function approximation approach is also better suited for for problems with good myopic

policies. Intuitively, our method to generate basis functions focus on the properties of

one iteration, in particular on the dependencies of the DBN. After many iterations the

scope of dependence grows and our approximate representation should be less effective.

An interesting issue is how can we be able to generalize the use of linear value function

approximation for a broader set of problems. Usually problems can be viewed from

different perspectives, allowing for different model designs. Finding sets of rules which

allow for a problem to be redesigned in order to have good myopic policies can be a

point of future research.

In the MDP framework, error bounds and convergence guarantees have been derived

for solutions with linear value function approximation. Another point of direction for
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future research would be to derive it for the POMDP case, provided that bounds for

projections can be found. However, once again, it is not possible to directly use the

same reasoning applied in MDPs to the partially observable case.



Chapter 5

Conclusions and Future Work

To conclude, in this chapter we review the main contributions of this work and provide

future research directions.

5.1 Conclusions

In this thesis we studied task planning under uncertainty for intelligent agents. An agent

is a general concept which may include from autonomous robots to intelligent computer

programs or, in resume, any intelligent actor which interacts with the environment.

We are particularly interested in the problem of active cooperative perception, i.e., the

problem of (possibly) multiple agents actively acting in the system in order to improve

the general situational awareness. For instance, in a scenario with static and mobile

sensors where the system’s goal is to detect some features in the environment, mobile

sensors can change its situation in order to help the static sensors to better observe

changes.

Generalizing, we can frame this as a problem of information-gathering, i.e., a problem

in which the agent’s goal is not to achieve some physical state but rather to reduce

the uncertainty about its knowledge of the environment. Task planning problems under

uncertainty are naturally framed in the partially observable Markov decision process

paradigm, as it provides a solid mathematical framework for the decision-making pro-

cess and allows for directly modelling the uncertainties in the system. However, classic

POMDP formulation is not optimized for information-gathering. On the contrary, ob-

jectives are defined over states, thus agents will reduce uncertainty only if that helps to

better perform some physical task.

86
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To overcome this limitation, in Chapter 3 we introduce the POMDP-IR framework, for

rewarding low-uncertainty beliefs. This is achieved at the cost of extending the actions

space with information-reward actions, which do not affect transitions or observations,

but only rewards. With this property, the agent can choose at every timestep, to per-

form a domain-level action (which influences the environment) simultaneously with an

information-rewarding action. In the long run, the influence of the information-rewards

in the value of policies will influence the agent’s behavior towards low-uncertainty beliefs.

We illustrated the properties of POMDP-IR with a multi-objective toy problem, in which

a surveillance robot needs to patrol a corridor and balance between task performance

and information gain, and a case study on robot surveillance. Though implemented

in simulation, the experimental setup, in particular the observation model, is retrieved

from a real scenario. Moreover, we compared our information-gain framework against the

ρPOMDP model and conclude that, with the same number of belief points, POMDP-IR

achieves better results.

The formal properties of POMDPs come at a cost. In general, computing exact solutions

for POMDPs is an intractable problem, making POMDP application in realistic scenar-

ios impractical. This led to several approximation methods, which balance between

computing sub-optimal solutions, but still with good policy quality. Most common ap-

proaches attempt to reduce the complexity of the model, search for policies in a reduced

policy space, or by computing sub-optimal value functions. Most value function ap-

proximation approaches attempt to reduce the number of vectors used to represent the

value function. In turn, linear value function approximation attempts to reduce the

representation size for each vector. In Chapter 4 we introduce linear value function

approximation applied to POMDP solving. With this formulation, vectors in the value

function are represented as a linear combination of basis functions, which can be com-

pactly represented with factored models (if each basis has a scope that is a subset of

the state space). So far, this approximation technique have been mostly developed and

applied in the context of MDPs (both in planning and reinforcement learning). We

highlight the practical implications of translating it to the POMDP context.

With linear value function approximation methods, every time an operator in the value

iteration takes the value function outside the space spanned by the set of basis functions

the algorithm needs to project it back to that space. This implies one additional opera-

tor, the projection operator. Besides introducing additional computational complexity,

this operator adds some error in the value function. In POMDP solving we must call

this operator after each vector backup while in MDP we call it only after each itera-

tion. Thus, the number of projections in POMDP is much higher. Nonetheless, our
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experiments show that the added number of operations may be balanced by the reduced

complexity on other operations.

The success of this technique is highly dependent on the ability of capturing the most

important structure of the problem with good sets of basis functions. Based on factored

models and the ability to decouple parts of equations in the backup procedure, according

to variables’ scopes in the model, we derive an automated procedure to automatically

construct sets of basis functions. We demonstrated in benchmark problems that this

method works in practice, and we can obtain large gains in solution representation,

while sacrificing little policy quality.

5.2 Future work

In this thesis, in particular in the active perception scenarios, we considered several

cooperating sensors in the environment, but only one is an active sensor. In practice,

this is formalized as a single-agent decision-making problem. However, we can easily

imagine problems which extend to multiple decision makers, e.g., surveillance scenarios

with several robots or active cameras. A requirement for treating (parts of) the system

as a centralized POMDP is fast and reliable communication, as cameras and robots

need to share local observations [132]. When communication delays are limited and po-

tentially stochastic, the problem can be modeled as a multiagent POMDP with delayed

communication [133, 134]. Finally, when no communication channel is present, the prob-

lem can be modeled as a decentralized POMDP [135, 136]. Extending the POMDP-IR

framework to any of these multiagent models is promising.

Despite the improvements in POMDP solving with different approximation techniques

found in literature, its application in realistic, rich scenarios is not yet straightforward.

There is still space for improvement, in particular in what concerns exploiting the model

structure. Most methods which exploit factored structure focus on conditional inde-

pendence in the state space, but the observation space is becoming the bottleneck for

POMDP solving. In our work, we trace some steps towards mitigating this problem,

by noting that factored basis functions in linear value function approximation allows for

decoupling some mathematical steps. Some strategies that assume to reduce the com-

plexity of the observation space have been proposed, such as clustering of observations

[119], or asynchronous formulation of multiagent problems [137].

Innovative ideas for new approximation techniques for POMDPs keep appearing in lit-

erature. One interesting alternative approach is to drop the α-vector representation for

the value function and approximate it with a continuous function over the belief space.
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Exploiting the property that the value function must be a convex function in the be-

lief state, an approximation based on a quadratic function can be derived [138]. This

approach has the promising property that it allows for parametrized reward functions

defined over the belief space, thus allowing to directly reward low-uncertainty beliefs.

Other approaches include online planning [139] that, instead of planning for all possible

scenarios, tries to determine the optimal action for the current belief. Though scalable

for large POMDPs [140], online algorithms can be improved for highly uncertain do-

mains [141] where information-gathering actions are essential for task performance. A

combinations of these approaches with information-rewards could allow for efficient and

scalable planning algorithms for real applications of active cooperative perception.
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décisione séquentielle à des fins de collecte d’information. PhD thesis, University

of Lorraine, 2013.

[4] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based pomdp

solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51, July 2013. ISSN

1387-2532.

[5] Druzdzel M.J. and Flynn R.R. Decision support systems. In Encyclopedia of

Library and Information Sciences. Taylor & Francis, Inc, 2003.

[6] W. Burgard, A.B. Cremers, Dieter Fox, D. Hhnel, G. Lakemeyer, D. Schulz,

W. Steiner, and Sebastian Thrun. The interactive museum tour-guide robot. In

Proc. of the Fifteenth National Conference on Artificial Intelligence (AAAI-98),

1998.

[7] M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, T. Kollar, C. Mericli, M. Samadi,

S. Brandao, and R. Ventura. Cobots: Collaborative robots servicing multi-floor

buildings. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Interna-

tional Conference on, pages 5446–5447, Oct 2012.

[8] Jim Blythe. Artificial intelligence today. chapter An Overview of Planning Under

Uncertainty, pages 85–110. Springer-Verlag, Berlin, Heidelberg, 1999. ISBN 3-540-

66428-9.

[9] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Education, 2 edition, 2003. ISBN 0137903952.

90



Bibliography 91

[10] Robert Duncan Luce and Howard Raffa. Games and decisions : introduction and

critical survey. Wiley, New York, 1957. ISBN 0-471-55341-7.

[11] Jerome A. Feldman and Robert F. Sproull. Decision theory and artificial intelli-

gence ii: The hungry monkey. Cognitive Science, 1(2):158 – 192, 1977.

[12] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning

and acting in partially observable stochastic domains. Artificial Intelligence, 101

(1-2):99–134, 1998.

[13] Richard D. Smallwood and Edward J. Sondik. The Optimal Control of Partially

Observable Markov Processes Over a Finite Horizon. Operations Research, 21(5):

1071–1088, 1973.

[14] S. Candido and S. Hutchinson. Minimum uncertainty robot navigation us-

ing information-guided pomdp planning. In IEEE International Conference on

Robotics and Automation (ICRA), pages 6102–6108, May 2011.

[15] R. Gosangi and R. Gutierrez-Osuna. Active temperature programming for metal-

oxide chemoresistors. Sensors Journal, IEEE, 10(6):1075–1082, June 2010. ISSN

1530-437X.

[16] Shaohui Ma and Hao Zhang. A dynamic crm model based on pomdp. In Fuzzy Sys-

tems and Knowledge Discovery, 2008. FSKD ’08. Fifth International Conference

on, volume 2, pages 55–59, Oct 2008.

[17] A. R. Cassandra. A survey of POMDP applications. In Working Notes of AAAI

1998 Fall Symposium on Planning with Partially Observable Markov Decision Pro-

cesses, pages 17–24, 1998.

[18] Alberto Sanfeliu, Norihiro Hagita, and Alessandro Saffiotti. Network robot sys-

tems. Robot. Auton. Syst., 56(10):793–797, October 2008. ISSN 0921-8890.

[19] A. Saffioti, P. Lima, H. Levent Akin, A. Birk, A. Bonarini, G. Kraetzschmar,

D. Nardi, E. Pagello, M. Reggiani, A. Sanfeliu, and M. Spaan. Two ”hot issues”

in cooperative robotics: Network robot systems, and formal models and methods

for cooperation. EURON Special Interest Group on Cooperative Robotics, 2008.

[20] Matthijs T. J. Spaan, Tiago S. Veiga, and Pedro U. Lima. Active cooperative

perception in network robot systems using POMDPs. In Proc. of International

Conference on Intelligent Robots and Systems, pages 4800–4805, 2010.

[21] Alberto Sanfeliu, Juan Andrade-Cetto, Marco Barbosa, Richard Bowden, Jesús
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Gonçalves, Pedro U. Lima, Plinio Moreno, Abdolkarim Pahliani, José Santos-
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[139] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-draa. Online

planning algorithms for pomdps. J. Artif. Int. Res., 32(1):663–704, July 2008.

[140] David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances

in Neural Information Processing Systems 23, pages 2164–2172. 2010.

[141] Adam Eck and Leen-Kiat Soh. Online heuristic planning for highly uncertain

domains. In Proceedings of the 2014 International Conference on Autonomous

Agents and Multi-agent Systems, pages 741–748, 2014.


