
2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

DISCRETE EVENT DYNAMIC SYSTEMS

REINFORCEMENT
LEARNING

Pedro Lima

pal@isr.ist.utl.pt
Instituto Superior Técnico (IST)

Instituto de Sistemas e Robótica (ISR)
Av.Rovisco Pais, 1
1049-001 Lisboa

PORTUGAL

May.2002
revised December 2009

All the rights reserved

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Reinforcement Learning (RL)

Goal: choose the action sequence that maximizes

T may go to infinity, as long as

Agent

Environment

reinforcement
€

ut
action

€

xt+1
€

xt

state

€

xt ∈ X
ut ∈Ux

rt+1 ∈ ℜ

Rewards and state transitions after an action is executed are stochastic.

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Markov Decision Process (MDP)

€

Pr xt+1{ = x',rt+1 = r xt ,ut ,rt ,xt−1,ut−1,…,r1,x0,u0




= Pr xt+1{ = x',rt+1 = r xt ,ut




A Markov Chain (which by definition satisfies the Markov Property) with transition
probabilities dependent on actions is known as Markov Decision Process (MDP)
Example: conditional joint probability of state and reward:

object on
the table

object
grasped

object on
the floor

pickup
0.2

0.8 release
0.5

0.5

grasp 1.0

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Battery
High

Battery
Low 1,0 recharge_battery

Ex.: Recycling Robot robot has to be rescued because its battery
is depleted

transition probability expected reward

action taken
Number of cans collected while performing

the corresponding tasks

Markov Decision Process (MDP)

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

€

Policy≡ π (x,u) :(x∈ X,u∈Ux)→π(x,u) Probability of carrying out action u in state x

State value for policy π:

(state, action) value for policy π: €

V∞
π (x) = E π Rt xt = x{ } = E π γ krt+k+1

k= 0

∞

∑ xt = x








Expected value of starting in state s and following policy π thereafter.

€

Q∞
π (x,u) = E π Rt xt = x,ut = u{ } = E π γ krt+k+1

k= 0

∞

∑ xt = x,ut = u








Expected value of starting in state x, carrying out action u, and following policy π thereafter.

Value Functions

NOTE: value of final state, if any, is always zero.

in the DP formulation

costs in the DP formulation

we leave the
conditioning
explicit here

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Markov Decision Process (MDP)

Given:
•  States x
•  Actions u
•  Transition probabilities p(x‘|u,x)
•  Reward / expected payoff function r(x,u)

Wanted:
•  Policy π(x) that maximizes the future

expected reward

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Value Iteration

1.  for all x do

2.  endfor

3.  repeat until convergence
1.  for all x do

2.  endfor
4.  endrepeat

€

ˆ V (x)← max
u

r(x,u) + γ ˆ V (x ')p(x ' | u,x)dx '
x '
∑



 


 

€

π (x) = argmax
u

r(x,u) + γ ˆ V (x ')p(x ' | u,x)dx '
x'
∑



 


 

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Value Iteration for Motion Planning

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Value Function and Policy Iteration

•  Often the optimal policy has been reached long before
the value function has converged.

•  Policy iteration calculates a new policy based on the
current value function and then calculates a new value
function based on this policy.

•  This process often converges faster to the optimal
policy.

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Policy Iteration
repeat

1.  for each state x do

2.  end for
until policy_unchanged

€

if max
u

p(x' | u,x) ˆ V (x')
x '
∑ > p(x ' |π (x), x) ˆ V (x ')

x'
∑

 π (x)← argmax
u

p(x ' | u,x) ˆ V (x ')
x'
∑

 policy_unchanged ← False

€

ˆ V ← Value_Iteration (π , ˆ V ,P,R)
policy_unchanged← True

matrix of p(x’|u,x)

matrix of r(u,x)

deterministic
policy

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Reinforcement Learning

 Dynamic Programming (DP)
•  To determine V for |X| = N, a system of N non-linear equations must be solved.
•  Well established mathematical method.
•  A complete model of the environment is required (P and R known).
•  Often faces the “curse of dimensionality” [Bellman, 1957]

 Monte Carlo
•  Similar to DP, but P and Rs unknown.
•  P and R determined from the average of several trial-and-error trials.
•  Unappropriate for a step-by-step incremental approximation of V*.

 Temporal Differences
•  Knowledge of P e R is not required
•  Step-by-step incremental approximation of V.
•  Mathematical analysis more complex.
•  Q-learning

Previous (DP) methods to solve MDPs assume full knowledge of p(x’|u,x)

Alternative approaches, if we do not know p(x’|u,x)

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Value Functions cont’d

€

VT
π (x) = p(x ' | u,x) r(x,u) + γVT−1

* (x')[]
x '
∑

€

VT
∗ = max

π
VT

π (x) ∀x

Bellman equation for V (discrete action and state spaces)

€

QT
π (x,u) = p(x' | u,x) r(x,u) + γmax

u'
QT−1

π (x ',u')[]
x'
∑

€

QT
∗ = max

π
QT

π (x,u) ∀x,u

Solutions are unique and equations are also met by the optimal functions

€

Q∗(x,u) = E rt+1 + γV ∗(xt+1 = x') xt = x,ut = u{ }

€

V *(x) =max
u
E r(x,u) + γV *(x ',u')[]

€

 V *(x) = max
u
Q*(x,u)⇒ Q*(x,u) = E r(x,u) + γmax

u'
Q*(x ',u')[]

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

•  Once V* is known or learned, an apparently obvious solution for
the RL problem would be:

... but r(x,u) and δ(x,u) are unknown in the general case

•  However, if we know or learn Q*, a different solution
arises:

€

Q∗(x,u) = E rt+1 + γV ∗(xt+1) xt = x,ut = u{ }
π∗(x) = argmax

u(x)
Q*(x,u)

In a stochastic environment, with unknown P and R, the
agent’s own experience when interacting with its
environment can be used to learn Q* and π*.

Q-Learning

€

π∗(x) = argmax
u(x)

E r(x,u) + γV ∗(δ(x,u)) | xt = x,ut = u{ }, δ(x,u) ≡ state transition function

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Initialize Q(x,u) random or arbitrarily
Repeat forever (for each episode or trial):

 Initialize x
 Repeat (for each step n of the episode):
 Choose action u of x
 Execute action u and observe r and x’

 until x final.

€

Qn+1(x,u)← Qn (x,u) +αn r(x,u) + γmax
u'
Qn (x',u') −Qn (x,u)[]

x← x';

α  constant allows adaptability to slow environment changes but it does not
guarantee convergence – only possible with a temporal decay under given
circumstances.

Q-Learning - Algorithm

€

Q(xt ,ut)← Q(xt ,ut) +α r(xt+1,ut+1) + γmax
u
Q(xt+1,u) −Q(xt ,ut)[]stochastic approximation:

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

G

0 0

0 0

0

0

0

0

0

0 100

100
r(x,u)
V*(x)

90

90

100

100 81

G

90 81

72 81

81

90

72

81

81

72 100

100

Qn
π(x,u)

α = 1
γ = 0.9

Q-Learning – an Example

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

G

0 0

0 0

0

0

0

0

0

0 100

100

90

90

100

100 81

G

90 81

72 81

81

90

72

81

81

90 100

100

Qn
π(x,u)

Q-Learning – an Example

r(x,u)
V*(x)

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Initial Situation

After some
learning steps

Q-Learning – another Example

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

Should each pair (x,u) be visited an infinite number of times,
with

€

0 ≤αn <1

αn(i,x,u)
i=1

∞

∑ =∞

αn(i,x,u)
2

i=1

∞

∑ <∞

Q-Learning – Algorithm Convergence

€

then ∀x,u Pr lim
n→∞

ˆ Q n (x,u) = Q(x,u)[] =1

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

•  ε- greedy: at each step n, picks the best action so far
with probability 1-ε , for small ε, but can also pick with
probability ε , in an uniformly distributed random fashion,
one of the other actions.
•  softmax: at each step n, picks the action to be executed
according to a Gibbs or Boltzmann distribution:

€

π n (x,u) =
eQn (x,u) /τ

eQn (x,u') /τ

u'(x)
∑

Exploration: less promising actions, which may lead to good
results, are tested.
Exploitation: takes advantage of tested actions which are
more promising, i.e., which have a larger Q(x,u).

Action Selection: Exploration vs Exploitation

2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning

References and Further Reading

•  K. Narendra, M. Thathatchar, Learning Automata – An
Introduction, Prentice Hall, 1989

•  D. P. Bertsekas, J.N. Tsitsiklis, Neurodynamic Programming,
Athena Scientific, 1996

•  T. Mitchell, Machine Learning, McGraw-Hill, Computer
Science Series, 1997

•  R. Sutton, A. Barto, Reinforcement Learning – An
Introduction, The MIT Press, 1999

