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Reinforcement Learning (RL) 

Goal: choose the action sequence that maximizes 

T may go to infinity, as long as  

Agent 

Environment 

reinforcement 
€ 

ut
action 

€ 

xt+1
€ 

xt

state 

€ 

xt ∈ X
ut ∈Ux

rt+1 ∈ ℜ

Rewards and state transitions after an action is executed are stochastic. 
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Markov Decision Process (MDP) 

  

€ 

Pr xt+1{ = x',rt+1 = r xt ,ut ,rt ,xt−1,ut−1,…,r1,x0,u0
 
 
 

= Pr xt+1{ = x',rt+1 = r xt ,ut
 
 
 

A Markov Chain (which by definition satisfies the Markov Property) with transition 
probabilities dependent on actions is known as Markov Decision Process (MDP) 
Example: conditional joint probability of state and reward: 

object on 
the table 

object 
grasped  

object on 
the floor  

pickup 
0.2 

0.8 release 
0.5 

0.5 

grasp 1.0 
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Battery 
High 

Battery 
Low 1,0    recharge_battery 

Ex.: Recycling Robot robot has to be rescued because its battery 
is depleted 

transition probability expected reward 

action taken 
Number of cans collected while performing 

the corresponding tasks 

Markov Decision Process (MDP) 
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€ 

Policy≡    π (x,u) :(x∈ X,u∈Ux)→π(x,u) Probability of carrying out action u in state x 

State value for policy π: 

(state, action) value for policy π: € 

V∞
π (x) = E π Rt xt = x{ } = E π γ krt+k+1

k= 0

∞

∑ xt = x
 
 
 

 
 
 

Expected value of starting in state s and following policy π thereafter.  

€ 

Q∞
π (x,u) = E π Rt xt = x,ut = u{ } = E π γ krt+k+1

k= 0

∞

∑ xt = x,ut = u
 
 
 

 
 
 

Expected value of starting in state x, carrying out action u, and following policy π thereafter.  

Value Functions 

NOTE: value of final state, if any, is always zero. 

in the DP formulation 

costs in the DP formulation 

we leave the 
conditioning 
explicit here 



2010 - © Pedro Lima Discrete Event Dynamic Systems Reinforcement Learning 

Markov Decision Process (MDP) 

Given: 
•  States x 
•  Actions u 
•  Transition probabilities p(x‘|u,x) 
•  Reward / expected payoff function r(x,u) 

Wanted: 
•  Policy π(x) that maximizes the future 

expected reward 
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Value Iteration 

1.  for all x do 

2.  endfor 

3.  repeat until convergence 
1.  for all x do 

2.  endfor 
4.  endrepeat 

€ 

ˆ V (x)← max
u

r(x,u) + γ ˆ V (x ')p(x ' | u,x)dx '
x '
∑

 

  
 

  

€ 

π (x) = argmax
u

r(x,u) + γ ˆ V (x ')p(x ' | u,x)dx '
x'
∑

 

  
 

  
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Value Iteration for Motion Planning 
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Value Function and Policy Iteration 

•  Often the optimal policy has been reached long before 
the value function has converged.  

•  Policy iteration calculates a new policy based on the 
current value function and then calculates a new value 
function based on this policy. 

•  This process often converges faster to the optimal 
policy. 
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Policy Iteration 
repeat 

1.  for each state x do 

2.  end for 
until policy_unchanged 

€ 

if max
u

p(x' | u,x) ˆ V (x')
x '
∑ > p(x ' |π (x), x) ˆ V (x ')

x'
∑

       π (x)← argmax
u

p(x ' | u,x) ˆ V (x ')
x'
∑

       policy_unchanged ← False

€ 

ˆ V ←  Value_Iteration (π , ˆ V ,P,R)
policy_unchanged← True

matrix of p(x’|u,x) 

matrix of r(u,x) 

deterministic 
policy 
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Reinforcement Learning 

 Dynamic Programming (DP) 
•  To determine V for |X| = N, a system of N non-linear equations must be solved. 
•  Well established mathematical method. 
•  A complete model of the environment is required (P and R known). 
•  Often faces the “curse of dimensionality” [Bellman, 1957] 

 Monte Carlo 
•  Similar to DP, but P and Rs unknown. 
•  P and R determined from the average of several trial-and-error trials.  
•  Unappropriate for a step-by-step incremental approximation of V*. 

 Temporal Differences 
•  Knowledge of P e R is not required 
•  Step-by-step incremental approximation of V. 
•  Mathematical analysis more complex. 
•  Q-learning 

Previous (DP) methods to solve MDPs assume full knowledge of p(x’|u,x) 

Alternative approaches, if we do not know p(x’|u,x) 
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Value Functions cont’d 

€ 

VT
π (x) = p(x ' | u,x) r(x,u) + γVT−1

* (x')[ ]
x '
∑

€ 

VT
∗ = max

π
VT

π (x)  ∀x

Bellman equation for V (discrete action and state spaces) 

€ 

QT
π (x,u) = p(x' | u,x) r(x,u) + γmax

u'
QT−1

π (x ',u')[ ]
x'
∑

€ 

QT
∗ = max

π
QT

π (x,u)  ∀x,u

Solutions are unique and equations are also met by the optimal functions 

€ 

Q∗(x,u) = E rt+1 + γV ∗(xt+1 = x') xt = x,ut = u{ }

€ 

V *(x) =max
u
E r(x,u) + γV *(x ',u')[ ]

€ 

 V *(x) = max
u
Q*(x,u)⇒ Q*(x,u) = E r(x,u) + γmax

u'
Q*(x ',u')[ ]
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•  Once V*  is known or learned, an apparently obvious solution for 
the RL problem would be: 

... but r(x,u) and δ(x,u) are unknown in the general case 

•  However, if we know or learn Q*, a different solution 
arises: 

€ 

Q∗(x,u) = E rt+1 + γV ∗(xt+1) xt = x,ut = u{ }
π∗(x) = argmax

u(x )
Q*(x,u)

In a stochastic environment, with unknown P and R, the 
agent’s own experience when interacting with its 
environment can be used to learn Q* and π*. 

Q-Learning 

€ 

π∗(x) = argmax
u(x )

E r(x,u) + γV ∗(δ(x,u)) | xt = x,ut = u{ },    δ(x,u) ≡ state transition function
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Initialize Q(x,u) random or arbitrarily 
Repeat forever (for each episode or trial): 

 Initialize x 
 Repeat (for each step n of the episode): 
  Choose action u of x 
  Execute action u and observe r and x’ 

 until x final. 
   

€ 

Qn+1(x,u)← Qn (x,u) +αn r(x,u) + γmax
u'
Qn (x',u') −Qn (x,u)[ ]

x← x';

α  constant allows adaptability to slow environment changes but it does not 
guarantee convergence – only possible with a temporal decay under given 
circumstances. 

Q-Learning - Algorithm 

€ 

Q(xt ,ut )← Q(xt ,ut ) +α r(xt+1,ut+1) + γmax
u
Q(xt+1,u) −Q(xt ,ut )[ ]stochastic approximation: 
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α = 1 
γ = 0.9


Q-Learning – an Example 
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Q-Learning – an Example 

r(x,u) 
V*(x) 
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Initial Situation 

After some  
learning steps 

Q-Learning – another Example 
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Should each pair (x,u) be visited an infinite number of times, 
with 

€ 

0 ≤αn <1

αn( i,x,u)
i=1

∞

∑ =∞

αn( i,x,u)
2

i=1

∞

∑ <∞

Q-Learning – Algorithm Convergence 

€ 

then  ∀x,u  Pr lim
n→∞

ˆ Q n (x,u) = Q(x,u)[ ] =1
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•  ε- greedy: at each step n, picks the best action so far 
with probability 1-ε , for small ε, but can also pick with 
probability ε , in an uniformly distributed random fashion, 
one of the other actions.  
•  softmax: at each step n, picks the action to be executed 
according to a Gibbs or Boltzmann distribution: 

€ 

π n (x,u) =
eQn (x,u) /τ

eQn (x,u' ) /τ

u'(x )
∑

Exploration: less promising actions, which may lead to good 
results, are tested. 
Exploitation: takes advantage of tested actions which are 
more promising, i.e., which have a larger Q(x,u). 

Action Selection: Exploration vs Exploitation 
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