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o Reinforcement Learning (RL)

—r
>
0q
a
S
H
——

action
x,€X
y state u, € Ux
reinforcement X, r., € R
h
xt+1
Environment ]‘

T may go to infinity, as long as ¥ =1

Rewards and state transitions after an action is executed are stochastic.
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Markov Decision Process (MDP)

A Markov Chain (which by definition satisfies the Markov Property) with transition
probabilities dependent on actions is known as Markov Decision Process (MDP)
Example: conditional joint probability of state and reward:
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Markov Decision Process (MDP)

Ex.: Recycling Robot robot has to be rescued because its battery

/ is depleted
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Value Functions

Policy= #a(xu).(xeXucU x) — 7t (x,u) Probability of carrying out action u in state x

we leave the . .
conditioning o 1n the DP formulation

State value for policy s: explicit here

costs in the DP formulation

V.i(x)= En{Rt|‘xt = x} {E v +k+l|x }

Expected value of starting in state s and following policy m thereafter.
NOTE: value of final state, if any, is always zero.

= X,U, = u}

Expected value of starting in state x, carrying out action u, and following policy m thereafter.

(state, action) value for policy :

Q:Z(.Xf,bt)=Eﬂ{Rt‘x XU, —I/l} E {E}/ Fovkn|X



Markov Decision Process (MDP)
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Given:

e States x

e Actions u

* Transition probabilities p(x ‘|u,x)
 Reward / expected payoff function r(x,u)

Wanted:
* Policy m(x) that maximizes the future
expected reward




Value lteration
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1. forall xdo
V(x) < 1

2. endfor

3. repeat until convergence
1. forallxdo

V(x)<max |r(xu)+ vy V(") p(x'l u,x)dx’

2. endfor
4. endrepeat

m(x) = argmax

u

r(x,u)+ v, V(x')p(x' u,x)dx']




I Value Iteration for Motion Planning

TTTTTTTTT
ssssssss
TECNICO




I Value Function and Policy Iteration
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* Often the optimal policy has been reached long before
the value function has converged.

* Policy iteration calculates a new policy based on the
current value function and then calculates a new value
function based on this policy.

* This process often converges faster to the optimal
policy.




I Policy Iteration
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deterministic matl ix of p(x’|u,x)
policy

matrix of r(u,x)
V < Value Iteratlo>@ /. P\R)

policy_unchanged <— True

repeat

1. for each state x do
if max ) p(x'l 0, x)V(x') > Y (' (x), %)V (x)
7t(x) < argmax Y p(x'l w,x)V (x')
policy_unchanged < False

2. end for
until policy unchanged
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Reinforcement Learning

Previous (DP) methods to solve MDPs assume full knowledge of p(x’|u,x)

Dynamic Programming (DP)

* To determine V for |X| =N, a system of N non-linear equations must be solved.
* Well established mathematical method.

* A complete model of the environment is required (P and R known).

* Often faces the “curse of dimensionality” [Bellman, 1957]

Alternative approaches, if we do not know p(x’|u,x)

Monte Carlo
 Similar to DP, but P and R, unknown.
e Pand R determined from the average of several trial-and-error trials.
* Unappropriate for a step-by-step incremental approximation of V',

Temporal Differences
* Knowledge of P e R is not required
* Step-by-step incremental approximation of V.
* Mathematical analysis more complex.
* O-learning



Value Functions cont’d
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Bellman equation for V (discrete action and state spaces)
*
Vi(x)= 2 p(x'l u,x)[r(x,u) + )/VT_l(x')]
X

Q7 (x,u) =Y p(x'l u,x)[r(x,u) + ymax Q}’_l(x',u')]

Solutions are unique and equations are also met by the optimal functions

& _ & _ ! _ _
O (x,u)= E{rt+1 +yV(x,,,=x )|xt = X,U, = u}
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* Once V' is known or learned, an apparently obvious solution for
the RL problem would be:

7 (x)=argmax E {r(x,u) + YV (0(x,u)) l x, = x,u, = u}, O(x,u) = state transition function
u(x)

... but r(x,u) and d(x,u) are unknown in the general case

* However, if we know or learn 0, a different solution
arises:

Q" (x.u) =E{r,, + V' (x,,,)

7" (x) =argmaxQ (x,u)
u(x)

X, =X,U = u}

In a stochastic environment, with unknown P and R, the

agent’s own experience when interacting with its
environment can be used to learn Q" and 7"
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O-Learning - Algorithm

stochastic approximation: Q(X,,Mt) < Q(X,,Mt) + a[r(xm,um) + Ymax Q(xm,u) - Q(xt,’/l,)]

Initialize Q(x,u) random or arbitrarily
Repeat forever (for each episode or trial):
Initialize x
Repeat (for each step n of the episode):
Choose action u of x
Execute action u and observe r and x’

0, . (x,u)< Q0 (x,u)+ ocn[r(x,u) +ymaxQ, (x',u')-Q, (x,u)]

X< Xx";
until x final.

o constant allows adaptability to slow environment changes but it does not

guarantee convergence — only possible with a temporal decay under given
circumstances.
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(-Learning — an Example
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(-Learning — an Example
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Initial Situation

After some
learning steps

(O-Learning — another Example
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O-Learning — Algorithm Convergence
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Should each pair (x,u) be visited an infinite number of times,
with

O<a, <1

E an(i,x,u) =X
i=1

0.0]

E(xz < ©
n(ix,u)

i=1

then Vx,u Pr[lim Qn (x,u) = Q(x,u)] =1

n —>0




Action Selection: Exploration vs Exploitation
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Exploration: less promising actions, which may lead to good
results, are tested.

Exploitation: takes advantage of tested actions which are
more promising, 1.€., which have a larger O(x,u).

* & greedy: at each step n, picks the best action so far
with probability 1-¢, for small g, but can also pick with
probability ¢, in an uniformly distributed random fashion,
one of the other actions.

* softmax: at each step n, picks the action to be executed
according to a Gibbs or Boltzmann distribution:

eQn (x.u)lT

E eQn(x,u‘)/r

u'(x)

7, (x,u)=
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