

DISCRETE EVENT DYNAMIC SYSTEMS

REINFORCEMENT LEARNING

Pedro Lima

pal@isr.ist.utl.pt

Instituto Superior Técnico (IST) Instituto de Sistemas e Robótica (ISR) Av.Rovisco Pais, 1 1049-001 Lisboa PORTUGAL

May.2002 revised December 2009

All the rights reserved

Reinforcement Learning (RL)

Markov Decision Process (MDP)

A Markov Chain (which by definition satisfies the Markov Property) with transition probabilities dependent on actions is known as Markov Decision Process (MDP) Example: conditional joint probability of state and reward:

$$\Pr\left\{x_{t+1} = x', r_{t+1} = r \middle| x_t, u_t, r_t, x_{t-1}, u_{t-1}, \dots, r_1, x_0, u_0\right\} = \Pr\left\{x_{t+1} = x', r_{t+1} = r \middle| x_t, u_t\right\}$$

Markov Decision Process (MDP)

Value Functions

Policy =
$$\pi(x,u): (x \in X, u \in U_X) \to \pi(x,u)$$
 Probability of carrying out action u in state x
State value for policy π :
 $V_{\infty}^{\pi}(x) = E_{\pi} \{ R_t | x_t = x \} = E_{\pi} \{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | x_t = x \}$

Expected value of starting in state s and following policy π thereafter. **NOTE: value of final state, if any, is always zero.**

(state, action) value for policy π :

$$Q_{\infty}^{\pi}(x,u) = \mathbb{E}_{\pi} \left\{ R_{t} | x_{t} = x, u_{t} = u \right\} = \mathbb{E}_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | x_{t} = x, u_{t} = u \right\}$$

Expected value of starting in state *x*, *carrying out action u*, and following policy π thereafter.

Markov Decision Process (MDP)

Given:

- States *x*
- Actions *u*
- Transition probabilities p(x'|u,x)
- Reward / expected payoff function r(x,u)

Wanted:

Policy π(x) that maximizes the future expected reward

Value Iteration

1. for all x do

$$\hat{V}(x) \leftarrow r_{\min}$$

2. endfor

- 3. repeat until convergence
 - 1. for all x do

$$\hat{V}(x) \leftarrow \max_{u} \left[r(x,u) + \gamma \sum_{x'} \hat{V}(x') p(x'|u,x) dx' \right]$$

- 2. endfor
- 4. endrepeat

$$\pi(x) = \underset{u}{\operatorname{argmax}} \left[r(x,u) + \gamma \sum_{x'} \hat{V}(x') p(x'|u,x) dx' \right]$$

Value Iteration for Motion Planning

- Often the optimal policy has been reached long before the value function has converged.
- Policy iteration calculates a new policy based on the current value function and then calculates a new value function based on this policy.
- This process often converges faster to the optimal policy.

Policy Iteration

1. for each state *x* do

if
$$\max_{u} \sum_{x'} p(x'|u,x) \hat{V}(x') > \sum_{x'} p(x'|\pi(x),x) \hat{V}(x')$$
$$\pi(x) \leftarrow \arg\max_{u} \sum_{x'} p(x'|u,x) \hat{V}(x')$$
$$policy_unchanged \leftarrow False$$

2. end for until policy_unchanged

Reinforcement Learning

Previous (DP) methods to solve MDPs assume full knowledge of p(x'|u,x)

Dynamic Programming (DP)

- To determine V for |X| = N, a system of N non-linear equations must be solved.
- Well established mathematical method.
- A complete model of the environment is required (P and R known).
- Often faces the "curse of dimensionality" [Bellman, 1957]

Alternative approaches, if we do not know p(x'|u,x)

Monte Carlo

- Similar to DP, but *P* and *R_s* unknown.
- P and R determined from the average of several trial-and-error trials.
- Unappropriate for a step-by-step incremental approximation of V*.

Temporal Differences

- Knowledge of *P e R* is not required
- Step-by-step incremental approximation of V.
- Mathematical analysis more complex.
- Q-learning

Value Functions cont'd

Bellman equation for V (discrete action and state spaces)

$$V_{T}^{\pi}(x) = \sum_{x'} p(x' | u, x) \Big[r(x, u) + \gamma V_{T-1}^{*}(x') \Big]$$
$$V_{T}^{*} = \max_{\pi} V_{T}^{\pi}(x) \ \forall_{x} \qquad V^{*}(x) = \max_{u} E \Big[r(x, u) + \gamma V^{*}(x', u') \Big]$$

$$Q_{T}^{\pi}(x,u) = \sum_{x'} p(x'|u,x) \Big[r(x,u) + \gamma \max_{u'} Q_{T-1}^{\pi}(x',u') \Big]$$
$$Q_{T}^{*} = \max_{\pi} Q_{T}^{\pi}(x,u) \quad \forall_{x,u} \quad V^{*}(x) = \max_{u} Q^{*}(x,u) \Rightarrow Q^{*}(x,u) = E \Big[r(x,u) + \gamma \max_{u'} Q^{*}(x',u') \Big]$$

Solutions are unique and equations are also met by the optimal functions

$$Q^*(x,u) = \mathbf{E}\left\{r_{t+1} + \gamma V^*(x_{t+1} = x') \middle| x_t = x, u_t = u\right\}$$

2010 - © Pedro Lima

• Once V^* is known or learned, an apparently obvious solution for the RL problem would be:

 $\pi^*(x) = \underset{u(x)}{\operatorname{argmax}} E\left\{ r(x,u) + \gamma V^*(\delta(x,u)) \mid x_t = x, u_t = u \right\}, \quad \delta(x,u) = \text{state transition function}$

... but r(x,u) and $\delta(x,u)$ are unknown in the general case

• However, if we know or learn Q^* , a different solution arises:

$$Q^{*}(x,u) = \mathbf{E} \Big\{ r_{t+1} + \gamma V^{*}(x_{t+1}) | x_{t} = x, u_{t} = u \Big\}$$

$$\pi^{*}(x) = \underset{u(x)}{\operatorname{arg\,max}} Q^{*}(x,u)$$

In a stochastic environment, with unknown *P* and *R*, the agent's own experience when interacting with its environment can be used to learn Q^* and π^* .

Q-Learning - Algorithm

stochastic approximation:

$$Q(x_{t}, u_{t}) \leftarrow Q(x_{t}, u_{t}) + \alpha \Big[r(x_{t+1}, u_{t+1}) + \gamma \max_{u} Q(x_{t+1}, u) - Q(x_{t}, u_{t}) \Big]$$

Initialize
$$Q(x, u)$$
 random or arbitrarily
Repeat forever (for each *episode* or *trial*):
Initialize x
Repeat (for each step n of the episode):
Choose action u of x
Execute action u and observe r and x'
 $Q_{n+1}(x,u) \leftarrow Q_n(x,u) + \alpha_n \Big[r(x,u) + \gamma \max_u Q_n(x',u') - Q_n(x,u) \Big]$
 $x \leftarrow x';$
until x final.

 α constant allows adaptability to slow environment changes but it does not guarantee convergence – only possible with a temporal decay under given circumstances.

Q-Learning – an Example

Q-Learning – an Example

 $Q_n^{\pi}(x,u)$

Q-Learning – another Example

Initial Situation

START	!	<u>_</u> !	
9.00	0.00	0.00	0.00
			-
			- - 0.00

After some learning steps

		Contraction in the local data in the	
	⋇		4
0.53 [¥]	0.00	000	0.73 9
 059	.	0.73	• 0.81
0.67	*	0.81	• • 0.90
0.73	0 .81	0.90	1.00
•_→	4_≁		GOAL
0.81	പറംപം.	lımo.	. 0.00 .

Should each pair (x, u) be visited an infinite number of times, with

$$0 \le \alpha_n < 1$$
$$\sum_{i=1}^{\infty} \alpha_{n(i,x,u)} = \infty$$
$$\sum_{i=1}^{\infty} \alpha_{n(i,x,u)}^2 < \infty$$

then
$$\forall x, u \; \Pr\left[\lim_{n \to \infty} \hat{Q}_n(x, u) = Q(x, u)\right] = 1$$

Action Selection: Exploration vs Exploitation

Exploration: less promising actions, which may lead to good results, are tested. *Exploitation:* takes advantage of tested actions which are more promising, i.e., which have a larger Q(x,u).

• ε - greedy: at each step *n*, picks the best action so far with probability $1-\varepsilon$, for small ε , but can also pick with probability ε , in an uniformly distributed random fashion, one of the other actions.

• *softmax:* at each step *n*, picks the action to be executed according to a Gibbs or Boltzmann distribution:

$$\pi_{n}(x,u) = \frac{e^{Q_{n}(x,u)/\tau}}{\sum_{u'(x)} e^{Q_{n}(x,u')/\tau}}$$

- K. Narendra, M. Thathatchar, *Learning Automata An Introduction*, Prentice Hall, 1989
- D. P. Bertsekas, J.N. Tsitsiklis, *Neurodynamic Programming*, Athena Scientific, 1996
- T. Mitchell, *Machine Learning*, McGraw-Hill, Computer Science Series, 1997
- R. Sutton, A. Barto, *Reinforcement Learning An Introduction*, The MIT Press, 1999