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Abstract

Artificial evolution of robot behavior is commonly conducted
in environments containing a single robot or multiple robots
that are all controlled by evolving behavioral logic. In this pa-
per, we take a novel approach and study how the presence of
preprogrammed robots affects the evolutionary process and
the solutions evolved. We evolve behavioral control that en-
ables robots to forage. The robots are situated in an environ-
ment that contains a nest and a number of prey. The robots
must either push or carry the prey to the nest. We analyze the
behaviors evolved in mixed setups in which one or more pre-
programmed robots are present. We compare these behaviors
to behaviors evolved in non-mixed setup in which no prepro-
grammed robots are present. The results show that although
the evolved robots do not use their capacity to communicate,
they do collaborate with the preprogrammed robots. We find
that the performance of some of the solutions evolved in the
mixed setup is higher than the performance of homogeneous
groups of robots.

Introduction
In this paper, we take a novel approach to the evolution of
behavioral control for robots. We report on experiments in
which we evolve behaviors for robots that share the envi-
ronment with preprogrammed robots. The preprogrammed
robots are (aside from their behavior) indistinguishable from
the evolving robots. Mixing evolving robots with prepro-
grammed robots is interesting for several reasons: from an
engineering perspective, artificial evolution may be used
to fill in the gaps between partially known (easily prepro-
grammable) solutions to complex tasks and/or to optimize
the performance of a robot collective. From an evolutionary
perspective, it is interesting to evaluate how the presence of
robots programmed with a solution influences the evolution-
ary process and the solutions evolved – such as determining
whether the evolving robots adopt the preprogrammed so-
lution and/or whether they learn to communicate with the
preprogrammed robots.

We use a multirobot foraging task for our experiments.
A robot can push prey or it can pick up and carry a prey.
If a prey-carrying robot collides with another robot, it loses

the prey. Thus, the robots must avoid collisions when carry-
ing prey. The preprogrammed robots have the same sensory
and actuation capabilities as the evolving robots. Each robot
can control the color of its body. Whenever carrying prey,
a preprogrammed robot sets its body color to red. When
not carrying a prey, a preprogrammed robot sets its body
color to green. Thus, nearby robots can see when a prepro-
grammed robot is carrying a prey or not and give way in
order to avoid collisions. Since evolving robots have control
over their body color too, they have the potential to commu-
nicate to nearby teammates in the same way as the prepro-
grammed robots do.

In this study, we analyze and discuss the fitness tra-
jectories and the solutions obtained in evolutionary runs
where one preprogrammed robot and two evolving robots
are present. We discuss if and how the robots collaborate
and communicate. We setup an experiment in which we take
an incremental approach to evolution in order to increase the
rate of solutions with a high average fitness. Finally, we re-
port on experiments in which three preprogrammed robots
and six evolving robots are present during evolution.

The contribution of this paper is three-fold: i) We demon-
strate that evolving robots can learn to collaborate with pre-
programmed robots. ii) We demonstrate how a basic incre-
mental approach to evolution can increase the rate at which
collaborative solutions are evolved when preprogrammed
robots are present. iii) We show that heterogeneous groups
of preprogrammed robots and evolved robots can achieve
a better performance than homogeneous groups of prepro-
grammed robots.

Related work
Interest in evolutionary robotics started in the early
90s (Cliff et al., 1993; Nolfi and Floreano, 2000). Ini-
tially, focus was on evolving a controller for a single robot
to perform relatively simple tasks such as obstacle avoid-
ance, exploration, and navigation (see for instance Nolfi
et al. (1994)). Recently, there have been several studies
on the evolution of controllers for multirobot systems—
particularly those systems in which control is decentralized



and in which individual robots have limited sensory capabil-
ities. In swarm robotics research (Şahin, 2005), it has been
demonstrated how the application of evolutionary robotics
can overcome the fundamental design problem of deriving
microscopic rules for the individuals such that the desired
macroscopic behavior emerges. When artificial evolution is
applied to swarms of robots, the designer can specify a fit-
ness function that scores the collective behavior and let evo-
lution search the space of individual behaviors. Using this
approach, Dorigo et al. (2004) demonstrated how a group of
homogeneous robots could be evolved to aggregate and to
display coordinated-motion when physically connected to
each other. In another study, Trianni et al. (2006) demon-
strated how a group of evolved homogeneous robots could
cooperatively avoid holes.

Evolutionary robotics has been applied to heterogeneous
multirobot systems: Tuci et al. (2008) evolved homogeneous
controllers for heterogeneous robots. Nolfi and Floreano
(1998) co-evolved a predator agent and a prey agent. The
fitnesses of the two types of agents were co-dependent al-
though each had a different genome.

It has also been demonstrated that heterogeneity can arise
in a homogeneous system (identical agents with identical
neuro-controllers). Quinn et al. (2003) evolved controllers
for a team of three robots with minimal sensory capabilities.
The robots’ task was to aggregate and then travel a distance
of one meter as a group. Interestingly, the team members
dynamically adopted roles and moved in a line formation.
The robot that would adopt the role as the leader, moved
backward in order to perceive the middle robot. The middle
and rear robot, on the other hand, moved forward. Ampatzis
et al. (2009) evolved homogeneous controllers for two real
robots that allowed them to self-assemble, that is, physically
connect to one another. However, the robots first had to allo-
cate roles so that one would be the gripping robot, while the
other would be the gripped robot. The roles were allocated
during what can be described as a dance: the robots would
circle each other while performing oscillatory movements
until one would approach the other to perform the grip.

In this study, we use a novel evolutionary setup. We ex-
plore the effect of the presence of preprogrammed robots on
the evolved behaviors. We find that the heterogeneity in the
group composition leads to role allocation and collaboration.

Robot Model and The Task
Below, we start by presenting the robot model that we use.
We go on to describe the foraging task and the environment.
Finally, we briefly discuss the software simulator in which
we conduct our experiments.

The Robot Model
We use a differential drive, cylindrical robot model. Each
robot has a diameter of 10 cm. The set of actuators is com-
posed of two wheels, a prey carry mechanism and a change-

able body color. The two wheels can be controlled inde-
pendently allowing a robot to move and to turn. Gaussian
noise with standard deviation of 5% is added independently
to the left wheel speed and to the right wheel speed set by the
robot controller in order to simulate issues such as slippage,
slightly uneven ground and so forth. The prey carry mecha-
nism enables a robot to pick up a prey within a distance of
5 cm. The body color actuator has three possible settings:
green, red, and black. Whenever green or red, a robot can be
detected by other nearby robots, while when black, the robot
is invisible to other robots.

The robots are equipped with several sensors that allow
them to perceive i) whether they are currently carrying a
prey or not (prey-carried sensor), ii) whether they are in-
side the nest or not (in-nest sensor), and iii) the presence of
nearby objects: eight nest sensors, eight prey sensors, eight
red robot sensors, and eight green robot sensors.

Aside from the prey-carried sensor and the in-nest sensor,
all the sensors operate in a similar way, but register different
types of objects. The nest sensors only register the nest. The
prey sensors only register prey. The green robot sensors only
register green robots. The red robot sensors only register red
robots. The sensors are distributed evenly around the robot’s
body.

A sensor only registers objects within a certain distance
and angle with respect to its orientation. All sensors have
an opening angle of 135 ◦ and a range of 1 meter, except for
the nest sensors which have a range of 10 meters. If there
are no sources within sensor’s range and opening angle, its
reading is 0. Otherwise, the reading is based on distance to
the closest source (c) according to the following equation:

s =
range− dc
range

, (1)

where range is the sensor’s detection range and dc is the
distance between the closest source c and the sensor.

The Foraging Task

Our experiments are conducted in the arena shown in Fig-
ure 1. The robots must search for prey and transport them
to the circular nest area with a diameter of 0.50 m centered
in the arena. The nest can be perceived by the robots us-
ing their nest sensors. The prey are scattered in the foraging
area around the nest. The foraging area is circular and has
a diameter of 4 meters. Whenever a prey is dropped in the
nest, it is immediately redeployed to a random location in
the foraging area. 13 prey are present in the environment
which results in a prey density of 1 prey/m2. When a prey-
carrying robot collides with another robot, it loses the prey
that it was carrying. The lost prey is randomly redeployed in
the environment in order to keep the prey density constant.
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Figure 1: Foraging arena.

Simulation Environment
We have implemented the robot model and constructed
the environment discussed above in JBotEvolver (see
http://sourceforge.net/projects/jbotevolver). We have imple-
mented our own neuro-evolution framework that allows for
distributed, fault tolerant fitness evaluation.

Controller Architecture
Below, we present the control logic for the preprogrammed
robot and the artificial neural network used for the evolving
robots.

Preprogrammed Robots
A finite state machine representation of the control program
for the preprogrammed robots is shown in Figure 2. A pre-
programmed robot starts of in the “Search” state in which
it locates and moves towards the nearest prey. If the prepro-
grammed robot detects the presence of a red robot in its way,
it assumes that the red robot is carrying a prey and therefore
turns around (180 ◦) and moves out of the way (state “Make
way”). When a prey is encountered, the preprogrammed
robot attempts to pick it up (state “Pick up”). If the prey is
picked up successfully, the preprogrammed robot becomes
red and starts moving towards the nest (state “Transport”).
When the nest is reached, the preprogrammed robot drops
the prey (state “Drop”) and returns to the “Search” state. If
the preprogrammed fails to pick up a prey or if it loses the
prey (due to a collision), the preprogrammed robot returns
to the “Search” state.

In the finite state machine in Figure 2, we have colored the
states with the color that a preprogrammed robot has when
in the respective states. Whenever a prey is carried, the pre-
programmed robot is red. Otherwise, the preprogrammed
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Figure 2: Preprogrammed controller.

robot is green. Preprogrammed robots are never black.

The Evolving Robots
The evolving robots are controlled by a continuous time re-
current neural network (Beer and Gallagher, 1992). The net-
work consists of three layers of neurons: an input layer with
34 neurons, a hidden layer with 5 neurons, and an output
layer with 4 neurons. The input neurons Ii are reactive. The
prey-inputs (I1 to I8), the nest-inputs (I9 to I16), the green-
inputs (I17 to I24), and the red-inputs (I25 to I32) are all set
based on sensor readings from the respective sensors. The
prey-carried-input (I33) is 1 if a prey is currently carried and
0 otherwise. The in-nest-input (I34) is 1 if the robot is in the
nest and 0 otherwise. The neurons in the hidden layer are
fully connected and governed by the following equation:

τi
dHi

dt
= −Hi +

34∑
j=1

ωjiIi +

5∑
k=1

ωkiZ(Hk + βk), (2)

where τi is the decay constant, Hi is the neuron’s state, ωji

the strength of the synaptic connection from neuron j to neu-
ron i, β the bias terms, and Z(x) = (1 + e−x)−1 is the
sigmoid function. τ , β, and ωji are genetically controlled
network parameters. The possible ranges of these parame-
ters are: τ ∈ [0.1, 32], β ∈ [−10, 10] and ωji ∈ [−10, 10].
Cell potentials are set to 0 when the network is initialized
and circuits are integrated using the forward Euler method
with an integration step-size of 0.2.

The output layer is fully connected to the neurons in the
hidden layer. The activation of the output neurons is given
by the following equation:

Oi =

4∑
j=1

ωjiZ(yj + βj); (3)

The first two outputs O1 and O2 control the speed of the left
and the right wheel, respectively. Their output is linearly
mapped to speeds in the range [−50 cm/s, 50 cm/s]. The
third output O3 is mapped to the prey carrying mechanism:
if O3 > 0.5, the robot attempts to pick up the closest prey or
to hold a prey if one is already carried. IfO3 ≤ 0.5, any prey



carried will be dropped. The fourth output O4, controls the
color of the robot. For values in the range [0, 0.33] the robot
becomes invisible to other robots, for values in the range
]0.33, 0.66[, the robot becomes green, and for values in the
range [0.66, 1.00], the robot becomes red.

Evolutionary Algorithm
We use a simple generational evolutionary algo-
rithm (Schwefel, 1995; Goldberg, 1989). Each generation
consists of 100 genomes. Each genome consists of a vector
of 228 real valued numbers. These values encode the
weights of the synaptic connections between neurons, the
bias terms and the decay constants for a neural network
with the topology described in the previous section. After
sampling the fitness of each genome in a generation, the 5
best genomes are retained and the rest are discarded. These
5 genomes are the parents of the subsequent generation.
From each parent an equal number of children (19) are
created and the parents are copied to the new generation.
The genotype for a child is obtained adding a random
Gaussian offset to each real-valued gene with a probability
of 15%.

We compute the fitness at the group-level. Thus, in the
experiments where a preprogrammed robot is present, its
behavior and its performance contribute to the fitness of the
group in the same way as the behavior of the evolving robots.
The fitness function F (i) is given below:

F (i) = Pi +

time-steps∑
s=1

fi,s (4)

where i is the genome being evaluated, Pi is the number of
prey foraged and fi,s is computed at every time-step, s. The
term fi,s is computed in the following way:

fi,s = 10−3cs + 10−4ds (5)

where cs is the number of robots carrying a prey at time-
step s and ds is a prey distance reward that depends on the
distance between each prey and the nest at time-step s. The
prey distance reward is computed using the formula:

ds =
1

n◦ prey

n◦ prey∑
j=1

1.75 m− dist(pj , nest)
1.75m

. (6)

We sample the fitness of each genome five times and se-
lection is based on the average fitness obtained.

Results and Discussion
We initially experimented with two different evolutionary
setups: a mixed setup in which two evolving robots and one
preprogrammed robot were present, and a non-mixed setup
in which three evolving robots were present. In each setup,

we performed 30 evolutionary runs with different initial ran-
dom seeds for 2000 generations each. Each generation con-
sisted of 100 genomes. The fitness of each genome was sam-
pled in five trials of five minutes of virtual time (3000 control
steps) each.

Below, we provide an overview of the results obtained.
We then describe the different types of behaviors evolved in
the non-mixed setup and the mixed, respectively. We go on
to discuss cooperation and communication. We then exper-
iment with incremental evolution in order to speed up evo-
lutionary learning. Finally, we experiment with setups in
which nine robots are present.

Fitness Trajectories
The plot in Figure 3 summarizes the results of the evolu-
tions runs conducted in the mixed setup and in the non-mixed
setup, respectively. The figure shows the average fitness of
the best genome in each generation in all the 30 runs con-
ducted in the mixed setup and in the non-mixed setup, re-
spectively. We have included the fitness trajectory for the
single highest scoring mixed run and for the single highest
scoring non-mixed run. The horizontal line at y = 119.9,
shows the average fitness obtained by three preprogrammed
robots alone in the environment.
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Figure 3: The fitness scores of the best and the average the
best genomes in all the runs in the mixed setup and in the
non-mixed setup. The horizontal line at y = 119.9 indicates
the average performance of a team of three preprogrammed
robots.

The results in Figure 3 show that the fitness of the best
genome in the mixed setup is on average higher than the best
genomes in the non-mixed setup. The higher fitness in the
beginning of an evolutionary run in the mixed setup is ex-
plained by the presence of the preprogrammed robot. The
preprogrammed robot finds and transports prey to the nest
from the onset of an evolutionary run whereas the evolving
robots first have to learn to forage.



When a preprogrammed robot is alone in the environ-
ment, it obtains an average fitness of 60.0. When three pre-
programmed robots are present in the environment, they in-
terfere with one another. Furthermore, as a trial progresses,
prey tend to be distributed further from the nest since more
preprogrammed robots tend to forage the prey close to the
nest faster. Interference and the increased prey distance both
have negative impacts on the fitness score. Three prepro-
grammed robots therefore obtain a fitness (119.9) that is less
than three times what a single preprogrammed robot obtains
on average (60.0). In the beginning of an evolution run when
the evolving robots are not yet foraging, the preprogrammed
robot can often forage undisturbed in the mixed setup. The
average fitness in the beginning of an evolutionary run in the
mixed setup is therefore close to the fitness obtained by a
single preprogrammed robot operating alone.

Behavioral Analysis
In this section, we analyze the evolved robots’ behaviors.
A summary of the post evaluation scores for the 30 evolu-
tionary runs conducted in the non-mixed setup and the 30
evolutionary runs conducted in the mixed setup can be seen
in Figure 4. In the plot, we have grouped the evolutionary
runs according to their foraging behaviors and fitness.

Performance of

robots

3 preprogrammed

A B
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C

0 20 40 60 80 100 120 140

Mixed and non-mixed fitness summary

Non-mixed

Mixed

Figure 4: Summary of the post evaluation of the best behav-
ior evolved in each evolutionary run in the non-mixed setup
and in the mixed setup. We have divided the evolved solu-
tions into groups A to E based on fitness and behavior.

In the non-mixed evolutionary runs, we observed behav-
iors that can be divided into three groups: A, B and C. All
the solutions in all groups successfully forage prey, however,
they forage in different ways. The behaviors group A all rely
on pushing prey towards the nest. An example of the push-
ing behavior can be seen in Figure 5. The pushing behavior
requires the robots to move in small circular patterns to con-
stantly get behind the prey and the behavior is thus not very
efficient.

The behaviors in group B rely on continually picking up
and dropping prey. When a prey is picked up, it is often
dropped after a single or a few control cycles, only to be
picked up again immediately. One of the behaviors in group
B is particularly interesting: often the robots transport two or

Figure 5: An example of a behavior in group A evolved in
the non-mixed setup (two screenshots from the same exper-
iment). The robots forage by pushing prey towards the nest.
As can be seen on the figure, this behavior results in a lot of
small circular movements and is thus not very effective.

more prey at a time by repeatedly picking up, dropping dif-
ferent prey. An example can be seen in Figure 6. Transport-
ing multiple prey, however, comes at a cost: since a robot
can only carry one prey at a time, it has to constantly make
small circular movements to pick up the prey left behind.
This means that the average fitness of the behavior in group
B is lower than the average fitness of the behaviors in the last
group of behaviors evolved in the non-mixed setup, group C.

In group C, the robots pickup prey and transport the prey
back to the nest. The differences in fitness between the dif-
ferent solutions are due to a number of factors: how the
robots search for prey, how efficient they are in moving to
a prey once they have located the prey, and if and how much
they interfere with one another. Some robots move away
from the nest in a straight line to search for prey, some robots
circle away from the nest, while in other cases, the robots
move in more irregular patterns. Most of the robots move
only forward or only backward, however, for some behav-
iors, the robots change direction once a prey is picked up.
Changing direction is especially efficient for those robots
that move directly from the nest to a prey: when a prey
is picked up, they change direction (without having to turn
around) to transport the prey back to the nest. Examples of
some of the behaviors in group C can be seen in Figure 7.

We have divided the behaviors evolved in the mixed setup
into two groups: D and E (see Figure 4). Group D contains
the lowest scoring behaviors evolved in the mixed setup. The
evolving robots in this group do not contribute to the forag-
ing, but instead move away from the nest in order to let the
preprogrammed robot forage undisturbed. In some cases,
the evolving robots move beyond the foraging area, in some
cases the evolved robots remain in the foraging area, and
sometimes they even pickup prey.1 However, in none of the
cases do the evolved robots attempt to move prey closer to

1Carrying prey is rewarded in the fitness function (see the “Evo-
lutionary Algorithm” section).



Figure 6: An example of the behavior in group B evolved
in the non-mixed setup (two screenshots from the same ex-
periment). By continually picking up and dropping prey, the
robots are able to transport multiple prey towards the nest at
the same time.

the nest.
The evolved solutions in group E all obtained an average

post evaluation fitness of more than 70. In all of these solu-
tions, the evolved robots actively forage. The difference in
performance is due to the way in which the evolved robots
search for prey: some of the evolved robots move directly to-
wards prey close to the nest while others circle the foraging
area and forage mainly prey located far away from the nest
(thereby leaving the prey close to the nest for the prepro-
grammed robot to pickup). This type of behavior indicates
that the evolved robots collaborate with the preprogrammed
robot.

Collaboration To examine the level of collaboration (if
any) between the evolving and preprogrammed robots, we
analyzed if there is some evidence of division of labor: we
recorded the number of prey foraged by evolved robots and
the number of prey foraged by the preprogrammed robot in
the mixed setup. We ran 100 trials with each of the high-
est scoring genomes from the 30 evolutions conducted in
the mixed setup. For 16 of the 30 genomes, the prepro-
grammed robot forages significantly more prey when the
evolved robots are present compared to when it is the only
robot in the environment (Mann-Whitney, p < 0.05).

When the preprogrammed robot is alone, it forages 57.9
prey on average during a five minute trial, while when three
preprogrammed robots are present, each forages on aver-
age 38.7 prey. When evolved robots are present, the pre-
programmed robot forages an average of 75.3 prey per trial
for the best solution in the mixed setup. These results in-
dicate that the evolved robots have learned to collaborate
with the preprogrammed robot. For the best solution in the
mixed setup, the average distance (over 100 five minute tri-
als) of the preprogrammed robot from the center of the nest
was 0.54 m, while the average distance of the each of the
two evolved robots from the center of the nest was 1.06 m.

The evolving robots forage prey that are located far from
the nest and leave the prey close to (but not always in) the
nest. The preprogrammed robot (which prioritizes prey lo-
cated close to the nest) then transports the prey left by the
evolving robots the rest of the way to the nest. The division
of labor is efficient because the evolved robots in general
operate far from the nest, while the preprogrammed robot
operates close to and in the nest – collisions are therefore
avoided.

Communication The robots in both the non-mixed and
the mixed setups have the capacity to change their body
color and to detect the body color of nearby teammates.
This capacity potentially allows the robots to communicate.
However, in 22 out of 30 evolutionary runs in the non-mixed
setup, the evolved robots remain mainly black (invisible to
one another) during experimental trials. In the remaining 8
runs, the robots either remain mainly red (5) or constantly
change color (3) during a trial.

In order to determine if communication plays a major role
in the evolved solutions, we ran three sets of experiments in
the non-mixed setup, where we fixed the body color of all
the robots to black, red and green in 100 trials each. The
differences in terms of performance when the body color is
fixed and when the neural network has the control over the
body color were minimal. The average performance differ-
ence was only 0.5%, with the largest drop being 3.7% and
the largest increase in performance being 5.4%.

In a similar set of experiments in the mixed setup, we fixed
the color of the preprogrammed robot and the two evolving
robots. Fixing the body color to red results in an average per-
formance drop of 22.6%. This drop is explained by the fact
that the preprogrammed robot attempts to make way each
time it encounters a red robot. The average difference in
performance when the body color is fixed to either black or
green and when the controllers have control over the body
color was 0.6% with the largest difference being 3.2%. This
indicates that the performance of the evolved robots does not
depend on their capacity to change their body color.

It is surprising that the robots did not evolve to exploit
their capacity to change color in the mixed setup to commu-
nicate with the preprogrammed robot (which already com-
municates its internal state by changing color depending on
whether it is carrying a prey or not). A probable explanation
for the lack of communication is that the robots can forage
efficiently in the mixed setup without communicating. As
discussed in the previous section, the evolved robots do in
most cases learn to collaborate with preprogrammed robot
by transporting prey located far from the nest closer to the
nest for the preprogrammed transport the rest of the way to
the nest. The robots operate in different regions of the envi-
ronment and they do therefore not need to communicate in
order coordinate their actions or to avoid collisions.
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Figure 7: Examples of the behaviors from group C evolved in the non-mixed setup (screenshots from different experiments
with different controllers). (a) the robots move directly to prey or start circling the foraging area in case no prey is found. (b)
the robots have set their body color to red and turn around once a prey is picked up. (c) the robots move to prey in arcs. (d)
robots pick up and carry prey, but they often interfere with one another.

Incremental Evolution in the mixed setup Of the 30 evo-
lutionary runs conducted in the mixed setup, the 12 runs in
group D did not evolve foraging behaviors, but instead, the
evolved robots move away from the nest in order to avoid
interfering with the preprogrammed robot. This solution is a
local maximum in the fitness landscape because the prepro-
grammed robot is an efficient forager from the onset of the
evolutionary process and any interference – a lost prey due
to a collision for instance – would result in a lower collective
fitness. We set up a series of experiment in which we tried
to increase evolutionary pressure towards solutions in which
the evolving robots participate in the foraging by initially
reducing the speed of the preprogrammed robot. When the
preprogrammed robot moves at a reduced speed, it forages
less than when moving at full speed. Evolutionary pressure
towards solutions in which the evolving robots actively for-
age is thus increased because any contribution made by the
evolving robots proportionally is higher with respect to the
fitness obtained by the team than when the preprogrammed
robot is moving at full speed. In a new incremental mixed
setup the preprogrammed robot initially moved at 50% of
the full speed. Once a collective fitness of 50 was reached
by the highest scoring individual in a generation, the speed
of the preprogrammed robot was increased to full speed.

We performed 30 evolutionary runs in the incremental
mixed setup. Out of the 30 evolutionary runs, only 6 pro-
duced non-foraging behaviors compared to 12 in the nor-
mal (non-incremental) mixed setup. The average of the post
evaluation fitness of the best genome from each run in the
incremental mixed was 90.0 compared to 84.7 in the mixed
setup. For 24 of the 30 genomes, the preprogrammed robot
forages significantly more prey when the evolved robots are
present compared to when it is the only robot in the environ-
ment (Mann-Whitney, p < 0.05). Hence, in the incremental
mixed setup, the evolving robots learn more frequently to
collaborate with the preprogrammed robot than in the non-

incremental mixed setup. Visual inspection of the successful
solutions evolved in the incremental mixed setup confirmed
that they are similar to the successful solutions evolved in
the non-incremental mixed setup (that is, the behaviors in
group E in Figure 4).

Performance in larger mixed groups In order to deter-
mine if and how the mixture of preprogrammed and evolved
could benefit larger groups of robots, we conducted experi-
ments in which nine robots were present in the environment:
three preprogrammed robots and six evolving robots. We
conducted the evolution in the same environment and with
the same fitness function as used above. We used an incre-
mental setup with four increments:

1st increment: Only the six evolving robots were present
[Fitness limit: 20].

2nd increment: The three preprogrammed robots were in-
troduced but moving at 25% of full speed [Fitness limit:
100].

3rd increment: The speed of the three preprogrammed
robots was increased to 50% of full speed [Fitness limit:
200].

4th increment: The speed of the three preprogrammed
robots was increased to full speed.

We conducted 30 evolutionary runs till the 2000th gen-
eration. The average fitness obtained in a post evaluation
(100 samples) of the best chromosome from each run was
358. The average fitness score obtained in 100 samples with
a homogeneous group of nine preprogrammed robots was
363. The average post evaluation fitness obtained by the
larger mixed groups was thus slightly lower than the fitness
obtained by nine preprogrammed robots. However, 12 out
of the 30 evolutionary runs produced solutions for mixed
groups that obtained a higher post evaluation fitness than
nine preprogrammed robots (Mann-Whitney, p < 0.02).



The average post evaluation fitness of the best mixed group
was 403, thus well above the score obtained by a homoge-
neous group of nine preprogrammed robots.

We also observed collaborated between the six evolved
robots and the three preprogrammed robots just like in our
previous experiments. For the best solution evolved, the av-
erage distance from the center of the nest to each of the pre-
programmed robots was 0.58 m, whereas the average dis-
tance to each of the evolved robots was 1.23 m.

Conclusions
In this paper, we evaluated how the presence of prepro-
grammed robots affects the evolutionary process and the be-
haviors evolved in a multirobot foraging task. We conducted
evolutions in which a preprogrammed robot was present
and evolutions in which it was absent. Without the prepro-
grammed robot, three different kinds of foraging behaviors
were evolved: one in which robots push prey to the nest, one
in which robots continually pickup and drop prey, and one
(much more efficient) in which robots pickup and carry prey
to the nest.

In the setup in which the preprogrammed robot was
present, we only observed the pickup and carry behavior. To
increase the rate at which foraging solutions are evolved, we
conducted a series of incremental evolution experiments in
which the preprogrammed robot initially moved at a lower
speed and only after the evolved robots had learned to for-
age did the preprogrammed robot start to move at normal
speed. We applied a similar incremental approach for a
mixed group of nine robots. We found that when prepro-
grammed robots were present, the highest performing evolv-
ing robots had learned to collaborate with them: the evolv-
ing robots targeted prey far from the nest and dropped them
close to the nest for the preprogrammed robots to pickup and
deploy in the nest. As a result, the robots occupied different
regions of the environment and avoided collisions.

The results demonstrate that robots can be evolved to col-
laborate with preprogrammed robots. The evolving robots
did not adopt neither the preprogrammed solution nor the
preprogrammed communication protocol, but instead as-
sumed different roles and collaborated with the prepro-
grammed robots.

In this study, the preprogrammed robots had a complete
solution: they were able to forage on their own. In ongoing
work, we are evolving robots to fill in the behavioral gaps
between robots preprogrammed with different partial solu-
tions to complex tasks.
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