
1

Prof. Dr.-Ing. Gerhard K. Kraetzschmar

University of Applied Sciences Bonn-Rhein-Sieg
Computer Science Department
Autonomous Systems

Software Engineering Trends in Robotics

Use Case Scenario
Clear Up The Kitchen Table

•  Indoor
•  Rooms with furniture
•  Mobility
•  Task-relevant objects
•  Object manipulation
•  Spatial knowledge
•  Failure-safe operation
•  Fault tolerance

•  Possibly also
•  Several rooms
•  Doors
•  Moving people
•  Moving objects

2

Use Case Hardware Platform

GUI

TCP/IP USB 2.0

CAN

Database Storage

analog

IEEE 1394

RS232/422

TCP/IP

Arm

Gripper

Force-Torque Sensors

Manipulation Unit

Vision Unit

CAN

Cameras IEEE 1394

PTU

CAN

RS422

Mobile Base Unit

Windows

User Interaction Unit

VxWorks

Linux

Linux

CAN

MC

Use Case Hardware Options
TCP/IP USB 2.0

CAN

analog

IEEE 1394

RS232/422

Force-Torque Sensors

GUI

Database Storage

servos

TCP/IP

Speech In

Arm

Gripper

Manipulation Unit

Vision Unit

CAN

Cameras IEEE 1394

PTU

CAN

CAN

Speech Out

RS422

Mobile Base Unit

Windows

User Interaction Unit

VxWorks

Linux

Linux

CAN

MC

MC

MC

MC

MC

MC

1 KHz

3

Characteristics of the Robotics Domain

•  Extremely heterogeneous hardware
•  Inherently concurrent
•  Inherently distributed
•  Device dependent
•  Stochastic properties of physical world
•  Real-time constrained
•  Resource constrained

•  Currently not adequately supported by available
•  robot software architectures
•  robot software development environments

•  Inadequate evaluation and assessment
•  Mere demonstration character

Software for Autonomous Mobile Robots:
Heterogeneity of Hardware

•  Robots, robot teams, sensor networks are distributed system
composed of very heterogeneous hardware
•  sensors:

•  bumpers, IRs, sonars, laser scanners, accelrometers, gyros, GPS,
microphones, cameras, omnicams, stereoheads

•  actuators:
•  DC motors, steppers, servos, kickers, pan-tilts, arms, hands, legs,

HDoF bodies, polymorphic systems
•  computational entities:

•  microcontrollers, embedded PCs, PDAs, notebooks, remote PCs
•  communication devices, mechanisms, and protocols:

•  I2C, serial, CAN, USB, UDP, TCP/IP, Firewire
•  No plug and play!
•  No configuration management!
•  Heterogeneity grows over system lifetime!
•  By-and-large, hardware and software maintenance

for large robot teams and large embedded sensor networks
must be considered unsolved

4

Software for Autonomous Mobile Robots:
Distribution and Realtime Constraints

•  Hardware and communication environment forces to deal with
•  Distributed programming concepts

•  Load balancing, multi-threading, concurrency, synchronization,
signalling, event-driven activation, event ordering, ...

•  Communication protocols
•  Latency, timeouts, partial system failures, ...

•  GUI event loops

•  Responsiveness to sensor- and actuator-initiated signals
•  Requires realtime or pseudo-realtime computing
•  Noisy sensors and actuators
•  Location dependency
•  Need for probabilistic models
•  Need for elaborate world models

Software for Autonomous Mobile Robots:
Diversity of Software

•  Roboticists use a wide diversity of often
computationally intensive methods
•  Control theory
•  Computational geometry
•  Neural networks
•  Genetic algorithms and evolutionary methods
•  Reinforcement learning
•  Vision processing routines
•  AI planning techniques
•  Behavior systems
•  Probabilistic reasoning
•  Optimization techniques
•  Search techniques

•  All these problems make software development for mobile robots very complex
and error-prone

5

Programming Mobile Robots

•  Responsiveness to sensor- and actuator-initiated signals
requires multithreaded programming

•  Realtime or pseudo-realtime computing
•  Distribution, concurrency, reactivity, usability
•  Communication, multi-threading, synchronization,

event-driven activation, and GUI event loops
•  Partial failures, latency, load balancing, signalling,

event ordering, ...

•  These problems
•  make software development in robotics complex and error-prone
•  hinder research
•  limit exchange of scientific results
•  jeopardize commercialization

What Makes The Problem Hard?

•  No common architectures

•  No common methods

•  Hardware-dependency of developed code

•  Missing abstractions

•  No reusable components

6

A First Conclusion

•  Any system,
which takes away or limits the programmer's freedom
to implement her architectural or computational ideas,
is bound to fail.

•  Any restrictions or commitments imposed by a system
must be significantly outweighed by advantages gained.

Use Case Open Questions

•  Mobile manipulation: integration of mobility and robot manipulation

•  Challenge is the integration of multiple functionalities from both areas and
finding solutions to new problems

•  Use of pre-developed components, like arm, hand, base, etc.,
poses possibly hard integration issues

•  In particular:
•  Different operating systems
•  Different communication protocols
•  Different inherent internal cycle times in functional modules

•  Another hard problem: Detecting and handling failure situations

7

What Does Miro Offer?

•  Miro Device Layer
•  Clean, coherent object-oriented class interfaces
•  Available already for major parts

•  Miro Communication and Configuration Layer
•  Various often-used communication patterns
•  Group communication via notify-multicast protocol
•  Extended XML-based configuration facilities

•  Miro Service Layer
•  Unified network-transparent access to object services
•  Built-in facilities for data acquisition and logging

•  Miro Framework Layer
•  Fine-grained control over complete visual processing via VIP
•  Flexible hierarchical reactive control via BAP
•  Particle filter-based self-localization

Example: Kinematics and Motion Interfaces

Different kinematics:
•  Synchro drive
•  Differential drive
•  Ackermann steering

Different coverage
of velocity space

8

Abstract Actuator APIs Example:
Drive Motion Services

•  Base abstract interface:
target velocity,
velocity bounds

•  Specialized abstract interfaces:
left/right wheel velocities,
translation, rotation,
wheel speed

•  Customized interfaces:
motor power,
torques

FritzMotion

…

SparrowMotion

+setRLPower()

Pioneer2Motion

…

B21Motion

+setTorque()

SynchroDriveMotion

+setTranslationVelocity()
+setRotationVelocity()

AckermannDriveMotion

+setTranslationVelocity()
+setSteeringAngle()

OmniDriveMotion

+getMinMaxLRVelocity()
+getMinMaxLRVelocity()
+getMinMaxLRVelocity()

AbstractDriveMotion

+setTargetVelocity()
+getTargetVelocity()
+getMinMaxVelocity()

DifferentialDriveMotion

+setLRVelocity()
+getMinMaxLRVelocity()
+getTargetLRVelocity()

Abstract Sensor APIs Example:
Laser Range Finder Services

•  Base abstract interface:
activation/deactivation
setting resolution and scan range
getting range scans

•  Vendor-specific abstract interfaces:
setting scan range, clustering
getting intensity scans,

•  Product-specific
abstract interfaces:
setting scan range

URG04

…

URG02

…

LMS200

…

S300

+setScanRange()

SickLaserRangeFinder

+getIntensityScan()

AbstractLaserRangeFinder

+activate()
+setResolution()
+getRangeScan()

…

HokuyoLaserRangeFinder

+setScanRange()
+setClusterCount()

9

Abstract Data APIs Example:
Range Scan Services

•  Generalization for laser range finder, infrared, sonar, bumper scans
•  Reference to specification of sensor layout
•  Multiple modes of data publishing
•  Multiple modes of data updating
•  Permits for generic obstacle avoidance services

AbstractLaserScan

…

AbstractSonarScan

…

AbstractInfraredScan

…

AbstractBumperScan

…

AbstractRangeScan

+update()
+setScanResolution()

+getDistance()
…

Miro Middleware Layers
TCP/IP USB 2.0

CAN

analog

IEEE 1394

RS232/422

Database Storage

servos

TCP/IP

Speech In

Arm

Gripper

Force-Torque Sensors

Manipulation Unit

Vision Unit

CAN

Cameras IEEE 1394

PTU

CAN

CAN

Speech Out

RS422

Mobile Base Unit

Windows User Interaction Unit

VxWorks

Linux

Linux

CAN

GUI

Done

To Do

10

Miro Framework Layer
TCP/IP USB 2.0

CAN

analog

IEEE 1394

RS232/422

Database Storage

servos

TCP/IP

Speech In

Arm

Gripper

Force-Torque Sensors

Manipulation Unit

Vision Unit

CAN

Cameras IEEE 1394

PTU

CAN

CAN

Speech Out

RS422

Mobile Base Unit

Windows User Interaction Unit

VxWorks

Linux

Linux

CAN

GUI VIP

MCL

GLF

BAP
BAP

BAP

BAP

Use Case Scenario:
Possible Functional Architecture

TCP/IP USB 2.0

CAN

analog

IEEE 1394

RS232/422

Force-Torque Sensors

Database Storage

servos

NMC

Speech In

Arm

Gripper

Manipulation Unit

Vision Unit

CAN

Cameras IEEE 1394

PTU

CAN

CAN

Speech Out

RS422

Mobile Base Unit

Windows User Interaction Unit

VxWorks

Linux

Linux

CAN

speech
output

speech
input

dialogue
manager

GUI

KB
manager

task
manager

task
executor

task
planner

arm/gripper
motion
planner

mobile base
motion
planner

vision
preprocessing

stereo
processing vision

preprocessing

force
feedback

grip
controller

arm
controller

manipulation
control

environment
model
manager

laser scan
processing

base
controller

sonar/IR
processing

SLAM

object
model
manager

visual
servoing

object
classification

mobile base
control BAP BAP

BAP

VIP

VIP
BAP GLF

GLF

MCL

1
KH

z

1 KHz

1 KHz

100 Hz

30 Hz

30 Hz 30 Hz

30 Hz

30 Hz

30 Hz

1 Hz

1 Hz

1 Hz

1 Hz

1 Hz

100 Hz

30 Hz

30 Hz

1 Hz

1 Hz

1 Hz

1 KHz

1 KHz

1 KHz

30 Hz

44 KHz

1 KHz

11

B-IT Tutorial in December 2005

•  Player/Stage/Gazebo
•  MCA2
•  Smartsoft
•  Miro
•  Marie
•  ORCA2

Synthesis by Functionality

SL
A

M

Pa
th

 P
la

nn
in

g

Vi
si

on

O
bj

ec
t

Re
co

g

O
bj

ec
t

Tr
ac

k

Ta
sk

 P
la

nn
in

g

Lo
gg

in
g

Le
ar

ni
ng

VacuumBot NurseBot
ShopBot NannyBot

VacuumBot NurseBot ShopBot NannyBot VacuumBot NurseBot ShopBot NannyBot VacuumBot0 NurseBot0 ShopBot0 NannyBot0

ORCA Components SmartSoft Builder

RHI GUI

Miro Logging

Smartsoft
Comm Patterns

Marie Mediator
Patterns

MCA2 Control
Player Fiducial

Miro BAP
Miro MCL

Miro VIP Miro LAP Robot Method
Framework Layer

Robot Component
Framework Layer

RCA
Framework Layer

Service Robot
Applications

X Component

- application frameworks

- component libraries

- functional class libraries

+ methods
+ patterns

+ generic utilities

+ CBSE

+ domain knowledge

Network Service Layer

BaseDriveFileIF LaserFileIF

Base Drive Device Laser Device

File Interface Layer

Device Driver Layer Arm Device Comm Device

Class Layer

ArmFileIF
CommFileIF

BaseDriveClass LaserClass ArmClass
CommClass

Base Drive Service Laser Service Arm Service
CORBA Services

WebServices
- services

- classes

- file I/O

- functions + protocols

+ network-transp. access

+ object-orientation

+ coherent file IF

+ plurality of vendor IFs

12

Synthesis by Functionality (current)

ORCA Components SmartSoft Builder

Miro Logging

Smartsoft
Comm Patterns

Marie Mediator
Patterns

MCA2 Control
Player Fiducial

Miro BAP
Miro MCL

Miro VIP Robot Method
Framework Layer

Robot Component
Framework Layer

RCA
Framework Layer

Service Robot
Applications

- application frameworks

- component libraries

- functional class libraries

+ methods
+ patterns

+ generic utilities

+ CBSE

+ domain knowledge

Network Service Layer

BaseDriveFileIF LaserFileIF

Base Drive Device Laser Device

File Interface Layer

Device Driver Layer Arm Device Comm Device

Class Layer

ArmFileIF
CommFileIF

BaseDriveClass LaserClass ArmClass
CommClass

Base Drive Service Laser Service Arm Service
CORBA Services

- services

- classes

- file I/O

- functions + protocols

+ network-transp. access

+ object-orientation

+ coherent file IF

+ plurality of vendor IFs

Synthesis by Functionality (needed)

SL
A

M

Pa
th

 P
la

nn
in

g

Vi
si

on

O
bj

ec
t

Re
co

g

O
bj

ec
t

Tr
ac

k

Ta
sk

 P
la

nn
in

g

Lo
gg

in
g

Le
ar

ni
ng

VacuumBot NurseBot
ShopBot NannyBot

VacuumBot NurseBot ShopBot NannyBot VacuumBot NurseBot ShopBot NannyBot VacuumBot0 NurseBot0 ShopBot0 NannyBot0

RHI GUI

Miro LAP

Robot Method
Framework Layer

Robot Component
Framework Layer

RCA
Framework Layer

Service Robot
Applications

X Component

- application frameworks

- component libraries

- functional class libraries

+ methods
+ patterns

+ generic utilities

+ CBSE

+ domain knowledge

Network Service Layer

File Interface Layer

Device Driver Layer

Class Layer

WebServices
- services

- classes

- file I/O

- functions + protocols

+ network-transp. access

+ object-orientation

+ coherent file IF

+ plurality of vendor IFs

13

The Next Generation of Robotics Software Development

new developments yet to be fully appreciated by robotics
•  agile software development
•  software libraries of best practice algorithms
•  model-based software engineering

cross-sectional topics
•  harmonization for interoperability and portability
•  robust autonomy
•  openness

BRICS
Best Practice in Robotics

Showcase Research

Best Practice
Architectures
Middleware
Interfaces

Showcase Education

Showcase Industry
MDE-based
Tool chain

Robust
Autonomy

Openness
Flexibility

Harmoni-
sation

14

Consortium

University of Bergamo

WP2: Architecture, Interfaces, Middleware:
Key Ideas and Concepts

•  Handling issues characteristic to robotics
•  Heterogeneous hardware (self-describing components etc.)
•  Distributed systems (communication frameworks, middleware)
•  Heterogeneous software (stratified interfaces, configuration, simulation)

•  Making robots safe
•  Error handling (sw quality, monitoring, sw patterns)
•  Fault tolerance (plug-and-play, QoS, service level maintenance)

•  Providing usable software engineering frameworks
•  Refactoring (… known solutions for quality: efficiency and robustness)
•  Software patterns (… apply known sw patterns and develop/identify new)

•  Building architectures for robotic applications
•  Method frameworks (best practice of algorithms)
•  Component-based software construction (configuration)

15

BRICS Software Architecture Concept

Method Framework Layer

Robot Control Architecture
Workbench

Abstract APIs II:
Network-Transparent Services

Component Device Interfaces

Component Hardware

Abstract APIs I:
OO Device Interface Layer

+object orientation
+consistent abstract APIs

+communication middleware

+ algorithm libraries
+ component technology

HW heterogeneity

visual servoing
 configurable components
 reusable components

 remote object access
 distributed objects

 sensor classes hierarchy
 actuator classes hierarchy

 vendor-dependent interfaces
 vender-dependent protocols

+ control structure
+ domain knowledge
 applications

BRICS Interoperability
Simple case: all components connected to a single computer

Method Framework Layer

Robot Control Architecture
Workbench

Abstract APIs II:
Network-Transparent Services

Component Device Interfaces

Component Hardware

Abstract APIs I:
OO Device Interface Layer

 Interoperability at this level!

visual servoing

 This level not used in this case;
 optimized away

Interoperability
at all levels above!

16

Method Framework Layer

Robot Control Architecture
Workbench

Abstract APIs II:
Network-Transparent Services

Component Device Interfaces

Component Hardware

Abstract APIs I:
OO Device Interface Layer

 Interoperability at this level
 between all components!

visual servoing

 Interoperability at this level
 only between components
 connected to same computer

Interoperability
at all levels above!

BRICS Interoperability
Standard case: components connected to different computers

Conclusions

•  software development for robotics is extremely difficult
•  robotics is (partially) wakening up to software engineering issues
•  some technology is around; using it is much better than not using it
•  still a lot of work ahead of us
•  BRICS project will address the pending issues
•  outreach activities such as research camps allow community to get involved

•  Thank your for your attention!

