

A SYSTEMS THEORY APPROACH TO COOPERATIVE ROBOTICS AND SENSOR NETWORKS

Pedro U. Lima
Intelligent Systems Lab
Institute for Systems and Robotics
Instituto Superior Técnico
Lisbon, Portugal

most of the existing robotic task models

- are not based on formal approaches
- concern a small number of behaviors
- are tailored to the task at hand

systems-theory-based task design methods for general robotic tasks can enable

systematic approach to modeling, analysis and design

MOTIVATION

- scaling up to realistic applications
- analysis of formal properties
- design from specifications

Institute for Systems and Robotics

MOTIVATION

How to design the "right" behavior?

Pedro Lima, ISR/IST

RELATION TO SIG TOPICS

coordination and cooperation among multiple types of robots also tackling

- common testbed, common research platform for benchmarking (RoboCup MSL)
- formal models and performance metrics (plan reliability, robustness)
- applications of network robot systems (search and rescue, urban scenarios, soccer robots)
- inclusion of humans in robot teams (Institutional Robotics)

DISCRETE EVENT MODELS OF ROBOTIC TASKS

Finite State Automata

Petri Nets

Formal Verification Tools available

Performance Analysis in the presence of uncertainties possible

PN MODEL OF ROBOTIC TASKS

(Lima et al, 1998) (Milutinovic, Lima, 2002)

- Places with tokens represent
 - predicates
 - primitive actions running
- State is distributed over the places with tokens

- Events assigned to transitions:
 - Controllable events: decision to start an action
 - *Uncontrollable events*: failure, environment change not provoked by the robot (could be by a teammate, or a human)
- Transition fires when it is enabled and the labeling event occurs

Institute for Systems and Robotics

CR SIG, Lisbon 24-26 Oct 08

PN MODEL OF ROBOTIC TASKS

Petri Nets (PN) Robotic Task Model

$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 marking or state

Generated and Marked Languages

$$L(N) = \{\varepsilon, s, s \text{ nf } bl \text{ nf,...}\}$$

$$L_{m}(G) = \{\varepsilon, s, s \text{ nf } bl \text{ } r2c \text{ } bc\} \subseteq L(G)$$

Petri Net N

$$E = \{s, nf, bl, r2c, bc\}$$

$$l(t_1) = s, l(t_2) = nf, l(t_3) = bl, ...$$

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$X_m = \{\mathbf{x}_0, \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$$

MODELS FOR COOPERATIVE ROBOTS

RELATIONAL BEHAVIORS

temporary behaviors involving 2 or more team members e.g., group of friends moving to a location to meet there

Messages between teammates create new controllable events and predicates

Communication is used for *commitments* and *synchronization*

Institute for Systems and Robotics

MODELS FOR COOPERATIVE ROBOTS

Commitments

Institute for Systems and

Robotics

MODELS FOR COOPERATIVE ROBOTS

Commitments

Institute for Systems and Robotics

CR SIG, Lisbon 24-26 Oct 08

MODELS FOR COOPERATIVE ROBOTS

Synchronization

Institute for Systems and Robotics

MODELS FOR COOPERATIVE ROBOTS

Institute for Systems and Robotics

MODELS FOR COOPERATIVE ROBOTS

Institute for Systems and Robotics

MODELS FOR COOPERATIVE ROBOTS

Institute for Systems and

Robotics

MODELS FOR COOPERATIVE ROBOTS

Institute for Systems and Robotics

MODELS FOR COOPERATIVE ROBOTS

EXAMPLE IN SOCCER ROBOTS

Programmed using Petri nets

SYNCHRONIZATION

Free Kick (simulated vs real)

Institute for Systems and Robotics

EXAMPLE IN SOCCER ROBOTS

Programmed using Petri nets

(Palamara et al, 2008)

SYNCHRONIZATION

RELATIONAL BEHAVIOR - PASS

EXAMPLE IN SOCCER ROBOTS

Programmed using Petri nets

(Palamara et al, 2008)

SYNCHRONIZATION + COMMITMENT

RELATIONAL BEHAVIOR - PASS

SUPERIOR TÉCNICO

Institute for Systems and Robotics

TASK + ENVIRONMENT MODEL

CR SIG, Lisbon 24-26 Oct 08

Pedro Lima, ISR/IST

Institute for Systems and Robotics

DES SUPERVISION USING LOGIC SPECIFICATIONS

(Lacerda, Lima, 2008)

- model for 1 robot + environment
- several models can be composed
- controllable events are
 - start_receiving
 - move_to_ball
 - pass
 - start_passing
 - move to goal
 - kick_ball
- unsupervised behavior enables several robots going to the ball or a robot start receiving a pass without a pass being made

temporal logic specifications disable those undesired behaviors

$$\varphi_1 = (G(\bigvee moving2ball(i) \lor \bigvee hasball(i)) \Rightarrow (X(\neg(\bigvee move_to_ball(i)))))$$

$$\varphi_{2,i} = ((\neg start_receiving(i)) \land (G[(\bigvee start_passing(j,i)) \Leftrightarrow (Xstart_receiving(i))]))$$

ROBOTIC TASK MODELS WITH UNCERTAINTY

ANALYSIS AND DESIGN

Stochastic models enable answering *analysis* questions such as:

- what is the probability of success of a task plan?
- given a desired probability of success for the plan, what is the accumulated action cost (e.g., time, energy) to accomplish the task?
- what is the sensitivity of a plan to over- or under-estimation of the probability of success of one of its composing actions?

Stochastic models enable *designing* plans from specifications:

- given some desired probability of success, determine the plan that minimizes the accumulated action cost
- design a robust plan, in the sense of keeping its reliability above some threshold, in the presence of over-estimation of the probability of success of one of its composing actions?

ANALYSIS AND DESIGN

- environment + controller composition
- stochastic model equivalent Markov Chain
- some of the events are controllable and represent decisions on starting actions controllable Markov Chain

MARKOV DECISION PROCESSES (MDP)

- effects of robot actions are uncertain but environment states are fully observable
- can be solved by Reinforcement Learning algorithms

DECENTRALIZED PLANNING UNDER UNCERTAINTY

APPLICATION TO COOPERATIVE PLAN EXECUTION IN SEARCH AND RESCUE

(Spaan, 2008)

DECENTRALIZED PLANNING UNDER UNCERTAINTY

APPLICATION TO ACTIVE COOPERATIVE PERCEPTION

EC FP7 URUS Project

Cooperative perception using:

- embedded and own sensors
- fusion techniques and technologies

Cooperative environment perception

INSTITUTIONAL ROBOTICS

- Decisions are not always necessarily based on rational principles,
 e.g., like with (PO)DMPs
- Inspiration from social sciences (namely Institutional Economics) to handle robotic collectives
- Robots are situated, embodied and social agents
- Their behavior is neither pre-programmed nor does it simply emerge
- Emergence is regulated by existing institutional norms
- By using institutional norms similar to those of humans, we expect this approach to simplify human-robot interaction, e.g., in search and rescue teams

INSTITUTIONAL ROBOTICS

physical properties

drivers must slow down and go left or right

BUT...

How to choose the appropriate direction not to crash one with the other?

Systems and Robotics

INSTITUTIONAL ROBOTICS

Portugal, Spain, Germany, ...

UK, South Africa, New Zealand, ...

Convention (road code): go right

CONCLUSIONS

Systems-theory-based task design methods for general robotic tasks are promising concerning

- systematic approach to modeling, analysis and design
- analysis of formal properties and performance

To Be Proven

- scaling up to realistic applications
- design from specifications