

Cooperative Issues in Network Robot Systems in Urban Areas

Prof. Alberto Sanfeliu

Director Institute of Robotics (IRI) (CSIC-UPC) Technical University of Catalonia September 26th, 2008 http://www-iri-upc.es

Index

- Network Robot System (NRS)
- Some examples of NRS
- Cooperative functions in NRS
- Cooperative task in NRS
- The URUS project
- Experiment locations
- Experiments

Network Robot Systems

Definition:

A Network Robot System is a group of artificial autonomous systems that are mobile and that makes important use of wireless communications among them or with the environment and living systems in order to fulfill their tasks.

Elements:

- Autonomous robot
- Communication network
- Environment sensors
- People

Some Examples of NRS

URUS: Guiding and Transportation

PEIS Ecology

Japan NRS Project

DustBot: Urban Hygiene

DustClean Robot

DustCart Robot

INSTITUT DE ROBÔTICA I INFORMÀTICA INDUSTRIAL

Guardians: Robot Assistant for Firemen

Cooperative Functions in NRS: Cooperative Localization and Navigation

Cooperative Localization and Navigation

Localization using:

- GIS, Compass, laser, estereo
- multiple robots
- ubiquitous sensors

Navigation:

- Using GIS, laser, compass
- Own and embedded sensors

Robot localization using active global localisation

Video: 20080508posTrackingShort.mp4

Cooperative Localization and Navigation

Robot localization using cooperative localization

Cooperative Localization and Navigation

Relative Ranging method

Try to eliminate effect of antenna orientation Suitable for static nodes approximately in the same plane Triangulation using a non-linear least-square method

Experiments

- ROMEO 4R autonomous robot with onboard WSN node
- Static WSN nodes deployed on campus
 - Average distance between consecutive nodes: 7.18 m

SIG Workshop Lisbon 2008

DTIGA Dustrial

Cooperative Localization and Navigation

Smart navigation based on fusion of sensor information

Video showing Smart Ter at UPC siteVideo: <u>SmartAndSegway.mpg</u>

SmartTer: GPS/IMU/Odometry fusion [Lamon et al 06].

Safe RRT-based local planning and obstacle avoidance [Macek et al 08].

Cooperative Functions in NRS: Cooperative Environment Perception

Cooperative perception using:

- embedded and own sensors
- fusion techniques and technologies

Cooperative environment perception

Following a person with environment cameras video <u>videoUrus1.avi</u>

Following several persons with environment cameras

- Inter Camera uncalibrated, non overlapping
- Learns relationships
 - •Weak Cues
 - Colour, Shape, Temporal
 - Learns consistent patterns
 - Learns Entry/Exit regions
- Real Time (25fps)
- Incremental design
 - work immediately
 - improves in accuracy over time

floor

lower floor

Subdivsion 1

[Gilbert et al., HRI ICCV07]

SIG Workshop Lisbon 2008

Following several persons with environment cameras

- Homogeneous regions in scale-space: Color-blob based approach: Each blob is described by a 3d-normal distribution in RGB color space
- Without any predefined model of a person
- Initial startup: blob to track

Cooperative Functions in NRS: Cooperative Map Building and Updating

Cooperative Map Building:

- Using multiple robots and sensors
- Using control techniques

3D Map construction doing by Smart Ter robot Video <u>SmartData.mpg</u>

(a) Localization sensors

(b) Environment sensors

Video showing trasversability map building based on 3D odometry and stereovision Data robot

Video: serie04-1000-3000-dtm.mov

Video: serie04-1000-2260-classif.mov

Reprojection of raw laser data on the basis of 2D odometry estimates Final position error < 1m

UPC 3D ranger scan

Cooperative Task in NRS: Cooperative People Evacuation

Evacuating people with robots

Guiding people by robot formation

Dog shepherding

Robot formation

Dynamic model of Local Environment

• The DLE model has a dynamic and static component

• Dynamic Component

Preliminary results

URUS project

URUS project Ubiquitous Networking Robotics in Urban Settings

http://urus.upc.es

URUS Project Objectives

• Objectives:

• The main objective is to develop an adaptable network robot architecture which integrates the basic functionalities required for a network robot system to do urban tasks

• 1. Scientific and technological objectives

- Specifications in Urban areas
- Cooperative localization and navigation
- Cooperative environment perception
- Cooperative map building and updating
- Human robot interaction
- Multi-task allocation
- Wireless communication in Network Robots

- 2. Experiment objectives

- Guiding and transportation of people
- Surveillance: Evacuation of people

Experiment Locations

North

Experiment Locations: Scenario 1 UPC

Zone Campus Nord, UPC

I INFORMÀTICA INDUSTRIAL

Experiment Location: Scenario 1 UPC

Experiment Location: Scenario 2 Gracia District

Global Architecture

Experiments

• Urban experiments:

- 1.- Transportation of people and goods
 - Transporting people and goods
 - Taxi service requested via the phone
 - User request the service directly
- 2.- Guiding people
 - Guiding a person with one robot
- 3.- Surveillance
 - Coordinate evacuation of a group of people
- 4.- Map building

