
Computer and Robot Vision Lab

Short course on ROS programming

2020
Part 2

João Avelino

Rodrigo Ventura

Instituto Superior Técnico – U. L.
23/11/2020

Portugal Chapter

Computer and Robot Vision Lab

• Intro to Linux cli

• ROS workspace

• Creating ROS packages

• Python vs C++ nodes

• Launchers and parameters

• Messages, services, and actions

Outline 1/2

2

Computer and Robot Vision Lab

• RViz

• TF

• Command line and RQT ROS tools

• Simulation with Gazebo

• Common issues

Outline 2/2

3

Computer and Robot Vision Lab

• Lightweight version of Ubuntu 18.04 (Bionic Beaver)

• ROS Melodic Morenia

• Credentials

• Username: ros

• Password: melodic

• Launch your VM!

The virtual machine

4

And don’t worry
about this “error”

Computer and Robot Vision Lab

• Current state of the VM: ROS installation and
configuration completed (end of this page:
http://wiki.ros.org/melodic/Installation/Ubuntu)

The virtual machine

5

http://wiki.ros.org/melodic/Installation/Ubuntu

Computer and Robot Vision Lab

A lazy introduction to the Linux command line
interface

6

Computer and Robot Vision Lab

An all-text display in a terminal window provided by a shell

Command line interface

7

Computer and Robot Vision Lab

The window that shows you the cli, takes what you type,
shows you the text

• Examples

• Terminator

• Gnome terminal

• Konsole

Console / Terminal emulator

8

Computer and Robot Vision Lab

“…a program that turns the ‘text’ that you type into
commands/orders for your computer to perform. “

@linux.com

Shell

9

BASH is the default interactive
shell on Ubuntu

But there are others like zsh

Computer and Robot Vision Lab
10

BASH command line interface

A command line.
The prompt + your command

Prompt: A short informative text
at the start of the command line.
Default for Bash:
<username>@<hostname>:<curr
ent directory><$ or #>

Regular user User with root

The output

Computer and Robot Vision Lab

Quiz time!

Summary: terminal emulator =/= shell =/= prompt

11

Computer and Robot Vision Lab

man <command>

cd

mkdir

rmdir

rm

ls

<command>&

chmod

TAB: autocompletes

Ctrl+C: sends SIGINT

Ctrl+Z: sends TSTP

echo

ps -aux

source

Bash basics

12

Computer and Robot Vision Lab

top

kill

grep

nano / vim

cat

less

ssh

apt

Useful command line tools

13

Computer and Robot Vision Lab

Output streams: stdout (1), stderr (2)

Input streams: stdin (0)

stdout, stdin, stderr

14

Standard output of a
command / program

Error messages

Accepts text as input

Handled as files. You can read from a
file and you can write to a file.

With streams we can combine
multiple commands to achieve
complex tasks!

Computer and Robot Vision Lab

Piping and redirecting output

15

Pipe: connects the STDOUT of one command to the STDIN
of another

<command1> | <command2>

Redirects: redirects to/from output/input streams:

<command> <redirect> <file>

(let’s see some examples in the VM)

<, >, <<, >>, 0>, 1>, 2>, 2>&1

Computer and Robot Vision Lab

Can be global, user specific, or shell specific

Write: VARNAME=value; export VARNAME=value

Read: $VARNAME

Environment variables

16

Only available for current shell Can be inherited by other
programs / shells

Computer and Robot Vision Lab

Environment variables - inheritance

17

Loads system vars and vars
on ~/.profile and ~/.bashrc

You can load vars from a file with
the source <filename> command

Add them to ~/.bashrc (or
~/.zshrc if you ush zsh) if
you want to load them
when the shell opens

Computer and Robot Vision Lab

BASH is a language.

18

This script
automatically
installs ROS
Melodic ☺

shebang:
choose
interpreter
should read this
script. BASH in
this case

Computer and Robot Vision Lab

Quiz time!

End of section!

19

Computer and Robot Vision Lab

Understanding the ROS workspace

20

Computer and Robot Vision Lab

ROS packages: where are they?

21

• System-wide packages installed through the system
repositories (via apt, synaptic, others): /opt/ros/melodic

• Need to load needed variables to use ROS tools

source /opt/ros/melodic/setup.bash

• Local packages:

• Download the source code into a workspace in your home

• Compile, load variables related to workspace
(source ~/my_ws/devel/setup.bash)

It was added to your
.bashrc at the end
of ROS installation

Computer and Robot Vision Lab

Important variables for ROS

22

PATH

PYTHONPATH

ROS_PACKAGE_PATH

ROS_MASTER_URI

ROS_IP/ROS_HOSTNAME

Each “setup.bash”
configures these

ones

You might need to set up /
change these for your
network. Put them on

~/.bashrc

Shell looks for executables in this list of paths

Python looks for packages in this list of paths

Where is ROS master running?

My IP in the ROS network

ROS tools look for packages here

Setup the vars you
need to change
AFTER sourcing
“setup.bash”!

Computer and Robot Vision Lab

• Build system to make roboticists’ life easier

• Compiles and generates files for your: catkin_make

• Let's create a catkin workspace

(Streaming VM screen)

Catkin

23

Computer and Robot Vision Lab
24

Catkin workspace

Automagically populated with “catkin_make”

Cache and intermediate build files

Packages source code go here!

Environment setup file for bash

Compiled / generated files and setup scripts

Package binaries and libraries

Source it in
~/.bashrc

Computer and Robot Vision Lab

catkin_create_pkg <package_name> <dependencies>

(Streaming VM screen)

Create a ROS package

25

Computer and Robot Vision Lab

Structure of a minimal ROS package

26

C/C++
headers

Source files
CMake build

file
Package
manifest

Computer and Robot Vision Lab

Launch vscode, install some useful extensions for ROS, and
open the workspace

(Streaming VM screen)

Let’s code

27

Computer and Robot Vision Lab

Visual Studio Code tips

28

Useful modules: Add include directories for linting
and code completion:

Add include
directories as needed

Computer and Robot Vision Lab

Let’s create a naïve remote controller for the husky robot

(Streaming VM screen)

Command a robot with Python (Publisher)

29

Computer and Robot Vision Lab

Create a python node that subscribes two topics

(Streaming VM screen)

Receiving messages in Python (Subscriber)

30

Computer and Robot Vision Lab

Create a C++ node that subscribes two topics

(Streaming VM screen)

Receiving messages in C++ (Subscriber)

31

Computer and Robot Vision Lab

How to compile a C++ node: CMakeLists.txt

32

cmake_minimum_required(VERSION 3.0.2)
project(short_course)
…
include_directories(

include
${catkin_INCLUDE_DIRS}
${<otherlibrary_INCLUDE_DIRS},
…

)
…

Your package name

Where to look for headers
(*.h, *.hpp)

CMake variable with the
location of headers of

catkin packages

CMake variable with
the location

“otherlibrary” headers
We need a way to define these…
(we learn how in 2 slides ☺)

Computer and Robot Vision Lab

How to compile a C++ node: CMakeLists.txt (2)

33

add_executable(executable1_name
src/main_exec1.cpp
src/file_1.cpp
…)
…
target_link_libraries(executable1_name

${catkin_LIBRARIES}
${anotherlib_LIBRARIES}

…)

Need more
ROS nodes?

Then
replicate

these
commands!

Define your
executable and list the

required *.cpp files

Link with these
libraries

Var with the locations of
libraries from catkin packages

Var with the
location of

another library…

Once again, we need to define
these!

Computer and Robot Vision Lab

Finding dependencies with CMake –find_package()

34

find_package(
Lib1
Lib2
…)

Generates these
CMake variables

…

Lib1_FOUND

Lib1_INCLUDE_DIRS
or

Lib1_INCLUDES

Lib1_LIBRARIES or
Lib1_LIBS

Lib2_FOUND Lib2_INCLUDE_DIRS
or

Lib2_INCLUDES

Lib2_LIBRARIES or
Lib2_LIBS

Computer and Robot Vision Lab

CMakeLists.txt – find_package(catkin REQUIRED
COMPONENTS) – packages as components of catkin

35

find_package(catkin REQUIRED
COMPONENTS

geometry_msgs
roscpp
rospy
std_msgs
…

)

Generates
these

CMake
variables

catkin_ INCLUDE_DIRS

catkin_LIBRARIES
…

Vars contain
info about all
packages in
the list!

This way we don’t
need to add a variable
per package ☺

…

Computer and Robot Vision Lab

CMakeLists.txt – Detailed description

36

http://wiki.ros.org/catkin/CMakeLists.txt

https://gitlab.kitware.com/cmake/comm
unity/-/wikis/home

(It can be a course by itself…)

http://wiki.ros.org/catkin/CMakeLists.txt
https://gitlab.kitware.com/cmake/community/-/wikis/home

Computer and Robot Vision Lab

Let’s compile, run, and compare C++ and Python
subscribers

(Streaming VM screen)

Receiving messages in C++ (Subscriber) - continued

37

Computer and Robot Vision Lab

What we may miss from the tutorials…

38

C++ and Python subscribers actually behave differently by
default!

Subscribers in C++ run in the main thread, while each
subscriber in Python has its own thread!

Computer and Robot Vision Lab

Do you really need one thread per subscriber in C++?

39

In general it is not advisable to abuse the number of
threads. Create them only as necessary…

But if you really need, replace ros::spin() by:

http://wiki.ros.org/roscpp/Overview/Callbacks%20and%20Spinning

Maximum number of
threads

Computer and Robot Vision Lab

Let’s create new messages in a new package

(Streaming VM screen)

Creating new message types

40

Computer and Robot Vision Lab

Defining message of Person and People

41

Variable types names

Computer and Robot Vision Lab

Generating them (for future reference, text is small)

42

Add message generation
dependencies to package.xml

Configure CMakeLists.txt

Add messages that we use to build
ours as a new dependency

Computer and Robot Vision Lab

How to use them with other packages

43

Update the other package’s manifest

Update the other package’s CMakeLists.txt
Crucial for correct

package build
order!!

Computer and Robot Vision Lab

Custom services and actions: similar steps

44

request_var_1
request_var_2
request_var_n

response_var_1
response_var_2
response_var_n

request_var_1
request_var_n

feedback_var_1
feedback_var_n

response_var_1
response_var_n

Computer and Robot Vision Lab

Services

45

Explaining with ROS wiki

Services

http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28python%29

Computer and Robot Vision Lab

Actions

46

Explaining with ROS wiki

Action_client

Action server

http://wiki.ros.org/actionlib_tutorials/Tutorials/Writing a Callback Based Simple Action Client
http://wiki.ros.org/actionlib_tutorials/Tutorials/Writing a Simple Action Server using the Execute Callback %28Python%29

Computer and Robot Vision Lab

Final note on subscribers, publishers, service clients,
service servers, action clients and action servers

47

A single ROS node can implement all of them simultaneously.

Example: the move_base node for navigation

Action server:
receives new

navigation
goals

Services:
receive

requests to
clear costmaps

and more…

Publisher:
Robot velocity

controls
(cmd_vel)

Subscribers:
Sensor

information

And
more..

Computer and Robot Vision Lab

A ROS system has many nodes…

48

Robot: very complex system, many nodes

Do we execute each node separately? NO! We use
launchers and the roslaunch command

roslaunch <package_name> <launcher_name.launch>

Computer and Robot Vision Lab

Let’s create a launcher to run Husky simulation and

(Streaming VM screen)

A simple launcher

49

Computer and Robot Vision Lab

Say no to hardcoded values

50

Parameters, roslaunch arguments, and topic remaps

(Streaming VM screen)

Computer and Robot Vision Lab

RViz

51

Let’s see some sensor information

(Streaming VM screen)

Computer and Robot Vision Lab

Command line tools

52

Remember the morning session commands

(Streaming VM screen)

Computer and Robot Vision Lab

RQT Tools (some examples)

53

rqt_plot rqt_bag (heavier than rosbag)

rqt_tf_tree rqt_console

Computer and Robot Vision Lab

TF – Static publish

54

Static:

• Define on robot URDF to use robot_state_publisher

• If not possible: use static_transform_publisher node

• If you don’t want to use static_transform_publisher you
can do it in your own code (wiki): Python C++

http://wiki.ros.org/tf2/Tutorials/Writing a tf2 static broadcaster %28Python%29
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 static broadcaster %28C%2B%2B%29

Computer and Robot Vision Lab

TF – Dynamic publish

55

• Use robot URDF + robot_state_publisher + joint_states
information

• Use a localization package like AMCL (adds a TF from the
robot base to map)

• Write your own code if you really need it:

C++ broadcast Python broadcast

Add a frame (C++) Add a frame (Python)

http://wiki.ros.org/tf2/Tutorials/Writing a tf2 broadcaster %28C%2B%2B%29
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 broadcaster %28Python%29
http://wiki.ros.org/tf2/Tutorials/Adding a frame %28C%2B%2B%29
http://wiki.ros.org/tf2/Tutorials/Adding a frame %28Python%29

Computer and Robot Vision Lab

Simulation with Gazebo

56

TL; DR:
ROS interacts with Gazebo
with the gazebo_ros package

rosrun gazebo_ros gazebo

or

rosrun gazebo_ros gzserver
+

rosrun gazebo_ros gzclient

Computer and Robot Vision Lab

Exploring a simulation launcher

57

(Streaming VM screen)

Computer and Robot Vision Lab

Issues and doubts

58

Discord server: https://discord.gg/beXDDpat

https://discord.gg/beXDDpat

Computer and Robot Vision Lab

Thank you
javelino[at]isr.tecnico.ulisboa.pt

rodrigo.ventura[at]isr.tecnico.ulisboa.pt

