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Abstract

The adaptive immune system in vertebrates is a complex, dis-
tributed, adaptive system capable of effecting collectivemul-
ticellular responses. Our study introduces many of the de-
sirable properties of this biological system to decentralized
multiagent systems. We adopt the crossregulation model of
the adaptive immune system involving interactions between
effector and regulatory cells. Effector cells can mount benefi-
cial immune responses to microbial antigens as well as patho-
logic autoimmune responses to self-antigens. Deleteriousau-
toimmunity is prevented by regulatory cells that suppress the
effectors to tolerate the self-antigens. We redeploy the cross-
regulation model within a multiagent system by letting each
agent run an ODE-based instance of the model. Results of
extensive simulation-based experiments demonstrate thata
distributed multiagent system can mount different responses
to distinct objects in their environment. These responses are
solely a result of the dynamics between virtual cells in each
agent and interactions between neighboring agents. The col-
lective dynamics gives rise to a meaningful “self”-“nonself”
classification of the environment by individual agent, evenif
these categories were not prescribed a priori in the agents.

Introduction
Multiagent systems (MAS) comprise a large number of re-
search domains, ranging from software agents to multirobot
systems, and play an important role in several applications,
such as supply chain management, transportation logistics
and network routing. The coordination of agents in a MAS
is a major challenge because agent behavior depends not
only on interactions with their immediate environment but
also on the behavior of other agents. A centralized control
approach may not always be feasible due to computational
and/or communication constraints on agents (e.g., Crespi
et al. (2008); Mermoud et al. (2010)). Distributed control,
on the other hand, is often complicated to realize because
the behavioral rules for the individual units cannot be easily
derived from a desired macroscopic behavior (e.g., Parker
(2000); Yamins and Nagpal (2008); Hamann (2010)). In the
design of large scale distributed systems, several researchers
have therefore taken inspiration from nature e.g., aggrega-
tion of amoeba into slime mold (Payton et al., 2003), quorum

sensing and communication in bacteria (Sahin, 2005), divi-
sion of labor in social insects such as ants and honey bees
(Camazine et al., 2001; Parker et al., 2003; Waibel et al.,
2009; Hauert et al., 2009; Tarapore et al., 2010; O’Grady
et al., 2010).

The cell collective that constitutes the adaptive immune
system has been extremely successful during the course of
evolution as evidenced by its presence in all jawed verte-
brate species (Janeway et al., 1997). Central to the successof
these cells is the important role they play in establishing and
maximizing the capabilities of the immune system, by al-
lowing an exquisite “self-nonself” discrimination that isnot
present in invertebrates. The cell collective is able to rec-
ognize and mount specific immune responses to microbial
agents that the organism and its ancestors had never faced
before. It does this immersed in the constant presence of
diverse and abundant body antigens, which are molecularly
similar to the microbial antigens. In normal healthy individ-
uals, sporadic microbial invaders are specifically eliminated
by immune responses and, at the same time, pathologic au-
toimmune responses to the abundant body antigens is pre-
vented, i.e. natural tolerance to “self” is maintained. Ex-
perimental evidence indicates that natural tolerance results
from the dynamics and interactions between specific regula-
tory and effector T-cells (e.g., Sakaguchi (2004)). Interest-
ingly, the decentralized nature of the interactions may impart
a high degree of robustness for natural tolerance, without
the need of maintaining a specific, genetically hardwired,
“memory” of self-antigens.

The decentralized and adaptive nature of the immune sys-
tem is a source of inspiration for designers of large scale
MAS. In particular, the ability of the system to dynami-
cally maintain natural tolerance has many industrial appli-
cations. Some typical studies that take inspiration from
this “self”-“nonself” discrimination capability of the im-
mune system include, distributed intrusion detection sys-
tems (Nino and Beltran, 2002; Kim and Bentley, 1999), and
fault tolerance systems (Bradley and Tyrrell, 2000, 2001;
Canham and Tyrrell, 2002). However, most of these mod-
els assume which particular antigens or features are pre-



scribed as “self”, and consequently the system is trained to
tolerate them. While this approach does provide some in-
teresting results of robust feature classification, it doesnot
fully incorporate the dynamics and adaptive nature of the
immune system. This led us to propose the use of thecross-
regulation model(CRM) for the maintenance of tolerance.
The CRM (Leon et al., 2000, 2003, 2004; Carneiro et al.,
2007) suggests a dynamics of interactions between cells of
the immune system, that allows the system to discriminate
between antigens based solely on their density and persis-
tence in the environment. The system is able to tolerate
body antigens (i.e “self”) that are characteristically persis-
tent and abundant, and to mount an immune response to for-
eign pathogens, that are characterized as being neither per-
sistent nor abundant. The model has been used successfully
in spam detection (e.g., Abi-Haidar and Rocha (2008)) and
document classification (e.g., Abi-Haidar and Rocha (2010,
2011)) scenarios, making it a good candidate for MAS for
environment classification.

In this study, we propose a CRM-based approach to repli-
cate the capability of the immune system in maintaining tol-
erance. We use an agent-based simulator to model a sit-
uation where individuals have to tolerate certain features,
while mounting an immune response against others. The
different environmental features are represented by different
sensory stimuli in the environment, and their nature (“self”
or “nonself”) are not known by the agents beforehand. We
demonstrate the capacity of the system to tolerate specific
environmental features that may be characterized as persis-
tent and abundant (“self”), while mounting an immune re-
sponse against others (“nonself”). In addition, the system
response is resilient to sensory noise, and can respond cor-
rectly under varying environmental conditions.

The rest of the paper is organized as follows: In the fol-
lowing section, we describe the CRM. We then present the
application of the CRM in a MAS. We go on to report the
results of our experiments in different environmental condi-
tions and under varying levels of perceptual noise. Finally,
we discuss our approach to environment classification and
highlight the conclusions of this study.

The Crossregulation Model
Two general principles are essential for the viability of mul-
ticellular organisms. Firstly, the persistence of any celllin-
eage requires that its cells recurrently interact with other cell
types in the organism. Cells that fail to interact with other
cells eventually die. Secondly, the growth of a cell popula-
tion involves density-dependent feedback mechanisms con-
trolling individual cell proliferation. These feedback mecha-
nisms may involve (i) indirect interactions among cells (such
as a competition for limited growth factors) and (ii) direct
interactions, such as contact inhibition. These two princi-
ples of multicellular organization are the foundation of the
crossregulation model, and have been justified extensively

in Carneiro et al. (2007). Below, we outline the model and
highlight its interesting properties that are later replicated
with a cell recruitment mechanism.

The CRM describes the population dynamics of cells of
the adaptive immune system, based on three mutually inter-
acting cell types: (i) Antigen presenting cells (APCs) that
display the antigen on their surface. Individual APCs have
a fixed number of sites (s) on which effector and regulatory
cells can form conjugates; (ii) effector cellsTE that can po-
tentially mount an immune response which, depending on
receptor specificity, can be directed to foreign pathogens or
to self-antigens; and (iii) regulatory cellsTR that suppress
proliferation ofTE cells with similar specificities. Further-
more, the APCs are classified into different sub-populations
of equivalent APCs, with each APC in a sub-population pre-
senting the same antigen on its surface. Similarly effector
and regulatory cells are also classified into different sub-
populations or clones according to their specificity.

The dynamics of T-cell population is regulated by the fol-
lowing density-dependent feedback mechanisms. (i) Effec-
tor and regulatory cells that are unable to interact with APCs
are slowly lost by cell death. (ii) The proliferation of effec-
tor and regulatory cells requires interactions with APCs and
depends on interactions these T-cells make with each other.
Proliferation of theTE cell population is promoted by the
absence of regulatory cells on the APC. In contrast,TR can
only proliferate following co-conjugation with effector cells
on the same APC. Additionally,TE andTR cells interact
indirectly by competition for access to conjugation sites on
APCs.

Behavior of cell population

Considerable work has focused on analyzing the properties
of the CRM, and the underlying dynamics betweenTE , TR

and APCs (Leon et al., 2000, 2003). An interesting char-
acteristic of the CRM is the ability to discriminate between
antigens based on their density. At low concentrations of
APCs, the system evolves into a stable state composed only
of effector cells (immune response). In contrast, at higher
values of APCs, the system demonstrates bistable behavior.
At these concentrations of antigens, the system can evolve
either into an equilibrium state consisting predominantlyof
effector cells (immune response), or into a state composed
largely of regulatory cells (tolerant response). The system
develops into the regulatory cell dominated state, provided
that the seeding population has sufficientTR cells. By con-
trast, ifTR cells are initially underrepresented,TE cells will
competitively exclude the former from the system. Conse-
quent to the antigen density dependent response, the effec-
tor cells are made tolerant to antigens that are persistent and
abundant. In addition, the effector cells are free to mount
immune responses to antigens that are not persistent or not
abundant.



Table 1: Parameters of the crossregulation model.
Param. Description Value (a.u.)

Aj Density of APCs of populationj −

s Maximum number of T-cells that can bind
to an APC

3

E0 Seed density of effector cells 10

R0 Seed density of regulatory cells 100

Ei Density of effector cells of clonei −

Ri Density of regulatory cells of clonei −

Ri Density of T-cells of clonei Ei + Ri

Cij Density of conjugates betweenTi andAj −

γc Conjugation rate of T-cells to APCs 10
−1

γd Deconjugation rate of T-cells from APCs 10
−1

σE Influx rate of new effector cells 10
−3

σR Influx rate of new regulatory cells 0.6 × 10
−3

πE Proliferation rate of effector cells 10
−3

πR Proliferation rate of regulatory cells 0.5 × 10
−3

δ Death rate of effector and regulatory cells 10
−5

Mathematical formulation of the model
The dynamics of the interactions between effector and regu-
latory cells, with APCs is described by a set of ordinary dif-
ferential equations in the following variables: (i) The num-
ber of effectorEi and regulatoryRi T-cells of clonal typei,
wherei ∈ {1, 2 . . .N} andN is the number of T-cell clones.
(ii) The number of APCsAj , wherej ∈ {1, 2 . . .M} andM
is the number of different antigen types. (iii) The number of
conjugatesCij formed between effector and regulatory cells
from clonei and APC from populationj.

For the effectorEi and regulatoryRi cells of clonei, we
have:

dEi

d t
= σE + πEE

∗

i − δEi (1)

dRi

d t
= σR + πRR

∗

i − δRi (2)

where the involved quantities are defined in Table 1.
The equations forEi (eq 1) andRi (eq 2) have three

terms. The first term represents the influx of new cells,
which is assumed to be constant. The second term ac-
counts for the proliferation of activated effector and regu-
latory cells. Finally, the death of T-cells is represented by
the third term of the equations. In the simulations, we gen-
erate all T-cell clones with similar initial conditions i.e., ∀i,
Ei(0) = E0 andRi(0) = R0.

The density of activatedTE andTR cells of each clone are
computed in a stepwise manner. Let us consider the interac-
tions between thei-th T-cell clone and thej-th APC popu-
lation. The dynamics of the conjugatesCij is described by
the following equation:

dCij

d t
= γcθij

(

Ti −

M
∑

j=1

Cij

)(

Ajs−

N
∑

i=1

Cij

)

− γdCij

whereTi = Ei +Ri, andγc andγd involve the conjugation
and deconjugation rates between APCs and T-cells, respec-
tively (parameters in Table 1). In the above equation, new
conjugates are formed by the free T-cells of clonei with the
available sites on APCs of populationj at rateγc. The con-
jugation rate is also controlled by the affinity (θij) between
the T-cells and APCs. The existing conjugates dissociate at
rateγd. The conjugation and deconjugation of T-cells from
the APCs is a fast process with respect to the overall T-cell
clone dynamics. Consequently, we solve at each time step,
the steady state values of the conjugates by the Euler-Heun
adaptive step method (Butcher, 2003).

The density of activated effectorE∗

i and regulatoryR∗

i

cells can now be calculated (for details see Appendix A).
Conjugated effector cells are activated in the absence of reg-
ulatory cells on the same APC. In contrast, conjugated regu-
latory cells can only be activated if at least one effector cell
is simultaneously conjugated to the same APC.

The population dynamics behavior exhibited by the CRM
is governed by two key composite parameters represent-
ing the effective growth rates ofTE and TR cell popula-
tions (Leon et al., 2000). These two parameters are directly
proportional to the basic parameters controlling population
growth i.e., conjugation constant (γc), affinity between T-
cell and APCs (θij), influx rate of new effector and regula-
tory cells (σE andσR), proliferation rates of these two types
of T-cells (πE andπR), and the density of APCs (Aj). The
effective growth rates of the T-cells is also inversely propor-
tional to the death rate (δ) of the corresponding population.
The compositeTE andTR growth parameters define four
parameter regimes according to the resulting cell population
behavior. Three parameter regimes result in a single stable
state that may correspond to either: (i) extinction of all T-
cells (TE = 0, TR = 0), (ii) immune state (TE > TR), or
(iii) tolerant state (TE < TR). The fourth parameter regime
corresponds to a bistable system where both immune and
tolerant states are stable. A detailed analysis of these pa-
rameter regimes is provided in Leon et al. (2000). For our
present study, the parameter values have been set so that at
low APC densities, the system evolves into a single state
composed only of effector cells. By contrast, at relatively
high density of APCs, the system is bistable and can evolve
either into an immune or tolerant equilibrium state.

CRM in a Multiagent System
In this section, we demonstrate how the CRM can be im-
plemented on a distributed embodied multiagent system in
order to give the system the capacity to classify different
features in the environment based on their concentrations.
Features that are persistent and abundant are to be tolerated,
while features that are present at a low density are not. We
show that the multiagent system is able to adapt online and
that it is resilient to perceptual noise.

We use a stochastic, spatial, discrete-time simulator. The



simulated environment is toroidal and has a size of10 ×
10 units. The MAS is composed of50 point-sized agents
that perform a random walk: each agent move at a constant
speed of0.01 units/time-step, and has a probability of0.01
of changing to a new random direction each simulation step.
The agents detect features of static objects within their sen-
sory range (1 unit) and run an internal and individual in-
stance of a CRM in order to determine if the objects should
be tolerated or not (see details below).

Individual features of the static objects in the environment
are encoded in Boolean form (present= 1, absent= 0), and
then concatenated to form a binary string, thefeature vector.
At the start of each time-step, an agent computes the density
of each feature vector (FVj) within its sensory range. In
the agent’s internal CRM instance, APCs are then generated
corresponding to each of the feature vectors perceived. Each
APC presents an individual feature vector to the T-cells. The
number of each type of the APCs generatedAPCj = FVj ,
for j ∈ {1, . . . ,M}, whereM is the number of different
feature vectors perceived by the agent.

The T-cell clones (T1, T2, . . . , TN ), each have a different
receptor encoded as a binary string, which determines their
affinity to the APC population. The affinity between T cell
clonali and APC populationj is denoted byθij :

θij = exp

(

−
H(i, j)

c

)

(3)

whereH is the Hamming distance between the receptor of
Ti and the feature vector presented byAj , andc is the cross-
reactivity between T-cells and APCs. A high value ofc
would result in all T-cell clones having a high affinity to all
APC populations. By contrast, at lowc, each T-cell clone
would have a high affinity to only one distinct APC popula-
tion.

At the start of the simulation, the number of effector and
regulator cells on each agent is initialized toE0 andR0 re-
spectively. Following this, Algorithm 1 (parameters in Ta-
ble 2) is performed by the agents in each simulation time-
step, allowing the agents to execute the behavior designed
in the CRM. The agents begin by sensing their local envi-
ronment and computing the density of feature vectors. Per-
ceptual noise is modeled by randomly flipping the binary
representation of one of the feature with probabilityx. The
CRM is then numerically integrated for timeS, allowing the
system to respond to the different APCs. After computing
the number of effector and regulatory cells at timeS, the
cells diffuse among agents. In this communication phase,
each agent selects a neighboring agent within its commu-
nication range. The selection is random following a linear
distribution on the total number of T-cells associated with
each agent in communication range. Following the selec-
tion, each agent sends and receivesd of its effector and reg-
ulatory cells. Finally, the agent decides the nature of each
feature vectorFVj sensed, as follows:

Table 2: Parameters of the stochastic simulator
Param. Description Value (a.u.)

N Number of T-cell clones 4

M Number of different feature vectors 4

c Cross-reactivity between T-cells and APCs 0.4

x Probability to add noise on a feature 0.1 − 0.5

S Time CRM instance is executed, in a single
simulation-step

10
5

d Proportion of T-cells diffused to neighbor-
ing agents

0.5

E =
∑N

i=1
θijEi R =

∑N
i=1

θijRi

where the feature vector is accepted as tolerant ifR > E,
else the object associated with the feature vector is removed
from the environment by the agent.

Algorithm 1 An agent’s control loop (simulation of an
CRM instance)
1: {Perceive static objects}
2: Compute density of feature vectors (FVj) in sensory range of

agent
3: For each of the sensed feature vectors, add noise to one of the

features with probabilityx
4: Assign feature vectors to APCs i.e.,∀j, Aj = FVj

5: {Run instance of CRM}
6: time← 0
7: while time ≤ S do
8: ∀i ∈ {1, 2 . . . N} and ∀j ∈ {1, 2 . . .M}, compute the

number of conjugated cellsCij in steady state, integrating
using the Euler-Heun adaptive step method

9: Using the number of conjugated cells, compute the updated
number of effector and regulatory cells with the Euler-Heun
adaptive step method. The adaptive step size is stored inh

10: time← time+ h
11: end while
12: {Diffuse cells across neighboring agents}
13: Randomly select one of the agents in the communication range

following a linear distribution and weighted by the total num-
ber of cells on the respective neighboring agents

14: Exchange cells with agent
15: {Decide if feature vectors are to be tolerated or not}
16: For each feature vector, compute the sum of effector and regu-

latory cells, weighted by their affinity.
17: Tolerate the FV if total regulatory cells exceeds effectors, else

mount an immune response i.e., remove the static object asso-
ciated with the feature vector from the environment.

Experiments
We set up a series of experiments in order to evaluate the
classification capabilities of a multiagent system operating
according to the model described above. In a first set of
experiments, we distributed two different types of static ob-
jects in the environment: one with a high density (10/unit2)
and one with a low density (1/unit2). Both types of static ob-
jects were placed at random positions drawn from a uniform
distribution. In each replication of the experiment, the fea-
ture vectors of the two types of static objects were picked at



random in such a way that one would be the complement of
the other. Within the CRM conceptual framework the abun-
dant objects are interpreted as body/self-antigens, whilethe
low density objects are foreign or “nonself”. We endowed
agents with the capacity to remove objects and therefore tol-
erance to “self” was interpreted as the persistence of the ob-
jects. We show that the MAS is, under some specific non-
trivial conditions, able to tolerate abundant objects thatwill
persist and to remove less abundant objects.

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Simulation time

P
ro

po
rt

io
n 

st
at

ic
 o

bj
ec

ts

 

 
self
nonself

Figure 1: Mean proportion of static objects across10 repli-
cates. Individual agents had30% probability perceptual
noise.

In Fig. 1, we have plotted the mean proportions of static
objects (with respect to the initial quantities) across10 repli-
cates, each for2000 simulation steps and with50 agents in
the environment. The object density variance across simula-
tion time was similar irrespective of the level of perceptual
noise added (x = 0.1 − 0.5), and was therefore illustrated
for a single case (x = 0.3, Fig. 1). After2000 simulation
time-steps, there was very little variation in the objects as-
sociated with “self”. The density of self-objects remaining
at 10 for 0.1 − 0.4 probability of perceptual noise, while at
higher level of perceptual noise (x = 0.5), tolerance was
maintained in all but two replicates (less than0.2% of self-
objects destroyed in each replicate). By contrast, the system
exhibited an absence of tolerance to objects associated with
“nonself” (Fig. 1 and 2). An immune response to these ob-
jects was mounted irrespective of the level of noise. How-
ever, the response was more effective at lower levels of noise
(Fig. 2).

We set up a second series of experiments in order to eval-
uate the capabilities of a multiagent system to maintain tol-
erance under varying environmental conditions. These ex-
periments were designed to assess the requirement for com-
munication between agents. In this set of experiments, we
divided the environment into three regions, with two con-
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Figure 2: Proportion decrement of “nonself” static objects
with different amounts of perceptual noise.

High density, self objects

Low density, nonself objects

Figure 3: The heterogeneous environment used to investi-
gate environment classification under varying environmental
conditions.

centric circle of radii 4 and 5 units (Fig 3). Two different
types of static objects were distributed in the environmentin
two different locations: one with a low density (1.98/unit2)
was distributed within the inner circle, and one with a high
density (70.7/unit2) was distributed between the inner and
outer circles.

In Fig. 4 and 5, we have plotted the mean proportions
of static objects (with respect to the initial quantities) with
intra-agent communication suppressed and enabled respec-
tively. Experiments were replicated10 times, each for2000
simulation steps and with50 agent in the environment.

The communication of T-cells between agents had a
strong effect on the maintenance of tolerance. In the ab-
sence of communication, the system was unable to maintain
tolerance (Fig. 4). At2000 simulation time-steps, the abun-
dant “self” objects were removed from the environment in
all 10 replicates. By contrast, in the presence of commu-
nication between agents, almost100% of abundant “self”
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Figure 4: Mean proportion of static objects across10
replicates, with heterogeneous distribution of static objects
(“self” and “nonself”), and inter-agent communication sup-
pressed.
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Figure 5: Mean proportion of static objects across10
replicates, with heterogeneous distribution of static objects
(“self” and “nonself”), and inter-agent communication en-
abled.

objects persisted in the environment at the end of the simula-
tion (Fig. 5). In addition, the agents were also able to mount
an effective immune response, such that all the “nonself”
objects had been removed from the environment at the end
of the simulation (Fig. 5).

Discussion
Our study revealed a robust maintenance of tolerance to
“self”, understood as abundant antigens or features, irre-
spective of the level of perceptual noise on individual agents.
Interestingly, even at a50% chance to distort a sensed fea-

ture, the abundant “self” was largely tolerated. This re-
siliency to noise exhibited by the system was a consequence
of the cross-reactivity between T-cells and APCs. At our
level of cross-reactivity, regulatory cells with a high affin-
ity to feature vectors of the “self”, were able to react with
and consequently suppress effectors associated with a mis-
read “self” feature vector (low Hamming distance apart)
and consequently prevent their destruction. Separate exper-
iments investigating the influence of this parameter, indi-
cated a complete absence of tolerance at low values of cross-
reactivity. By contrast, at very high levels of cross reactiv-
ity, regulatory cells suppressed effectors associated with all
the sensed features thus preventing any discrimination by
the system. Interestingly, the ability of our system to toler-
ate noise distinguishes it from a simple response threshold-
based model for environment classification, wherein differ-
ent feature vectors are assigned distinct tolerance thresholds,
and the system response is governed strictly by the density
of each feature vector type being above or below its corre-
sponding threshold.

In simulated environments with a heterogeneous distri-
bution of objects, the agents continued to classify environ-
mental features correctly, despite the variations in theirlo-
cal environmental conditions. Our results revealed the re-
quirement of communication of T-cells between neighboring
agents in order to maintain the tolerance to abundant “self”
objects. In the absence of communication, agents were un-
able to tolerate “self” objects when entering regions consist-
ing of them. By contrast, in the presence of communica-
tion, regulatory cells communicated from agents already in
the “self” associated region allowed the entering agents to
respond faster to environmental changes and consequently,
greatly improved their tolerance. The diffusion of T-cellsbe-
tween agents allows the agents to share information of their
local environments and to perform better as a collective.

In our simulations, APCs are generated corresponding to
each of the feature vectors. Each APC presents an indepen-
dent feature vector present at that instance. Consequently,
APCs related to a newly generated feature vector may not
react to the existing T-cells in the agents’ history. This is
because the reaction would be dependent on the feature vec-
tor chosen for this new event and its affinity to the existing
T-cells. We illustrate this point with the following example:
Consider an agent in an environment withFVj presented by
Aj at a density resulting in a tolerant response. The agent
has in its history, T clonal-typeTi with Θij = 1. Conse-
quent to the density ofAj , Ri > Ei. Now let us consider
the agent moving into an environment resulting in another
APC typeAk. However, the existing cells in the agents’ his-
tory may or may not react to this new APC, and the decision
is stochastic and dependent on the choice of the new feature
vectorFVk. In this system, for the existing T-cells to re-
act with the new feature vector,θik > 0 and this is a direct
consequence of the (preexisting) affinity mapping between



feature vectors and T-cell clonal types. Another possible ap-
proach wherein the history of the system could be explicitly
taken into account would be the generation of APCs to rep-
resent various combinations of feature vectors. Based on
the above example, APCs would present feature vectors of
type{FVj , FVk, FVjFVk}. In this condition, existing cells
in the agents’ history would be able to respond to new fea-
ture vectors. Additionally, the system response would not
solely be a consequence of the feature vector specific topol-
ogy. However, the outcome of this scenario needs to be ex-
plored further.

In our experiments, we used a relatively abstract stochas-
tic simulation in which mobile agents performing random
walk perceived features on static objects present in the en-
vironment. The agents task, to distinguish between what is
persistent and abundant and what is not, is a metaphor for a
large class of detection and identification tasks in the fieldof
MAS, and more specifically in multirobot systems (MRS):
novelty detection, fault detection, intrusion detection,and so
on. In our model, features were associated with external and
immediately observable perceptual cues, but features may
be computed based on other qualities, such as the behavior
of nearby agents, proprioceptive sensory input, and environ-
mental attributes. In this way, our CRM-based approach to
classification in multiagent systems, could for instance give
robots the capacity to distinguish between normal behavior
and abnormal behavior. Since tolerance and its absence is
determined online and does not require an initial training
step, we expect that our CRM-based approach is particu-
larly suitable to MRS operating in dynamic environments in
which the task attributes may change over time and to MRS
that adapt and change their behavior during task-execution.
In this regard, we are currently investigating approaches to
reduce the computational complexity of running the CRM
on individual robots of a MRS.

Conclusions
In this study, we proposed an approach inspired by the capa-
bility of the adaptive immune system to maintain tolerance
in multiagent systems. We further investigated the utilityof
this approach in task involving environment classification.
Different environmental features were represented by dif-
ferent sensory stimuli in the environment, and their nature
(“self” or “nonself”) was not known by the agents before-
hand i.e. it was not built into the individual agent’s behavior.
Our simulations revealed the capability of the collective of
agents to tolerate features characterized as abundant and per-
sistent, while mounting an immune response against specific
features that were neither persistent nor abundant. Further-
more, the agent decision making was robust to perceptual
noise and variations in their environmental conditions.

These encouraging results of our study provides a good
stepping stone of our CRM-based approach for more de-
tailed multiagent system experiments involving a broad

range of tasks.

Supplemental Data:Movies of MAS simulations are avail-
able online at http://home.iscte-iul.pt/~alcen/alife2012/.
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Appendix A: Equations for activated T-cells
The section details the equations to calculate density of activated
effectorE∗

i and regulatoryR∗

i cells, for all T-cell clonesi. Given
the conjugate densityCij(t) at steady state, the density of conju-
gated effector and regulatory cells is calculated proportional to the
relative frequency ofTE andTR cells in the clone. For the con-
jugated effectorEcij and regulatoryRcij cells of clonei at APC
populationj, we have:

Ecij(t) =
Cij(t)Ei(t)

Ti(t)
and Rcij(t) =

Cij(t)Ri(t)

Ti(t)

Finally, for the number of activated effectorE∗

i and regulatory
R∗

i cells, we have:

E
∗

i =

M∑

j=1

Pe(Aj , Eci, Rci)Ecij (4)

R
∗

i =

M∑

j=1

Pr(Aj , Eci, Rci)Rcij (5)

where functionPe is the probability that an effector cell is conju-
gated with no neighboring regulatory cell at the same APC.Pr is
the probability that a regulatory cells is conjugated with an APC
that has at least one effector cell conjugated simultaneously. Addi-
tionally, Eci andRci are the total number of conjugated effector
and regulatory cells of clonei:

Eci =
M∑

j=1

Ecij and Rci =
M∑

j=1

Rcij

The probability functionsPe andPr can be reduced to the fol-
lowing expressions, based on a multinomial approximation (Evans
et al., 2000) that is valid given that the total number of sites
(summed over all the APCs) is much larger than the number of
sites per APC. For3 binding sites (s = 3) on each APC, we have:

Pe(Aj , Eci, Rci) =
(Rci − 3Aj)

2

9A2
j

(6)

Pr(Aj , Eci, Rci) =
(6Aj −Eci)Eci

9A2
j

(7)

Utilizing the probability functionsPe andPr, the density of ef-
fector and regulator cells can be calculated (eq 4 and 5).


