

DISCRETE EVENT DYNAMIC SYSTEMS

PETRI NETS

Pedro U. Lima

Instituto Superior Técnico (IST) Instituto de Sistemas e Robótica (ISR) Av.Rovisco Pais, 1 1049-001 Lisboa PORTUGAL

> November 2002 All the rights reserved

Petri Nets

Basic Notions Comparison with Automata Analysis Problems and Techniques Control of Petri Nets

DEFINITION OF PETRI NET

Def.: A Petri net (PN) graph or structure is a weighted bipartite graph (*P*,*T*,*A*,*w*), where: $P=\{p_1, p_2, ..., p_n\}$ is the finite set of *places* $T=\{t_1, t_2, ..., t_m\}$ is the finite set of *transitions* $A \subseteq (P \times T) \cup (T \times P)$ is the set of arcs from places to

transitions (p_i, t_i) and transitions to places (t_j, p_i)

 $w: A \rightarrow \{1, 2, 3, ...\}$ is the weight function on the arcs

Also useful:

Set of input places to $t_j \in T$ $I(t_j) = \{p_i \in P : (p_i, t_j) \in A\}$

2002 - © Pedro U. Lima

Set of output places from $t_j \in T$ $O(t_j) = \{p_i \in P : (t_j, p_i) \in A\}$

EXAMPLE OF PETRI NET

$$P = \{p_1, p_2, p_3, p_4\}$$

$$T = \{t_1, t_2, t_3\}$$

$$A = \{(p_1, t_1), (p_2, t_2), (p_2, t_3), (p_3, t_3), (t_1, p_2), (t_1, p_3), (t_2, p_1), (t_3, p_3), (t_3, p_4)\}$$

All weights are = 1

Def.: A marked Petri net is a five-tuple (*P*,*T*,*A*,*w*,**x**), where (*P*,*T*,*A*,*w*) is a Petri net graph and **x** is a marking of the set of places *P*; $\mathbf{x} = [x(p_1), x(p_2), ..., x(p_n)] \in \mathbb{N}^n$ is the row vector associated with *x*.

Def. (PN dynamics): The state transition function, $f : \mathbb{N}^n \times T \to \mathbb{N}^n$ of Petri net (*P*,*T*,*A*,*w*,**x**), is defined for transition $t_j \in T$

iff

$$x(p_i) \ge w(p_i, t_j), \forall p_i \in I(t_j).$$
 - Enabled t

If $f(\mathbf{x},t_j)$ is defined, the new state is $\mathbf{x}' = f(\mathbf{x},t_j)$ where $x'(p_i) = x(p_i) - w(p_i,t_j) + w(t_j,p_i), i = 1,...,n$.

 $\mathbf{x} = \mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima

 $\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$

 $\mathbf{x} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$

 $\mathbf{x} = \begin{bmatrix} 0 & 1 & 2 & 0 \end{bmatrix}$

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima

 $\mathbf{x} = \begin{bmatrix} 0 & 0 & 2 & 1 \end{bmatrix}$

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima

REACHABLE STATES AND STATE EQUATIONS

Def. (Extended State Transition Function):

 $f: \mathbf{N}^{n} \times T^{*} \to \mathbf{N}^{n}$ $f(\mathbf{x}, \varepsilon) \coloneqq \mathbf{x}$ $f(\mathbf{x}, st) \coloneqq f(f(\mathbf{x}, s), t), \ t \in T, s \in T^{*}$

Def. (Reachable states): the set of *reachable states* of PN (*P*,*T*,*A*,*w*,**x**) is $R[(P,T,A,w,\mathbf{x})] := \{\mathbf{y} \in \mathbb{N}^n : \exists s \in T^*(f(\mathbf{x},s) = \mathbf{y})\}$

REACHABLE STATES AND STATE EQUATIONS

State Equation

INCIDENCE MATRIX A

2002 - © Pedro U. Lima

Def. (Labeled Petri net): A *labeled Petri net N* is an eight-tuple $N = (P, T, A, w, E, l, \mathbf{x}_0, \mathbf{X}_m)$

where

(P,T,A,w) is a PN graph

E is the event set for transition labeling

 $l: T \rightarrow E$ is the transition labeling function

 $\mathbf{x}_0 \in \mathbf{N}^n$ is the initial state

 $\mathbf{X}_m \subseteq \mathbf{N}^n$ is the set of *marked states*

Def. (Languages generated and marked):

 $L(N) \coloneqq \{l(s) \in E^* : s \in T^* \text{ and } f(\mathbf{x}_0, s) \text{ is defined}\}$ $L_m(N) \coloneqq \{l(s) \in L(N) : s \in T^* \text{ and } f(\mathbf{x}_0, s) \in \mathbf{X}_m\}$

$E = \{a, b\}$
$l(t_1) = a, l(t_2) = b, l(t_3) = a$
$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix}, k > 0 \}$

Generated string: ε in L

$E = \{a, b\}$
$l(t_1) = a, l(t_2) = b, l(t_3) = a$
$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix} k > 0 \}$

Generated string: a in L

$E = \{a, b\}$
$l(t_1) = a, l(t_2) = b, l(t_3) = a$
$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix} k > 0 \}$

Generated string: ab in L

$E = \{a, b\}$
$l(t_1) = a, l(t_2) = b, l(t_3) = a$
$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix} k > 0 \}$

Generated string: aba in L

$E = \{a, b\}$
$l(t_1) = a, l(t_2) = b, l(t_3) = a$
$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix} k > 0 \}$

Generated string: abaa in L and L_m $L_m(N) = \{(ab)^n a^2, n \ge 0\}$ $L(N) = \{a, aa, ab, (ab)^n, (ab)^n a, (ab)^n a^2, n \ge 0\}$

COMPARISON WITH AUTOMATA

- In PNs, the state information is distributed among a set of places which capture key conditions governing the system
- An automaton can always be represented as a PN, but not all PNs can be represented as *finite-state* automata (if the reachability set is finite, the PN can be represented as a FSA) – therefore the language expressive power is greater for PNs than for automata
- PNs have increased modularity for model-building
- All questions such as "is state *x* reachable?" are *decidable* for automata, but many of them are not for PNs

COMPARISON WITH AUTOMATA

$$PNL = \left\{ K \subseteq E^* : \exists N = (P, T, A, w, E, l, \mathbf{X}_0, \mathbf{X}_m) [L_m(N) = K] \right\}$$

Petri Net Languages (PNL) include Regular Languages (Reg) Therefore the expressive power of PNs to describe DEDS behaviors is greater than that of FSA.

ANALYSIS PROBLEMS

Def. (Boundedness): Place $p_i \in P$ in PN N with initial state \mathbf{x}_0 is said to be *k*-bounded, or *k*-safe, if $x(p_i) \leq k$ for all states $\mathbf{x} \in R(N)$, i.e., for all reachable states.

Def. (State Coverability): Given a PN N with initial state \mathbf{x}_0 , state \mathbf{y} is said to be *coverable*, if there exists $\mathbf{x} \in R(N)$ such that $x(p_i) \ge y(p_i)$ for all i=1,...,n.

Def. (Conservation): A PN N with initial state \mathbf{x}_0 is said to be conservative with respect to $\gamma = [\gamma_1, \gamma_2, ..., \gamma_n] \ \gamma \in N^n$ if

$$\sum_{i=1}^{n} \gamma_i x(p_i) = \text{constant}$$

for all reachable states.

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima

ANALYSIS PROBLEMS

Def. (Liveness): A PN N with initial state \mathbf{x}_0 is said to be *live* if there always exists some sample path such that any transition can eventually fire from any state reached from \mathbf{x}_0 .

Liveness levels - a transition in a PN may be:

- *Dead or L0-live*, if the transition can never fire from this state
- *L1-live*, if there is some firing sequence from \mathbf{x}_0 such that the transition can fire at least once
- *L2-live*, if the transition can fire at least *k* times for some given positive integer *k*
- *L3-live*, if there exists some infinite firing sequence in which the transition appears infinitely often
- *L4-live*, if the transition is L1-live for every possible state reached from \mathbf{x}_0

If a Petri Net is bounded, state safety and blocking properties can determined algorithmically – we just have to build an equivalent FSA.

It is possible to identify dead transitions by checking for coverability.

There are many other analysis problems (e.g., finding Tinvariants, P-invariants, persistence)

Boundedness has to do with *stability* (the number of required resources does not explode.)

ANALYSIS PROBLEMS The Coverability Tree

Root node: first node of the tree, corresponding to the initial state of a given marked PN.

Terminal node: any node from which no transition can fire. *Duplicate node*: node identical to a node already in the tree. *Node dominance*: let **x** and **y** be two states, i.e., nodes in the coverability tree. We say that "**x** dominates **y**", denoted by $\mathbf{x} >_d \mathbf{y}$, if the following two conditions hold:

(a) $x(p_i) \ge y(p_i)$, for all i=1,...,n

(b) $x(p_i) > y(p_i)$, for at least some i=1,...,n

Symbol ω : may be thought of as "infinity" in representing the *marking* of an unbounded place. It is used when a node dominance relationship is identified in the coverability tree. In particular, if $\mathbf{x} >_d \mathbf{y}$, then for all *i* such that $x(p_i) > y(p_i)$, the value of $x(p_i)$ is replaced by ω . Note that $\omega + k = \omega$.

Ex.: $[1 \ 0 \ 1 \ 0] >_{d} [1 \ 0 \ 0 \ 0] \Rightarrow [1 \ 0 \ 1 \ 0]$ is replaced by $[1 \ 0 \ \omega \ 0]$.

ANALYSIS PROBLEMS The Coverability Tree Algorithm

Step 1: Initialize $\mathbf{x} = \mathbf{x}_0$ (initial state) **Step 2:** For each new node \mathbf{x} evaluate the transition function $f(\mathbf{x}, t_j)$ for all $t_i \in T$:

Step 2.1: If $f(\mathbf{x}, t_j)$ is undefined for all $t_j \in T$ (i.e., no transition is enabled at state \mathbf{x}), then \mathbf{x} is a *terminal node*.

Step 2.2: If $f(\mathbf{x}, t_j)$ is defined for some $t_j \in T$, create a new node $\mathbf{x}' = f(\mathbf{x}, t_j)$. Then:

Step 2.2.1: If $x(p_i) = \omega$ for some p_i , set $x'(p_i) = \omega$.

Step 2.2.2: If there exists a node **y** in the path from the root node \mathbf{x}_0 (included) to **x**' such that $\mathbf{x}' >_d \mathbf{y}$, set $\mathbf{x}'(\mathbf{p}_i) = \omega$ for all \mathbf{p}_i such that $\mathbf{x}'(\mathbf{p}_i) > \mathbf{y}(\mathbf{p}_i)$.

Step 2.2.3: Otherwise, set $\mathbf{x}'(p_i) = f(\mathbf{x}, t_j)$.

Step 3: If all new nodes are either *terminal* or *duplicate nodes*, stop. Otherwise go back to Step 2.

ANALYSIS PROBLEMS The Coverability Tree

$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

ANALYSIS PROBLEMS The Coverability Tree

$$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \\ \downarrow t_1 \\ \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$$

ANALYSIS PROBLEMS

Applications and Limitations of the the Coverability Tree

- The coverability tree is always finite.
- A PN is **bounded** iff the symbol ω never appears in the coverability tree.

If ω does not appear, the state space of the PN is finite.

- **Coverability** can be determined using the coverability tree.
- **Conservation** is checked by solving *r* equations of the form

$$\sum_{i=1}^{n} \gamma_i x(p_i) = C$$

with n+1 unknowns (the *n* weights plus *C*), where *r* is the number of nodes of the coverability tree. If ω appears in the coverability tree for some place, the corresponding γ must be zero.

- **Reachability** of a specific state can not be checked, when the ω symbol appears in the coverability tree, because it may represent different integer values.
- **Liveness** of transitions can not, in the general case, be determined by this technique as well

Discrete Event Dynamic Systems

State Equation For the extended version of the transition function

Number of times transition t2 fires in the sequence

A necessary condition for state \mathbf{x} to be reachable from initial state \mathbf{x}_0 is for the equation

firing count vector $\mathbf{V}\mathbf{A} = \mathbf{X} - \mathbf{X}_0$

to have a solution \mathbf{v} where all the entries of \mathbf{v} are non-negative integers.

The existence of a non-negative integer solution \mathbf{v} does **not** guarantee that the entries in \mathbf{v} can be mapped to an actual feasible ordering of transition firings.

$$\mathbf{vA} = \mathbf{x} - \mathbf{x}_0 \quad (*)$$

Particular cases:

if (*) has no solution OR

 has a solution with negative v elements OR
 has a solution with non-integer v elements
 Then x is not reachable from x₀

if (*) has a solution v with non-negative elements
 Then there may exist a transition sequence leading
 from x₀ to x, but that is not guaranteed.

Multiple solutions of (*) are possible

Whenever there may exist a solution, at least the number of alternatives to be checked is significantly reduced.

Discrete Event Dynamic Systems 2002

2002 - © Pedro U. Lima

Conservation can be checked by solving

$$\mathbf{A}\boldsymbol{\gamma}^{\mathsf{T}} = 0 \quad (^{**})$$

NOTE: compare with the coverability tree technique. **There** x_0 **matters**! Here, all possible x_0 are implicitly checked. If there exists a single one that violates conservation, there is no solution for (**).

 More powerful results can be obtained based on this technique for sub-classes of PNs, such as marked graphs.

PETRI NET Sub-Classes

Petri net sub-classes, with smaller modeling capability, but larger decision power:

• **State Machines**: Each transition must have exactly *one* input place and *one* output place

$$(\forall_{t_j \in T}, |I(t_j)| = 1 \land |O(t_j)| = 1).$$

• **Marked Graphs**: Each place is the input of exactly *one* transition and the output of exactly *one* transition

 $(\forall_{p_i \in P}, |I(p_i)| = 1 \land |O(p_i)| = 1).$

• Free-Choice PNs: la a place is input of *more than one* transition (potential conflict), then it is the *single* input place of each of those transitions

$$\forall_{t_j \in T} \forall_{p_i \in I(t_j)}, \text{ ou } I(t_j) = \{p_i\} \text{ or } O(p_i) = \{t_j\}.$$

Place Invariants correspond to sets of places whose weighted token count remains constant for all possible markings, i.e., every integer vector which satisfies

 $\mathbf{A}\boldsymbol{\gamma}^{\mathrm{T}} = \mathbf{0}$

Transition Invariants correspond to sets of *transition* firings that cause the marking of a net to cycle, i.e., $\mathbf{x} = \mathbf{x_0}$ after some N firings

 $v\mathbf{A} = \mathbf{0}$

CONTROL OF PETRI NETS

- $S(s) \begin{bmatrix} S \\ S(s) \end{bmatrix} s$
- $L_r \subseteq L(S/G) \subseteq L_a$
- If we wish to restrict the behavior of G, but not more than necessary:

 $L(S/G) = L_a^{\uparrow C} \qquad \text{largest sublanguage of} \\ L_a \text{ which is controllable}$

• If we wish to restrict the behavior of G as much as possible:

 $L(S/G) = L_{\mathcal{V}}^{\downarrow C} \longrightarrow \begin{array}{c} \text{smallest superlanguage of} \\ L_r \text{ which is controllable} \end{array}$

• Regular languages are closed under most supervisor synthesis operations, i.e., if L_a and L_r are regular, so will be . $L_a^{\uparrow C}$ and $L_r^{\downarrow C}$

CONTROL OF PETRI NETS

- If $L_m(G)$ is not regular (e.g., G is an unbounded PN) but L_{am} is regular and controllable, S can be realized by a finite-state deterministic automaton (FSA).
- If $L_m(G)$ is regular but L_{am} is controllable but not regular, S can not be realized by an FSA, but one may be able to realize it by a PN – see next example

CONTROL OF PETRI NETS An Example

Dining Philosophers revisited

5 philosophers / no deadlock

Discrete Event Dynamic Systems

2002 - © Pedro U. Lima

CONTROL OF PETRI NETS

• If both $L_m(G)$ and L_{am} are not regular, but we wish them to be PN languages, several problems may occur, including non-closure under the $\uparrow C$ and $\downarrow C$ operations – solvable using *inhibitor* arcs (at the expense of reduced analysis capabilities).

- If both $L_m(G)$ and L_{am} are regular, using PN models may lead to more compact representations than FSA.
- If specifications are made in terms of forbidden states, rather than admissible languages, several results exist for supervisor synthesis, mostly based on linear-algebraic techniques.

Building PN Supervisor for a PN Model from Linear Predicates on the State Vectors

(Moody, Antsaklis, 1998)

Specification: restrict the reachable states \mathbf{x}_p of a PN model, such that

 $\mathbf{L}\mathbf{x}_{p} \leq \mathbf{b}, \ \mathbf{L}_{[n_{c} \times n]}, \mathbf{b}_{[n_{c}]}$ $n_{c} \text{ is the number of constraints}$

The inequality can be seen as the logical conjunction of n_c separate inequalities

The plant (e.g., robotic task, communication system) is modeled by a PN with incidence matrix $\mathbf{D}_p = \mathbf{A}_p$

The *controller net* is a PN with incidence matrix D_c made up of the plant transitions and a separate set of places

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima

enforces the constraint $\mathbf{L}\mathbf{x}_{p} \leq \mathbf{b}$ when included in the closed loop system

(Moody, Antsaklis, 1998)

THEOREM – Invariant-Based Controller Synthesis

if $\mathbf{b} - \mathbf{L}\mathbf{x}_{p_0} \ge 0$

then a PN controller with incidence matrix $\mathbf{D}_c = \mathbf{A}_c^T$ and initial state \mathbf{x}_{c_0}

$$\mathbf{D}_c = -\mathbf{L}\mathbf{D}_p$$

$$\mathbf{x}_{c_0} = \mathbf{b} - \mathbf{L}\mathbf{x}_{p_0}$$

enforces the constraint $\mathbf{L}\mathbf{x}_{p} \leq \mathbf{b}$ when included in the closed loop

system with incidence matrix $\mathbf{D} = \mathbf{A}^T$ and state $\mathbf{X} = \begin{bmatrix} \mathbf{X}_p \\ \mathbf{X}_c \end{bmatrix}, \mathbf{X}_0 = \begin{bmatrix} \mathbf{X}_{p_0} \\ \mathbf{X}_{c_0} \end{bmatrix}$

assuming that the transitions with input arcs from \mathbf{D}_c are controllable. If the inequality $\mathbf{b} - \mathbf{L}\mathbf{x}_{p_0} \ge 0$ is not true, the constraints can not be enforced, since the initial conditions of the plant lie outside the range defined by the constraints.

Discrete Event Dynamic Systems

Example

spec.:
$$\mathbf{x}_{2} \le 2$$
 $\mathbf{L} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \mathbf{b} = \mathbf{2}$
 $\mathbf{D}_{p} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}, \quad \mathbf{x}_{p_{0}} = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$
 $\mathbf{D}_{c} = -\mathbf{L}\mathbf{D}_{p} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$
 $\mathbf{x}_{c_{0}} = \mathbf{b} - \mathbf{L}\mathbf{x}_{p_{0}} = 2$

Limitations

Specification: alternance of events moveto and takeshot (with a being the first event to occur) required

This controlled PN satisfies the specification, but the PN controller could not be synthesized using the Invariant-Based Controller method (the controller places form their own invariant, separate from the plant PN places – controller is not maximally permissive)

EVENT-BASED FSA SUPERVISION

Building an FSA Supervisor for a FSA Model from Language Specifications (Ramadge, Wonham, 1989)

Specification: alternance of events moveto and takeshot (with moveto being the first event to occur) required

EVENT-BASED FSA SUPERVISION

Building an FSA Supervisor for a FSA Model from Language Specifications

Discrete Event Dynamic Systems

2002 - © Pedro U. Lima

FURTHER READINGS

- J. Peterson, *Petri Net Theory and the Modeling of Systems*, Prentice-Hall, 1981 - more on modeling, languages, decidability and complexity issues
- N. Viswanadham, Y. Narahari, *Performance Modeling of Automated Manufacturing Systems*, Prentice-Hall, 1992 - *more on modeling of manufacturing systems*
- J. O. Moody, P. J. Antsaklis, *Supervisory Control of Discrete Event Systems Using Petri Nets*, Kluwer Academic Publ., 1998 *more on control of PNs*