
2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

DISCRETE EVENT DYNAMIC SYSTEMS

Pedro U. Lima

Instituto Superior Técnico (IST)
Instituto de Sistemas e Robótica (ISR)

Av.Rovisco Pais, 1
1049-001 Lisboa

PORTUGAL

November 2002
All the rights reserved

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Petri Nets

Basic Notions
Comparison with Automata
Analysis Problems and Techniques
Control of Petri Nets

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

DEFINITION OF PETRI NET

Def.: A Petri net (PN) graph or structure is a weighted
bipartite graph (P,T,A,w), where:

P={p1, p2,... pn} is the finite set of places
T ={t1, t2,... tm} is the finite set of transitions

 is the set of arcs from places to
transitions (pi,tj) and transitions to places (tj,pi)

 is the weight function on the arcs

Set of input places to

Set of output places from

Also useful:

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

EXAMPLE OF PETRI NET

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

MARKING, DYNAMICS AND STATE SPACE

Def.: A marked Petri net is a five-tuple (P,T,A,w,x),
where (P,T,A,w) is a Petri net graph and x is a marking
of the set of places P; is
the row vector associated with x.

Def. (PN dynamics): The state transition function,
 of Petri net (P,T,A,w,x), is defined for transition

iff

If f(x,tj) is defined, the new state is x’ = f(x,tj) where
Enabled tj

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

MARKING, DYNAMICS AND STATE SPACE

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

MARKING, DYNAMICS AND STATE SPACE

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

MARKING, DYNAMICS AND STATE SPACE

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

MARKING, DYNAMICS AND STATE SPACE

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

MARKING, DYNAMICS AND STATE SPACE

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

REACHABLE STATES AND STATE EQUATIONS

Def. (Extended State Transition Function):

Def. (Reachable states): the set of reachable states of PN
(P,T,A,w,x) is

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

REACHABLE STATES AND STATE EQUATIONS

State Equation

m-dimensional firing vector [0 ... 0 1 0 ... 0]

jth position

mxn matrix whose (j,i) entry is

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

INCIDENCE MATRIX A

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

PETRI NET LANGUAGES

Def. (Labeled Petri net): A labeled Petri net N is an eight-tuple

where

Def. (Languages generated and marked):

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

Generated string: ε in L

a

b

a

PETRI NET LANGUAGES

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

Generated string: a in L

a

b

a

PETRI NET LANGUAGES

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

Generated string: ab in L

a

b

a

PETRI NET LANGUAGES

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

Generated string: aba in L

a

b

a

PETRI NET LANGUAGES

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

Generated string: abaa in L and Lm

a

b

a

Lm(N)={(ab)na2, n ≥ 0}

L(N)={a, aa, ab, (ab)n, (ab)na, (ab)na2, n ≥ 0}

PETRI NET LANGUAGES

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

COMPARISON WITH AUTOMATA

•  In PNs, the state information is distributed among a set of places which

capture key conditions governing the system

•  An automaton can always be represented as a PN, but not all PNs can

be represented as finite-state automata (if the reachability set is finite, the

PN can be represented as a FSA) – therefore the language expressive

power is greater for PNs than for automata

•  PNs have increased modularity for model-building

•  All questions such as “is state x reachable?” are decidable for automata,

but many of them are not for PNs

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

COMPARISON WITH AUTOMATA

Reg PNL
Context
Free

Context Sensitive

Type 0

Petri Net Languages (PNL) include Regular Languages (Reg)
Therefore the expressive power of PNs to describe DEDS
behaviors is greater than that of FSA.

Lm(N)={anbn, n ≥ 0}

Lm(N)={anbncn, n ≥ 0}

€

PNL = K ⊆ E ∗ :∃N = (P,T,A,w,E,l,x0,Xm)[Lm (N) = K]{ }

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Def. (Boundedness): Place in PN N with
initial state x0 is said to be k-bounded, or k-safe, if x(pi) ≤ k for
all states x∈ R(N), i.e., for all reachable states.

Def. (State Coverability): Given a PN N with initial state
x0, state y is said to be coverable, if there exists x∈ R(N) such
that x(pi) ≥ y(pi) for all i=1,...,n.

ANALYSIS PROBLEMS

Def. (Conservation): A PN N with initial state x0 is said to
be conservative with respect to γ = [γ1, γ2,..., γn] if

for all reachable states.
€

γ ∈ Nn

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Def. (Liveness): A PN N with initial state x0 is said to be live if there
always exists some sample path such that any transition can eventually fire
from any state reached from x0 .

Liveness levels - a transition in a PN may be:
•  Dead or L0-live, if the transition can never fire
from this state
•  L1-live, if there is some firing sequence from x0
such that the transition can fire at least once
•  L2-live, if the transition can fire at least k times
for some given positive integer k
•  L3-live, if there exists some infinite firing
sequence in which the transition appears
infinitely often
•  L4-live, if the transition is L1-live for every
possible state reached from x0

L0

L3 L2

L1

ANALYSIS PROBLEMS

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

ANALYSIS PROBLEMS

If a Petri Net is bounded, state safety and blocking properties
can determined algorithmically – we just have to build an
equivalent FSA.

It is possible to identify dead transitions by checking for
coverability.

There are many other analysis problems (e.g., finding T-
invariants, P-invariants, persistence)

Boundedness has to do with stability (the number of required
resources does not explode.)

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

ANALYSIS PROBLEMS
The Coverability Tree

Root node: first node of the tree, corresponding to the initial state of
a given marked PN.
Terminal node: any node from which no transition can fire.
Duplicate node: node identical to a node already in the tree.
Node dominance: let x and y be two states, i.e., nodes in the
coverability tree. We say that “x dominates y”, denoted by x >d y, if
the following two conditions hold:

 (a) x(pi) ≥ y(pi), for all i=1,...,n
 (b) x(pi) >y(pi), for at least some i=1,...,n

Symbol ω: may be thought of as “infinity” in representing the
marking of an unbounded place. It is used when a node dominance
relationship is identified in the coverability tree. In particular, if x >d
y, then for all i such that x(pi) >y(pi), the value of x(pi) is replaced by
ω. Note that ω + k = ω.
Ex.: [1 0 1 0] >d [1 0 0 0] ⇒ [1 0 1 0] is replaced by [1 0 ω 0] .

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

ANALYSIS PROBLEMS
The Coverability Tree Algorithm

Step 1: Initialize x = x0 (initial state)
Step 2: For each new node x evaluate the transition function f(x,tj) for all
tj∈T:

Step 2.1: If f(x,tj) is undefined for all tj∈T (i.e., no transition is
enabled at state x), then x is a terminal node.
Step 2.2: If f(x,tj) is defined for some tj∈T, create a new node x’ =
f(x,tj). Then:

 Step 2.2.1: If x(pi) = ω for some pi, set x’(pi) = ω .
 Step 2.2.2: If there exists a node y in the path from the root

node x0 (included) to x’ such that x’ >d y, set x’(pi) = ω for all pi such
that x’(pi) >y(pi).

 Step 2.2.3: Otherwise, set x’(pi) = f(x,tj).
Step 3: If all new nodes are either terminal or duplicate nodes, stop.
Otherwise go back to Step 2.

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

ANALYSIS PROBLEMS
The Coverability Tree

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

p1

p2

p3

p4

t1

t2

t3

t1

ANALYSIS PROBLEMS
The Coverability Tree

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

t1

p1

p2

p3

p4

t1

t2

t3

p1

p2

p3

p4

t1

t2

t3

t2 t3

ANALYSIS PROBLEMS
The Coverability Tree

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

t1

p1

p2

p3

p4

t1

t2

t3

p1

p2

p3

p4

t1

t2

t3

t2 t3

t1

t2 t3

terminal

duplicate
terminal

ANALYSIS PROBLEMS
The Coverability Tree

root

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

•  The coverability tree is always finite.
•  A PN is bounded iff the symbol ω never appears in the coverability tree.
If ω does not appear, the state space of the PN is finite.
•  Coverability can be determined using the coverability tree.
•  Conservation is checked by solving r equations of the form

with n+1 unknowns (the n weights plus C), where r is the number of nodes
of the coverability tree. If ω appears in the coverability tree for some place,
the corresponding γ must be zero.
•  Reachability of a specific state can not be checked, when the ω symbol
appears in the coverability tree, because it may represent different integer
values.
•  Liveness of transitions can not, in the general case, be determined by
this technique as well

ANALYSIS PROBLEMS
Applications and Limitations of the the Coverability Tree

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

State Equation
For the extended version of the transition function

m-dimensional firing counting vector

Number of times transition t2 fires
in the sequence

mxn matrix whose (j,i) entry is

ANALYSIS PROBLEMS
Linear-Algebraic Techniques

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

A necessary condition for state x to be reachable from initial
state x0 is for the equation

to have a solution v where all the entries of v are non-
negative integers.

firing count vector

ANALYSIS PROBLEMS
Linear-Algebraic Techniques

The existence of a non-negative integer solution v does not
guarantee that the entries in v can be mapped to an actual
feasible ordering of transition firings.

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

ANALYSIS PROBLEMS
Linear-Algebraic Techniques

Particular cases:
•  if (*) has no solution OR

 has a solution with negative v elements OR
 has a solution with non-integer v elements

Then x is not reachable from x0

•  if (*) has a solution v with non-negative elements
Then there may exist a transition sequence leading
from x0 to x, but that is not guaranteed.

Multiple solutions of (*) are possible

Whenever there may exist a solution, at least the number of
alternatives to be checked is significantly reduced.

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Conservation can be checked by solving

•  More powerful results can be obtained based on this
technique for sub-classes of PNs, such as marked graphs.

ANALYSIS PROBLEMS
Linear-Algebraic Techniques

NOTE: compare with the coverability tree technique. There x0 matters!
Here, all possible x0 are implicitly checked. If there exists a single one
that violates conservation, there is no solution for (**).

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

PETRI NET Sub-Classes

Petri net sub-classes, with smaller modeling capability, but larger decision
power:

•  State Machines: Each transition must have exactly one input place
and one output place

•  Marked Graphs: Each place is the input of exactly one transition and
the output of exactly one transition

•  Free-Choice PNs: Ia a place is input of more than one transition
(potential conflict), then it is the single input place of each of those
transitions

€

∀t j ∈T
∀pi ∈I (t j), ou I(t j) = {pi} or O(pi) = {t j} .

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Place Invariants correspond to sets of places whose

weighted token count remains constant for all possible
markings, i.e., every integer vector which satisfies

€

Aγ T = 0

ANALYSIS PROBLEMS
Linear-Algebraic Techniques

P2 P3

P4 P5

P6

€

γ = 2 1 1 1 1 2[]→ P1,P2,P3,P4 ,P5,P6
γ = 1 0 0 0 0 1[]→ P1,P6

T2

T1

T3

T4

T5

are P-invariants fo this net

Example

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Transition Invariants correspond to sets of transition

firings that cause the marking of a net to cycle, i.e., x = x0
after some N firings

€

vA = 0

ANALYSIS PROBLEMS
Linear-Algebraic Techniques

P1

P2 P3

P4 P5

P6

€

v = 1 1 1 1 1[]→t1,t 2,t 3,t 4,t 5

T2

T1

T3

T4

T5

is a T-invariant fo this net

Example

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

G

S

s S(s)

• 
•  If we wish to restrict the behavior of
G, but not more than necessary:

•  If we wish to restrict the behavior of
G as much as possible:

largest sublanguage of
La which is controllable

•  Regular languages are closed under most supervisor synthesis
operations, i.e., if La and Lr are regular, so will be .

smallest superlanguage of
Lr which is controllable

CONTROL OF PETRI NETS

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

CONTROL OF PETRI NETS

•  If Lm(G) is not regular (e.g., G is an unbounded PN) but Lam is

regular and controllable, S can be realized by a finite-state
deterministic automaton (FSA).

•  If Lm(G) is regular but Lam is controllable but not regular, S can
not be realized by an FSA, but one may be able to realize it by a

PN – see next example

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Example:

a
b

b

€

L(G) = a∗b∗

La = anbm : n ≥ m ≥ 0{ }
a

b

b

s

p3

CONTROL OF PETRI NETS
An Example

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

CONTROL OF PETRI NETS
An Example

Dining Philosophers revisited

2 philosophers / possible deadlock 5 philosophers / no deadlock

1 philosopher
interacting with 2 forks

complete model for
2 philosophers and 2 forks

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

CONTROL OF PETRI NETS

•  If both Lm(G) and Lam are not regular, but we wish them to be PN

languages, several problems may occur, including non-closure
under the ↑C and ↓C operations – solvable using inhibitor arcs (at

the expense of reduced analysis capabilities).

•  If both Lm(G) and Lam are regular, using PN models may lead to
more compact representations than FSA.

•  If specifications are made in terms of forbidden states, rather than
admissible languages, several results exist for supervisor synthesis,
mostly based on linear-algebraic techniques.

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Building PN Supervisor for a PN Model
from Linear Predicates on the State Vectors

(Moody, Antsaklis, 1998)

Specification: restrict the reachable states xp of a PN model, such that

The inequality can be seen as the logical conjunction of nc separate
inequalities

The plant (e.g., robotic task, communication system) is modeled by a PN with
incidence matrix Dp= Ap

The controller net is a PN with incidence matrix Dc made up of the plant
transitions and a separate set of places

STATE-BASED PN SUPERVISION

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

(Moody, Antsaklis, 1998)

Introducing nc slack variables to turn the inequality into an equality

€

Lx p + x c = b, x c nc ×1[]

The slack variables represent nc new places that hold the extra tokens required to
meet the equality, and are part of the separate controller net.

nc place invariants

€

ΓTD = L I[]
Dp
Dc

 = 0

Controlled (closed loop) PN with incidence matrix D and state

€

x =
x p
x c

 , x0 =

x p0

x c0

enforces the constraint when included in the closed loop system

STATE-BASED PN SUPERVISION

€

x1×nγ1×n
T = x0 1×n

γ1×n
T →γ n×1

Txn×1 = γ n×1
Tx0n×1

Am×nγ1×n
T = 0 →γ n×1

TAm×n
T = γ n×1

TDm×n = 0

€

Lx p + x c = b is in the form

ΓT X = ΓT X0, Γ
T = [L I]

provided that Lx p0
+ x c0

= b

∴ ΓTD = 0

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

STATE-BASED PN SUPERVISION

THEOREM – Invariant-Based Controller Synthesis
(Moody, Antsaklis, 1998)

enforces the constraint when included in the closed loop

system with incidence matrix D = AT and state

assuming that the transitions with input arcs from Dc are controllable.
If the inequality is not true, the constraints can not be
enforced, since the initial conditions of the plant lie outside the range
defined by the constraints.

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Example

p1

p2

p3

t1

t2

t3
pc

STATE-BASED PN SUPERVISION

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Limitations
Specification: alternance of events moveto and takeshot (with a being the first event to
occur) required

p1
p2

moveto

moveto

takeshot takeshot
t1 t3

t2

t4

This controlled PN satisfies the
specification, but the PN controller
could not be synthesized using the
Invariant-Based Controller method
(the controller places form their own
invariant, separate from the plant PN
places – controller is not maximally
permissive)

⇔

p3 p4

STATE-BASED PN SUPERVISION

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets moveto

moveto

0,0 1,0
Ha 0,1

takeshot

Building an FSA Supervisor for a FSA Model
from Language Specifications

(Ramadge, Wonham, 1989)

Specification: alternance of events moveto and takeshot (with
moveto being the first event to occur) required

takeshot

moveto
0 1

Hspec
|| G

moveto

0 1

takeshot

moveto

takeshot

EVENT-BASED FSA SUPERVISION

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

Building an FSA Supervisor for a FSA Model
from Language Specifications

Ex.: mt mt mt mt ts ts mt mt ts ∈ L(G)
mt ts mt ts mt ts mt ts ∈ L(S/G)

s S(s)

EVENT-BASED FSA SUPERVISION

2002 - © Pedro U. Lima Discrete Event Dynamic Systems Petri Nets

FURTHER READINGS

•  J. Peterson, Petri Net Theory and the Modeling of Systems,
Prentice-Hall, 1981 - more on modeling, languages, decidability
and complexity issues
•  N. Viswanadham, Y. Narahari, Performance Modeling of
Automated Manufacturing Systems,Prentice-Hall, 1992 - more on
modeling of manufacturing systems
•  J. O. Moody, P. J. Antsaklis, Supervisory Control of Discrete
Event Systems Using Petri Nets, Kluwer Academic Publ., 1998 -
more on control of PNs

