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DEFINITION OF PETRI NET


Def.: A Petri net (PN) graph or structure is a weighted 
bipartite graph (P,T,A,w), where: 

P={p1, p2,... pn} is the finite set of places 
T ={t1, t2,... tm} is the finite set of transitions 

           is the set of arcs from places to 
transitions (pi,tj) and transitions to places (tj,pi)  

   is the weight function on the arcs 

Set of input places to  

Set of output places from  

Also useful: 
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MARKING, DYNAMICS AND STATE SPACE


Def.: A marked Petri net is a five-tuple (P,T,A,w,x), 
where (P,T,A,w) is a Petri net graph and x is a marking 
of the set of places P;      is 
the row vector associated with x. 

Def. (PN dynamics): The state transition function,   
  of Petri net (P,T,A,w,x), is defined for transition      

iff 

If  f(x,tj) is defined, the new state is  x’ = f(x,tj) where 
Enabled tj 
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REACHABLE STATES AND STATE EQUATIONS


Def. (Extended State Transition Function): 

Def. (Reachable states): the set of reachable states of PN 
(P,T,A,w,x) is 
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REACHABLE STATES AND STATE EQUATIONS


State Equation 

m-dimensional firing vector [0 ... 0 1 0 ... 0] 

jth position 

mxn matrix whose (j,i) entry is  
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PETRI NET LANGUAGES


Def. (Labeled Petri net): A labeled Petri net N is an eight-tuple 

where 

Def. (Languages generated and marked): 
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Lm(N)={(ab)na2, n ≥ 0} 

L(N)={a, aa, ab, (ab)n, (ab)na, (ab)na2, n ≥ 0} 

PETRI NET LANGUAGES
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COMPARISON WITH AUTOMATA


•  In PNs, the state information is distributed among a set of places which 

capture key conditions governing the system 

•  An automaton can always be represented as a PN, but not all PNs can 

be represented as finite-state automata (if the reachability set is finite, the 

PN can be represented as a FSA) – therefore the language expressive 

power is greater for PNs than for automata 

•  PNs have increased modularity for model-building 

•  All questions such as “is state x reachable?” are decidable for automata, 

but many of them are not for PNs 
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COMPARISON WITH AUTOMATA


Reg PNL 
Context 
Free 

Context Sensitive 

Type 0 

Petri Net Languages (PNL) include Regular Languages (Reg)

Therefore the expressive power of PNs to describe DEDS 
behaviors is greater than that of FSA. 

Lm(N)={anbn, n ≥ 0} 

Lm(N)={anbncn, n ≥ 0} 

€ 

PNL = K ⊆ E ∗ :∃N = (P,T,A,w,E,l,x0,Xm )[Lm (N) = K]{ }
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Def. (Boundedness): Place 
 
in PN N with 
initial state x0 is said to be k-bounded, or k-safe, if x(pi) ≤ k for 
all states x∈ R(N), i.e., for all reachable states.


Def. (State Coverability): Given a PN N with initial state 
x0, state y is said to be coverable, if there exists x∈ R(N) such 
that x(pi) ≥  y(pi) for all i=1,...,n.


ANALYSIS PROBLEMS


Def. (Conservation): A PN N with initial state x0 is said to 
be conservative with respect to γ = [γ1, γ2,..., γn]          if


for all reachable states.

€ 

γ ∈ Nn
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Def. (Liveness): A PN N with initial state x0 is said to be live if there 
always exists some sample path such that any transition can eventually fire 
from any state reached from x0 .


Liveness levels - a transition in a PN may be: 
•  Dead or L0-live, if the transition can never fire 
from this state 
•  L1-live, if there is some firing sequence from x0 
such that the transition can fire at least once 
•  L2-live, if the transition can fire at least k times 
for some given positive integer k 
•  L3-live, if there exists some infinite firing 
sequence in which the transition appears 
infinitely often 
•  L4-live, if the transition is L1-live for every 
possible state reached from x0 

L0 

L3 L2 

L1 

ANALYSIS PROBLEMS
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ANALYSIS PROBLEMS


If a Petri Net is bounded, state safety and blocking properties 
can determined algorithmically – we just have to build an 
equivalent FSA.


It is possible to identify dead transitions by checking for 
coverability.


There are many other analysis problems (e.g., finding T-
invariants, P-invariants, persistence)


Boundedness has to do with stability (the number of required 
resources does not explode.)
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ANALYSIS PROBLEMS

The Coverability Tree


Root node: first node of the tree, corresponding to the initial state of 
a given marked PN. 
Terminal node: any node from which no transition can fire. 
Duplicate node: node identical to a node already in the tree. 
Node dominance: let x and y be two states, i.e., nodes in the 
coverability tree. We say that “x dominates y”, denoted by x >d y, if 
the following two conditions hold: 

 (a) x(pi) ≥ y(pi), for all i=1,...,n 
 (b) x(pi) >y(pi), for at least some i=1,...,n 

Symbol ω: may be thought of as “infinity” in representing the 
marking of an unbounded place. It is used when a node dominance 
relationship is identified in the coverability tree. In particular, if x >d 
y, then for all i such that x(pi) >y(pi), the value of x(pi) is replaced by 
ω. Note that ω + k = ω. 
Ex.: [1 0 1 0] >d [1 0 0 0] ⇒ [1 0 1 0] is replaced by [1 0 ω 0] . 
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ANALYSIS PROBLEMS

The Coverability Tree Algorithm


Step 1: Initialize x = x0 (initial state) 
Step 2: For each new node x evaluate the transition function f(x,tj) for all 
tj∈T: 

Step 2.1: If f(x,tj) is undefined for all tj∈T (i.e., no transition is 
enabled at state x), then x is a terminal node. 
Step 2.2: If f(x,tj) is defined for some tj∈T, create a new node x’ = 
f(x,tj). Then: 

 Step 2.2.1: If x(pi) = ω for some pi, set x’(pi) = ω . 
 Step 2.2.2: If there exists a node y in the path from the root 

node x0 (included) to x’ such that x’ >d y, set x’(pi) = ω for all pi such 
that  x’(pi) >y(pi). 

 Step 2.2.3: Otherwise, set x’(pi) = f(x,tj).  
Step 3: If all new nodes are either terminal or duplicate nodes, stop. 
Otherwise go back to Step 2. 
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The Coverability Tree
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•  The coverability tree is always finite.

•  A PN is bounded iff the symbol ω never appears in the coverability tree. 
If ω does not appear, the state space of the PN is finite.

•  Coverability can be determined using the coverability tree.

•  Conservation is checked by solving r equations of the form


with n+1 unknowns (the n weights plus C), where r is the number of nodes 
of the coverability tree. If ω  appears in the coverability tree for some place, 
the corresponding  γ must be zero.

•  Reachability of a specific state can not be checked, when the ω symbol 
appears in the coverability tree, because it may represent different integer 
values.

•  Liveness of transitions can not, in the general case, be determined by 
this technique as well


ANALYSIS PROBLEMS

Applications and Limitations of the the Coverability Tree
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State Equation 
For the extended version of the transition function 

m-dimensional firing counting vector 

Number of times transition t2 fires 
in the sequence 

mxn matrix whose (j,i) entry is  

ANALYSIS PROBLEMS

Linear-Algebraic Techniques
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A necessary condition for state x to be reachable from initial 
state x0 is for the equation


to have a solution v where all the entries of v are non-
negative integers.


firing count vector


ANALYSIS PROBLEMS

Linear-Algebraic Techniques


The existence of a non-negative integer solution v does not 
guarantee that the entries in v can be mapped to an actual 
feasible ordering of transition firings.
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ANALYSIS PROBLEMS

Linear-Algebraic Techniques


Particular cases: 
•  if (*) has no solution OR 

 has a solution with negative v elements OR 
 has a solution with non-integer v elements 

Then x is not reachable from x0 

•  if (*) has a solution v with non-negative elements 
Then there may exist a transition sequence leading 
from x0 to x, but that is not guaranteed. 

Multiple solutions of (*) are possible 

Whenever there may exist a solution, at least the number of 
alternatives to be checked is significantly reduced. 
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Conservation can be checked by solving


•  More powerful results can be obtained based on this 
technique for sub-classes of PNs, such as marked graphs. 

ANALYSIS PROBLEMS

Linear-Algebraic Techniques


NOTE: compare with the coverability tree technique. There x0 matters! 

Here, all possible x0 are implicitly checked. If there exists a single one 
that violates conservation, there is no solution for (**). 
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PETRI NET Sub-Classes


Petri net sub-classes, with smaller modeling capability, but larger decision 
power: 

•  State Machines: Each transition must have exactly one input place 
and one output place 

•  Marked Graphs: Each place is the input of exactly one transition and 
the output of exactly one transition 

•  Free-Choice PNs: If a place is input of more than one transition 
(potential conflict), then it is the single input place of each of those 
transitions 

€ 

∀t j ∈T
∀pi ∈I (t j ),   either I(t j ) = {pi} or  O(pi) = {t j} .
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Place Invariants correspond to sets of places whose 

weighted token count remains constant for all possible 
markings, i.e., every integer vector which satisfies


€ 

Aγ T = 0 

ANALYSIS PROBLEMS

Linear-Algebraic Techniques


P2 P3 

P4 P5 

P6 

€ 

γ = 2 1 1 1 1 2[ ]→ P1,P2,P3,P4 ,P5,P6

T2 

T1 

T3 

T4 

T5 

is aP-invariant fo this net 

Example 
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Transition Invariants correspond to sets of transition 

firings that cause the marking of a net to cycle, i.e., x = x0 
after some N  firings


€ 

vA = 0 

ANALYSIS PROBLEMS

Linear-Algebraic Techniques
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€ 

v = 1 1 1 1 1[ ]→t1,t 2,t 3,t 4,t 5

T2 

T1 

T3 

T4 

T5 

is a T-invariant fo this net 

Example 
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G 

S 

s S(s) 

•    
•  If we wish to restrict the behavior of 
G, but not more than necessary: 

•  If we wish to restrict the behavior of 
G as much as possible: 

largest sublanguage of 
La which is controllable  

•  Regular languages are closed under most supervisor synthesis 
operations, i.e., if La and Lr are regular, so will be 
       .


smallest superlanguage of 
Lr which is controllable  

CONTROL OF PETRI NETS
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CONTROL OF PETRI NETS


•  If Lm(G) is not regular (e.g., G is an unbounded PN) but Lam is 

regular and controllable, S can be realized by a finite-state 
deterministic automaton (FSA).


•  If Lm(G) is regular but Lam is controllable but not regular, S can 
not be realized by an FSA, but one may be able to realize it by a 

PN – see next example
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Example: 

a 
b 

b 

€ 

L(G) = a∗b∗

La = anbm : n ≥ m ≥ 0{ }
a 

b 

b 

s 

p3 

CONTROL OF PETRI NETS

An Example
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CONTROL OF PETRI NETS

An Example


Dining Philosophers revisited 

2 philosophers / possible deadlock 5 philosophers / no deadlock 

1 philosopher 
interacting with 2 forks 

complete model for 
2 philosophers and 2 forks 
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CONTROL OF PETRI NETS


•  If both  Lm(G) and Lam are not regular, but we wish them to be PN 

languages, several problems may occur, including non-closure 
under the ↑C and ↓C operations – solvable using inhibitor arcs (at 

the expense of reduced analysis capabilities).


•  If both  Lm(G) and Lam are regular, using PN models may lead to 
more compact representations than FSA.


•  If specifications are made in terms of forbidden states, rather than 
admissible languages, several results exist for supervisor synthesis, 
mostly based on linear-algebraic techniques.
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Building PN Supervisor for a PN Model 
from Linear Predicates on the State Vectors 

(Moody, Antsaklis, 1998) 

Specification:  restrict the reachable states xp of a PN model, such that 

The inequality can be seen as the logical conjunction of nc separate 
inequalities 

The plant (e.g., robotic task, communication system) is modeled by a PN with 
incidence matrix Dp= Ap 

The controller net is a PN with incidence matrix Dc made up of the plant 
transitions and a separate set of places 

STATE-BASED PN SUPERVISION 
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(Moody, Antsaklis, 1998) 

Introducing nc slack variables to turn the inequality into an equality 

€ 

Lx p + x c = b,      x c nc ×1[ ]

The slack variables represent nc new places that hold the extra tokens required to 
meet the equality, and are part of the separate controller net. 

nc place invariants 

€ 

ΓTD = L I[ ]
Dp
Dc

 

 
 

 

 
 = 0

Controlled (closed loop) PN with incidence matrix D and state  

€ 

x =
x p
x c

 

 
 

 

 
 ,  x0 =

x p0

x c0

 

 
 

 

 
 

enforces the constraint                  when included in the closed loop system 

STATE-BASED PN SUPERVISION 

€ 

x1×nγ1×n
T = x0 1×n

γ1×n
T →γ n×1

Txn×1 = γ n×1
Tx0n×1

Am×nγ1×n
T = 0 →γ n×1

TAm×n
T = γ n×1

TDm×n = 0 

€ 

Lx p + x c = b is in the form

ΓT X = ΓT X0,     Γ
T = [L I]

provided that Lx p0
+ x c0

= b 

∴  ΓTD = 0
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STATE-BASED PN SUPERVISION 

THEOREM – Invariant-Based Controller Synthesis 
(Moody, Antsaklis, 1998) 

enforces the constraint                  when included in the closed loop  

system with incidence matrix D = AT and state 

assuming that the transitions with input arcs from Dc are controllable. 
If the inequality                       is not true, the constraints can not be 
enforced, since the initial conditions of the plant lie outside the range 
defined by the constraints.  
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Example 

p1 

p2 

p3 

t1 

t2 

t3 
pc 

STATE-BASED PN SUPERVISION 
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Limitations 
Specification: alternance of events moveto and takeshot (with a being the first event to 
occur) required 

p1 
p2 

moveto 

moveto 

takeshot takeshot 
t1 t3 

t2 

t4 

This controlled PN satisfies the 
specification, but the PN controller 
could not be synthesized using the 
Invariant-Based Controller method 
(the controller places form their own 
invariant, separate from the plant PN 
places – controller is not maximally 
permissive)   

⇔
 

p3 p4 

STATE-BASED PN SUPERVISION 
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moveto 

0,0 1,0 
Ha 0,1 

takeshot 

Building an FSA Supervisor for a FSA Model 
from Language Specifications 

(Ramadge, Wonham, 1989) 

Specification:  alternance of events moveto and takeshot (with 
moveto being the first event to occur) required 

takeshot 

moveto 
0 1 

Hspec 
|| G 

moveto 

0 1 

takeshot 

moveto 

takeshot 

EVENT-BASED FSA SUPERVISION 
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Building an FSA Supervisor for a FSA Model 
from Language Specifications 

Ex.: mt mt mt mt ts ts mt mt ts ∈ L(G) 
mt ts mt ts mt ts mt ts ∈ L(S/G)  

s S(s) 

EVENT-BASED FSA SUPERVISION 
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FURTHER READINGS


•  J. Peterson, Petri Net Theory and the Modeling of Systems, 
Prentice-Hall, 1981 - more on modeling, languages, decidability 
and complexity issues 
•  N. Viswanadham, Y. Narahari, Performance Modeling of 
Automated Manufacturing Systems,Prentice-Hall, 1992 - more on 
modeling of manufacturing systems 
•  J. O. Moody, P. J. Antsaklis, Supervisory Control of Discrete 
Event Systems Using Petri Nets, Kluwer Academic Publ., 1998 - 
more on control of PNs 


