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Def.: A Petri net (PN) graph or structure is a weighted
bipartite graph (P, T,A,w), where:
P={p,, p,,... p,} is the finite set of places
T ={t, t,... t.}is the finite set of fransitions
AC (PxT)U(TxP) s the set of arcs from places to
transitions (p, ) and transitions to places (f,p;)
w:A—11,2,3,...} is the weight function on the arcs

Also useful:
Set of input places to ¢, €T
I(t;)={p; EP:(p;;t;)E A}

Set of output places from ;€T
O(t,) ={p,EP:(t,,p)E 4}
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EXAMPLE OF PETRI NET
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P=1p1.p2. P34}

T ={.t2.13}
A={(p1,11),(p2,12),(P2,13),(P3,83), (11, P2), (11, P3), (2, P1), (13, P3), (13, P4) }
All weights are =1
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Def
iff
If A

MARKING, DYNAMICS AND STATE SPACE

Def.: A marked Petri net is a five-tuple (P.T,A,w,x),
where (P, T,A,w) is a Petri net graph and x is a marking
of the set of places P; X =[x(p;),x(p3),....x(p,)]EN" is
the row vector associated with x.

. (PN dynamics): The state transition function, f : N" xT — N"
of Petri net (P, T,A,w,X), is defined for transition ?/; eT

x(p;)= W(piatj)avpi El(fj)- Enabled {;
x,t;) is defined, the new state is x" = f(x,t) where
xX'(p))=x(p;)-w(p;,t;))+w(t;,p;), i=1,....n
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MARKING, DYNAMICS AND STATE SPACE
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MARKING, DYNAMICS AND STATE SPACE
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MARKING, DYNAMICS AND STATE SPACE
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x=[1 0 1 0]
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MARKING, DYNAMICS AND STATE SPACE
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MARKING, DYNAMICS AND STATE SPACE
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Def. (Extended State Transition Function):
f:N'"xT* —-N"
f(x,e)=x
f(x,st):= f(f(x,9),0), tET,sET"

Def. (Reachable states): the set of reachable states of PN
(PTAwxXx)1s R[(P,T,A,w,x)]={yEN" :AIsET"(f(X,5) =Y)}
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State Equation

mxn matrix whose (j,i) entry is

_l/ aji=wt;,pi)=w(pi,t;)

m-dimensional firing vector[0...01 0 ... 0]
|

jth position
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INCIDENCE MATRIX A
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!ﬁ PETRI NET LANGUAGES
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N = (P,T,A,W,E,l,xo,Xm)

where
(P,T,A,w)1s a PN graph
E 1s the event set for transition labeling

[ : T — E 1s the transition labeling function
xo EN" is the initial state
X,, € N" is the set of marked states
Def. (Languages generated and marked):
L(N):={l(s)EE" :sET and f(xy,s)is defined}
L,(N)={l(s)EL(N):sET and f(xy,5)EX,,}
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E = {a,b}
d

G () =.1(12) = b.1(t;) = 2
° Q b xg=[l 0 0 0]

Pi % _
t, Q: X,={0 0 &k 1]k>0

Generated string: € in L
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%)
E = {a,b}
d

6 () =a,1(t) =, (13) =2
Q b xg=[l 0 0 0]

Pi % _
t, @: X,={0 0 &k 1]k>0

Generated string: a in L
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%)
E = {a,b}
d

- t, I(t,) =,1(t) = b, I(t;) =a
Q b xg=[l 0 0 0]

Pi % _
t, @: X,={0 0 &k 1]k>0

Generated string: ab in L
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%)
E = {a,b}
A 4 a

0 () =a,1(t) =, (13) =2
Q b xg=[l 0 0 0]

Pi % _
t, @: X,={0 0 &k 1]k>0

Generated string: aba in L
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%)
E = {a,b}
A 4 a

b I(h)=a,l(t)=Db,l(13) =2
@ b xg=[l 0 0 0]

t, C V‘ X, ={0 0 k 1]k>0

Y

Generated string: abaa in L and L,
L,(N)={(abya, n = 0}

L(N)={a, aa, ab, (ab)”, (ab)"a, (ab)"a?, n = 0}
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* In PNs, the state information is distributed among a set of places which
capture key conditions governing the system

« An automaton can always be represented as a PN, but not all PNs can
be represented as finite-state automata (if the reachability set is finite, the
PN can be represented as a FSA) — therefore the language expressive
power is greater for PNs than for automata

* PNs have increased modularity for model-building

* All questions such as “is state x reachable?” are decidable for automata,

but many of them are not for PNs
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Petri Net Languages (PNL) include Regular Languages (Reg)
Therefore the expressive power of PNs to describe DEDS
behaviors is greater than that of FSA.

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima m
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ANALYSIS PROBLEMS

Def. (Boundedness): Place p, &P  in PN N with
initial state X, is said to be k-bounded, or k-safe, if x(p;) < k for
all states X& R(N), i.e., for all reachable states.

Def. (State Coverability): Given a PN N with initial state
Xy State Y is said to be coverable, if there exists X& R(N) such
that x(p,) = y(p) for all i=1,...,n.

Def. (Conservation): A PN N with initial state X, is said to
be conservative with respect to y = [y, Y2,---» Y] v EN"if

n
Y 7;x(p;) = constant
i=1

for all reachable states.
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always exists some sample path such that any transition can eventually fire
from any state reached from X, .

Liveness levels - a transition in a PN may be:
» Dead or L0O-live, 1f the transition can never fire
from this state
* L1-live, 1f there 1s some firing sequence from X,
such that the transition can fire at least once
o [.2-live, if the transition can fire at least k£ times Ll

L2

for some given positive integer k

e L.3-live, if there exists some infinite firing L0
sequence in which the transition appears Q
infinitely often

* L4-live, 1f the transition is L1-live for every

possible state reached from x,
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If a Petri Net is bounded, state safety and blocking properties
can determined algorithmically — we just have to build an
equivalent FSA.

It is possible to identify dead transitions by checking for
coverability.

There are many other analysis problems (e.g., finding T-
invariants, P-invariants, persistence)

Boundedness has to do with stability (the number of required
resources does not explode.)
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. first node of the tree, corresponding to the initial state of
a given marked PN.
. any node from which no transition can fire.
: node identical to a node already in the tree.

. let x and y be two states, i.e., nodes in the
coverability tree. We say that “x dominates y”, denoted by x >,y, if
the following two conditions hold:

(a) x(p;) = y(p;), for all i=1,...,n
(b) x(p;) >y(p;), for at least some i=1,...,n
: may be thought of as “infinity” in representing the
marking of an unbounded place. It is used when a node dominance
relationship is identified in the coverability tree. In particular, if x >
y, then for all i such that x(p;) >y(p;), the value of x(p;) is replaced by
w. Note that w + k = w.

Ex:[1010]>,[1000]=1[1010]is replaced by [1 0 w 0] .
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Step 2: For each new node x evaluate the transition function f(x,{) for all
teT:
Step 2.1: If f(x,{) is undefined for all {=T (i.e., no transition is
enabled at state x), then x is a terminal node.
Step 2.2: If f(x,t) is defined for some {<T, create a new node x’ =
f(x,t;). Then:

Step 2.2.1: If x(p;) = w for some p,, set xX'(p;) = w.

Step 2.2.2: If there exists a node y in the path from the root
node X, (included) to x’ such that X’ >, y, set X'(p;) = w for all p, such
that X'(p;) >y(p))-

Step 2.2.3: Otherwise, set x’(p;) = f(x,1).

Step 3: If all new nodes are either terminal or duplicate nodes, stop.
Otherwise go back to Step 2.
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ANALYSIS PROBLEMS
The Coverability Tree
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ANALYSIS PROBLEMS
The Coverability Tree
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Applications and Limitations of the the Coverability Tree
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* A PN is bounded iff the symbol w never appears in the coverability tree.
If w does not appear, the state space of the PN is finite.
» Coverability can be determined using the coverability tree.

» Conservation is checked by solving r equations of the form
n
Yyix(p)=C
i=1

with n+ /] unknowns (the n weights plus C), where r is the number of nodes

of the coverability tree. If @ appears in the coverability tree for some place,
the corresponding Yy must be zero.

* Reachability of a specific state can not be checked, when the w symbol

appears in the coverability tree, because it may represent different integer
values.

 Liveness of transitions can not, in the general case, be determined by
this technique as well
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State Equation
For the extended version of the transition function
mxn matrix whose (j,i) entry is
a;i=wt;,p;)-wp;t;)
m-dimensional firing counting vector (I’l,1 @ e 1, J

Number of times transition t2 fires
in the sequence
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A necessary condition for state X to be reachable from initial
state X, is for the equation

firing count vector “ @ =X —Xg
to have a solution v where all the entries of v are non-
negative integers.

The existence of a non-negative integer solution v does not
guarantee that the entries in v can be mapped to an actual
feasible ordering of transition firings.
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Particular cases:
« if (*) has no solution OR
has a solution with negative v elements OR
has a solution with non-integer v elements
Then x is not reachable from x,

« if (*) has a solution v with non-negative elements
Then there may exist a transition sequence leading
from x, to x, but that is not guaranteed.

Multiple solutions of (*) are possible

Whenever there may exist a solution, at least the number of
alternatives to be checked is significantly reduced.



Iﬁ ANALYSIS PROBLEMS
Linear-Algebraic Techniques

INSTITUTO
SUPERIOR
TECNICO

Conservation can be checked by solving

NOTE: compare with the coverability tree technique. There x, matters!

Here, all possible x, are implicitly checked. If there exists a single one
that violates conservation, there is no solution for (**).

* More powerful results can be obtained based on this
technique for sub-classes of PNs, such as marked graphs.
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Petri net sub-classes, with smaller modeling capability, but larger decision
power:
 State Machines: Each transition must have exactly one input place
and one output place
(Y e (1) = 1a QL) = 7).
« Marked Graphs: Each place is the input of exactly one transition and
the output of exactly one transition
(Y peplB) = 11| OB) =)
* Free-Choice PNs: If a place is input of more than one transition
(potential conflict), then it is the single input place of each of those
transitions

thETVpi 1t either I(z,) ={p;} or O(p,)={t,} .
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ANALYSIS PROBLEMS
Linear-Algebraic Techniques

Place Invariants correspond to sets of places whose

weighted token count remains constant for all possible

markings, i.e., every integer vector which satisfies

Ay =0

P2 T2 P3
T1 T4 P6

P4 T3 P5

TS5

Example

y=[2 1 11 1 2]—P.P,P.P,.P.P

is aP-invariant fo this net
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ANALYSIS PROBLEMS
Linear-Algebraic Techniques

Transition Invariants correspond to sets of transition

firings that cause the marking of a net to cycle, i.e., X = X,
after some N firings

vA =()

P2 T2 P3

Example

P T1 T4 PG6

P4 T3  P5 v=[1 1 1 1 1]=t1,05.0,15

is a T-invariant fo this net
T5
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* If we wish to restrict the behavior of
S . G, but not more than necessary:
_71C largest subl f
(s s LSTG) = La™—— e s controllable

* |If we wish to restrict the behavior of
G as much as possible:

e C_»smallest superlanguage of
L(S / G) - LI’ L, which is controllable

* Regular languages are closed under most supervisor synthesis

operations, i.e., if L, and L, are regular, so will be
LgC and L},C
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CONTROL OF PETRI NETS

 If L (G) is not regular (e.g., G is an unbounded PN) but L__ is
regular and controllable, S can be realized by a finite-state

deterministic automaton (FSA).

* If L (G) is regular but L is controllable but not regular, S can
not be realized by an FSA, but one may be able to realize it by a

PN — see next example
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S(s) = {{a,b}. if x(p3)>0
fa} if x(p3) =0




T

INSTITUTO
SUPERIOR
TECNICO

CONTROL OF PETRI NETS

An Example

Dining Philosophers revisited

1 philosopher
interacting with 2 forks

fork 1 available

complete model for
2 philosophers and 2 forks

(b)

2 philosophers / possible deadlock

5 philosophers / no deadlock
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languages, several problems may occur, including non-closure
under the 1C and | C operations — solvable using inhibitor arcs (at

the expense of reduced analysis capabilities).

* If both L (G) and L, are regular, using PN models may lead to

more compact representations than FSA.

* |f specifications are made in terms of forbidden states, rather than
admissible languages, several results exist for supervisor synthesis,
mostly based on linear-algebraic techniques.
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from Linear Predicates on the State Vectors

(Moody, Antsaklis, 1998)

Specification:  restrict the reachable states x, of a PN model, such that

Lx, <b, L b,

[ngxn]>

n. is the number of constraints

The inequality can be seen as the logical conjunction of n_ separate
inequalities

The plant (e.g., robotic task, communication system) is modeled by a PN with
incidence matrix D = A,

The controller net is a PN with incidence matrix D. made up of the plant
transitions and a separate set of places
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Xc [n.x1]

The slack variables represent ». new places that hold the extra tokens required to

meet the equality, and are part|of the separate controller net.

Controlled (closed loop) PN with incidence matrix D and state x= [i”] X, =

ifb-Lx, =0
then a PN controller with incidence matrix D, and initial state x

D, =-LD,

C

X, =b—LXp0

enforces the constraint Lx, =b  when included in the closed loop system

Discrete Event Dynamic Systems 2002 - © Pedro U. Lima m
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STATE-BASED PN SUPERVISION

(Moody, Antsaklis, 1993)
THEOREM - Invariant-Based Controller Synthesis

ifb-Lx, =0
then a PN controller with incidence matrix D, = A] andinitial state Xc,

D, --LD,

X, =b-Lx,

enforces the constraint Lx, <b when included in the closed loop

X X
p Po
], XO l |:

X, Xe,

assuming that the transitions with input arcs from D, are controllable.
If the inequality b-Lx, =0 is not true, the constraints can not be

enforced, since the initial conditions of the plant lie outside the range
defined by the constraints.

system with incidence matrix D = AT and state X =
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STATE-BASED PN SUPERVISION

pC

Example
spec.: X, =2
-1 0
D,=11 -1
0 1

L=[0o 1 o]b=2

|

0
-1

,x, =3 0 o]

D,=-LD,=[-1 1 0]
X, =b-Lx, =2
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occur) required

p3 p4

This controlled PN satisfies the moveto caestot takeshot
specification, but the PN controller
could not be synthesized using the 0 (@ g > P2

Invariant-Based Controller method t2
(the controller places form their own moveto J
invariant, separate from the plant PN

places — controller is not maximally
permissive)

S(s)
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(Ramadge, Wonham, 1989)

Specification: alternance of events moveto and takeshot (with
moveto being the first event to occur) required

Hspec moveto )@ - OVeto @ eshot
( I (moveto @
>

takeshot
takeshot

H moveto takesho
]Ja==ffma:”(; 61_)Qi§> 1&)( t§‘l|®

moveto
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EVENT-BASED FSA SUPERVISION

Building an FSA Supervisor for a FSA Model
from Language Specifications

4

Ha @ moveto takeshot
B‘II' ‘II'(———————‘II’

moveto

S(s)

Ex..mt mt mt mt ts ts mt mt ts € L(G)
mt ts mt ts mt ts mt ts € L(S/G)
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FURTHER READINGS

* J. Peterson, Petri Net Theory and the Modeling of Systems,
Prentice-Hall, 1981 - more on modeling, languages, decidability
and complexity issues

* N. Viswanadham, Y. Narahari, Performance Modeling of
Automated Manufacturing Systems,Prentice-Hall, 1992 - more on
modeling of manufacturing systems

* J. O. Moody, P. J. Antsaklis, Supervisory Control of Discrete
Event Systems Using Petri Nets, Kluwer Academic Publ., 1998 -
more on control of PNs



