

DISCRETE EVENT DYNAMIC SYSTEMS

PETRI NETS

Pedro U. Lima

Instituto Superior Técnico (IST)
Instituto de Sistemas e Robótica (ISR)
Av.Rovisco Pais, 1
1049-001 Lisboa
PORTUGAL

November 2002

All the rights reserved

Petri Nets

Basic Notions
Comparison with Automata
Analysis Problems and Techniques
Control of Petri Nets

DEFINITION OF PETRI NET

Def.: A Petri net (PN) graph or structure is a weighted bipartite graph (*P*,*T*,*A*,*w*), where:

 $P=\{p_1, p_2, ..., p_n\}$ is the finite set of *places* $T=\{t_1, t_2, ..., t_m\}$ is the finite set of *transitions* $A\subseteq (P\times T)\cup (T\times P)$ is the set of arcs from places to transitions (p_i, t_i) and transitions to places (t_i, p_i) $w:A \to \{1,2,3,...\}$ is the *weight function* on the arcs

Also useful:

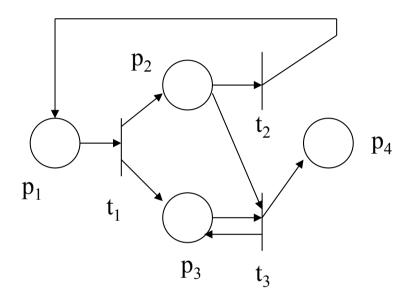
Set of input places to
$$t_j \in T$$

$$I(t_j) = \{p_i \in P : (p_i, t_j) \in A\}$$

Set of output places from $t_i \in T$

$$O(t_j) = \{ p_i \in P : (t_j, p_i) \in A \}$$

EXAMPLE OF PETRI NET



$$P = \{p_1, p_2, p_3, p_4\}$$

$$T = \{t_1, t_2, t_3\}$$

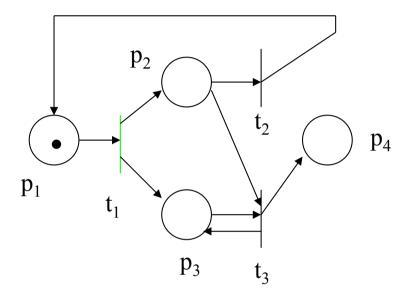
$$A = \{(p_1, t_1), (p_2, t_2), (p_2, t_3), (p_3, t_3), (t_1, p_2), (t_1, p_3), (t_2, p_1), (t_3, p_3), (t_3, p_4)\}$$
All weights are = 1

Def.: A marked Petri net is a five-tuple (P,T,A,w,\mathbf{x}) , where (P,T,A,w) is a Petri net graph and \mathbf{x} is a marking of the set of places P; $\mathbf{x} = [x(p_1),x(p_2),...,x(p_n)] \in \mathbb{N}^n$ is the row vector associated with \mathbf{x} .

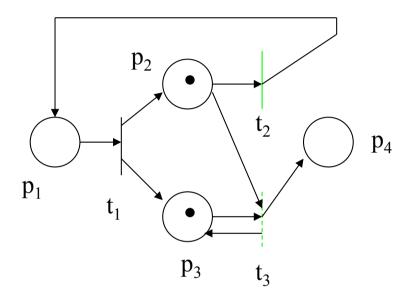
Def. (PN dynamics): The state transition function, $f: \mathbb{N}^n \times T \to \mathbb{N}^n$ of Petri net (P, T, A, w, \mathbf{x}) , is defined for transition $t_j \in T$

$$x(p_i) \ge w(p_i, t_j), \forall p_i \in I(t_j).$$
 Enabled t_j

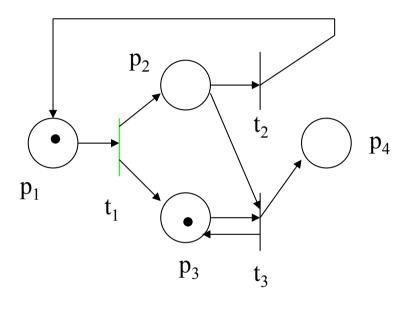
If $f(\mathbf{x},t_j)$ is defined, the new state is $\mathbf{x}' = f(\mathbf{x},t_j)$ where $x'(p_i) = x(p_i) - w(p_i,t_j) + w(t_j,p_i)$, i = 1,...,n.



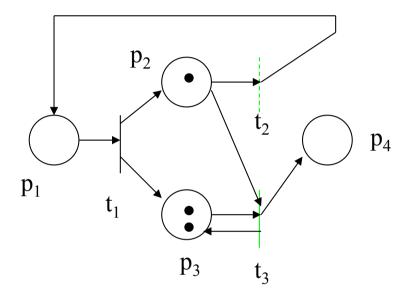
$$\mathbf{x} = \mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$



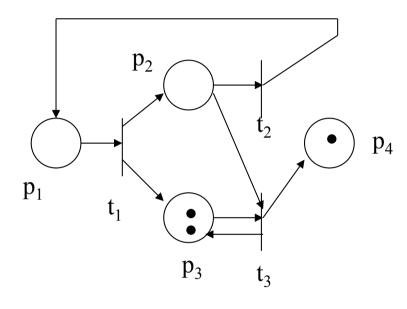
$$\mathbf{x} = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$$



$$\mathbf{x} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$$



$$\mathbf{x} = \begin{bmatrix} 0 & 1 & 2 & 0 \end{bmatrix}$$



$$\mathbf{x} = \begin{bmatrix} 0 & 0 & 2 & 1 \end{bmatrix}$$

REACHABLE STATES AND STATE EQUATIONS

Def. (Extended State Transition Function):

$$f: \mathbb{N}^n \times T^* \to \mathbb{N}^n$$

$$f(\mathbf{x}, \boldsymbol{\varepsilon}) := \mathbf{x}$$

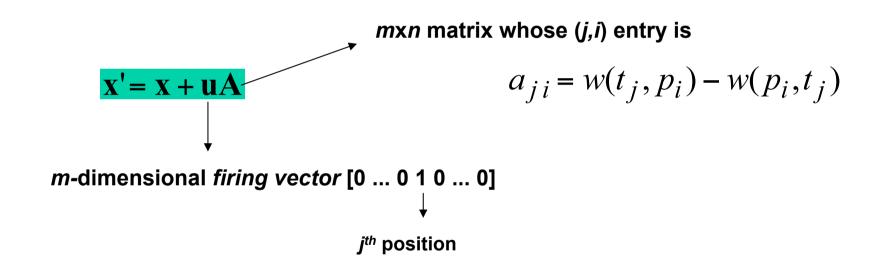
$$f(\mathbf{x},st) := f(f(\mathbf{x},s),t), t \in T, s \in T^*$$

Def. (Reachable states): the set of reachable states of PN

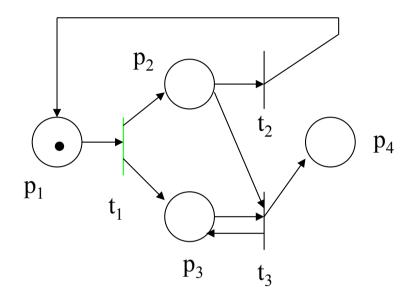
$$(P, T, A, w, \mathbf{x})$$
 is $R[(P, T, A, w, \mathbf{x})] := \{ \mathbf{y} \in \mathbb{N}^n : \exists s \in T^* (f(\mathbf{x}, s) = \mathbf{y}) \}$

REACHABLE STATES AND STATE EQUATIONS

State Equation



INCIDENCE MATRIX A



$$\mathbf{A} = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{t_1} \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$$

$$[0 \ 1 \ 1 \ 0] = [1 \ 0 \ 0 \ 0] + [1 \ 0 \ 0]$$

Def. (Labeled Petri net): A labeled Petri net N is an eight-tuple

$$N = (P, T, A, w, E, l, \mathbf{x}_0, \mathbf{X}_m)$$

where

(P,T,A,w) is a PN graph

E is the event set for transition labeling

 $l: T \rightarrow E$ is the transition labeling function

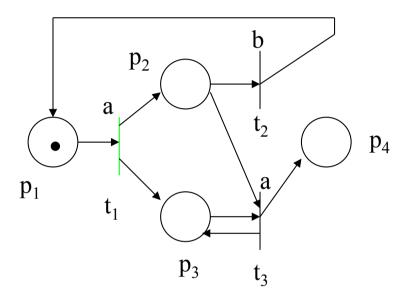
 $\mathbf{x}_0 \in \mathbf{N}^n$ is the initial state

 $\mathbf{X}_m \subseteq \mathbf{N}^n$ is the set of marked states

Def. (Languages generated and marked):

$$L(N) := \{l(s) \in E^* : s \in T^* \text{ and } f(\mathbf{x}_0, s) \text{ is defined}\}$$

$$L_m(N) := \{l(s) \in L(N) : s \in T^* \text{ and } f(\mathbf{x}_0, s) \in \mathbf{X}_m\}$$



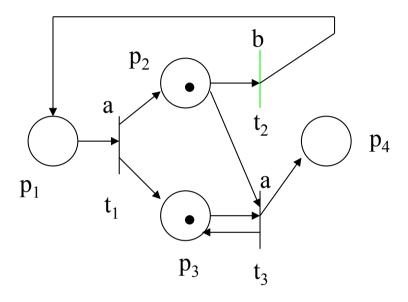
$$E = \{a, b\}$$

$$l(t_1) = a, l(t_2) = b, l(t_3) = a$$

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix} k > 0 \}$$

Generated string: ε in L



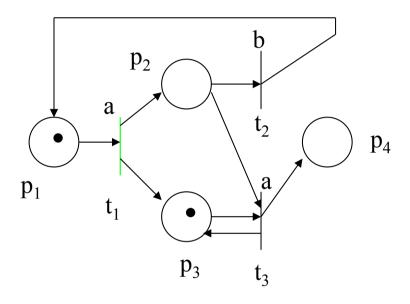
$$E = \{a, b\}$$

$$l(t_1) = a, l(t_2) = b, l(t_3) = a$$

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix} k > 0 \}$$

Generated string: a in L



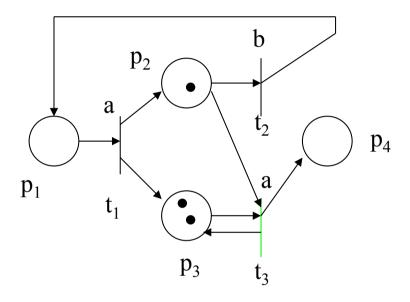
$$E = \{a, b\}$$

$$l(t_1) = a, l(t_2) = b, l(t_3) = a$$

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix}, k > 0 \}$$

Generated string: ab in L



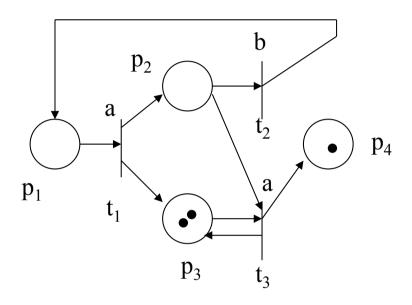
$$E = \{a, b\}$$

$$l(t_1) = a, l(t_2) = b, l(t_3) = a$$

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix} k > 0 \}$$

Generated string: aba in L



$$E = \{a, b\}$$

$$l(t_1) = a, l(t_2) = b, l(t_3) = a$$

$$\mathbf{x}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{X}_m = \{ \begin{bmatrix} 0 & 0 & k & 1 \end{bmatrix} k > 0 \}$$

Generated string: abaa in L and L_m

$$L_m(N) = \{(ab)^n a^2, n \ge 0\}$$

$$L(N) = \{a, aa, ab, (ab)^n, (ab)^n a, (ab)^n a^2, n \ge 0\}$$

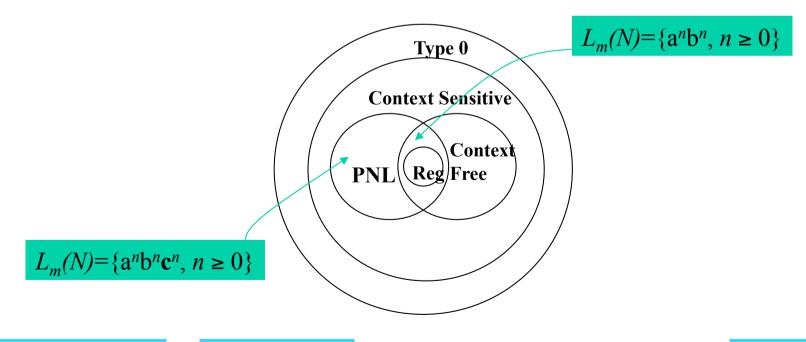
COMPARISON WITH AUTOMATA

- In PNs, the state information is distributed among a set of places which capture key conditions governing the system
- An automaton can always be represented as a PN, but not all PNs can be represented as *finite-state* automata (if the reachability set is finite, the PN can be represented as a FSA) therefore the language expressive power is greater for PNs than for automata
- PNs have increased modularity for model-building
- All questions such as "is state *x* reachable?" are *decidable* for automata, but many of them are not for PNs

COMPARISON WITH AUTOMATA

$$PNL = \left\{ K \subseteq E^* : \exists N = (P, T, A, w, E, l, \mathbf{x_0}, \mathbf{X_m}) [L_m(N) = K] \right\}$$

Petri Net Languages (PNL) include Regular Languages (Reg) Therefore the expressive power of PNs to describe DEDS behaviors is greater than that of FSA.



Def. (**Boundedness**): Place $p_i \in P$ in PN N with initial state $\mathbf{x_0}$ is said to be k-bounded, or k-safe, if $x(p_i) \le k$ for all states $\mathbf{x} \in R(N)$, i.e., for all reachable states.

Def. (State Coverability): Given a PN N with initial state $\mathbf{x_0}$, state \mathbf{y} is said to be *coverable*, if there exists $\mathbf{x} \in R(N)$ such that $x(p_i) \ge y(p_i)$ for all i=1,...,n.

Def. (Conservation): A PN N with initial state $\mathbf{x_0}$ is said to be conservative with respect to $\gamma = [\gamma_1, \gamma_2, ..., \gamma_n]$ $\gamma \in N^n$ if

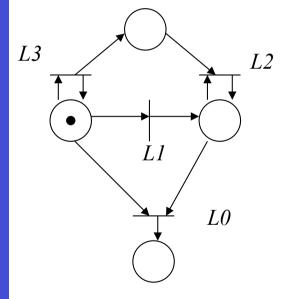
$$\sum_{i=1}^{n} \gamma_i x(p_i) = \text{constant}$$

for all reachable states.

Def. (Liveness): A PN N with initial state $\mathbf{x_0}$ is said to be *live* if there always exists some sample path such that any transition can eventually fire from any state reached from $\mathbf{x_0}$.

Liveness levels - a transition in a PN may be:

- *Dead or L0-live*, if the transition can never fire from this state
- *L1-live*, if there is some firing sequence from $\mathbf{x_0}$ such that the transition can fire at least once
- L2-live, if the transition can fire at least k times for some given positive integer k
- *L3-live*, if there exists some infinite firing sequence in which the transition appears infinitely often
- *L4-live*, if the transition is L1-live for every possible state reached from $\mathbf{x_0}$



If a Petri Net is bounded, state safety and blocking properties can determined algorithmically – we just have to build an equivalent FSA.

It is possible to identify dead transitions by checking for coverability.

There are many other analysis problems (e.g., finding T-invariants, P-invariants, persistence)

Boundedness has to do with *stability* (the number of required resources does not explode.)

Root node: first node of the tree, corresponding to the initial state of a given marked PN.

Terminal node: any node from which no transition can fire. Duplicate node: node identical to a node already in the tree. Node dominance: let \mathbf{x} and \mathbf{y} be two states, i.e., nodes in the coverability tree. We say that " \mathbf{x} dominates \mathbf{y} ", denoted by $\mathbf{x} >_{d} \mathbf{y}$, if the following two conditions hold:

- (a) $x(p_i) \ge y(p_i)$, for all i=1,...,n
- (b) $x(p_i) > y(p_i)$, for at least some i=1,...,n

Symbol ω : may be thought of as "infinity" in representing the marking of an unbounded place. It is used when a node dominance relationship is identified in the coverability tree. In particular, if $\mathbf{x} >_d \mathbf{y}$, then for all i such that $\mathbf{x}(\mathbf{p}_i) > \mathbf{y}(\mathbf{p}_i)$, the value of $\mathbf{x}(\mathbf{p}_i)$ is replaced by ω . Note that $\omega + k = \omega$.

Ex.: $[1\ 0\ 1\ 0] >_d [1\ 0\ 0\ 0] \Rightarrow [1\ 0\ 1\ 0]$ is replaced by $[1\ 0\ \omega\ 0]$.

INSTITUTO SUPERIOR TÉCNICO

ANALYSIS PROBLEMS The Coverability Tree Algorithm

Step 1: Initialize $x = x_0$ (initial state)

Step 2: For each new node **x** evaluate the transition function $f(\mathbf{x},t_j)$ for all $t_i \in T$:

Step 2.1: If $f(\mathbf{x},t_j)$ is undefined for all $t_j \in T$ (i.e., no transition is enabled at state \mathbf{x}), then \mathbf{x} is a *terminal node*.

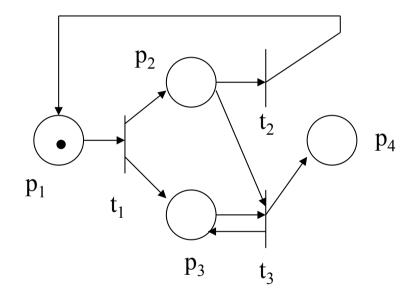
Step 2.2: If $f(\mathbf{x},t_j)$ is defined for some $t_j \in T$, create a new node $\mathbf{x'} = f(\mathbf{x},t_j)$. Then:

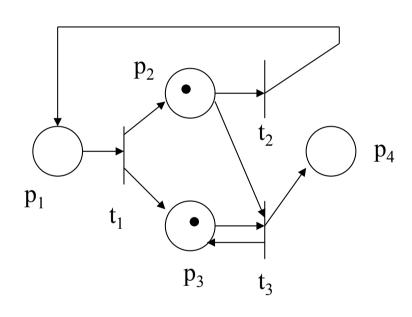
Step 2.2.1: If $x(p_i) = \omega$ for some p_i , set $x'(p_i) = \omega$.

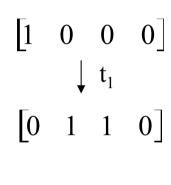
Step 2.2.2: If there exists a node \mathbf{y} in the path from the root node \mathbf{x}_0 (included) to \mathbf{x} ' such that $\mathbf{x}' >_d \mathbf{y}$, set $\mathbf{x}'(p_i) = \omega$ for all p_i such that $\mathbf{x}'(p_i) > \mathbf{y}(p_i)$.

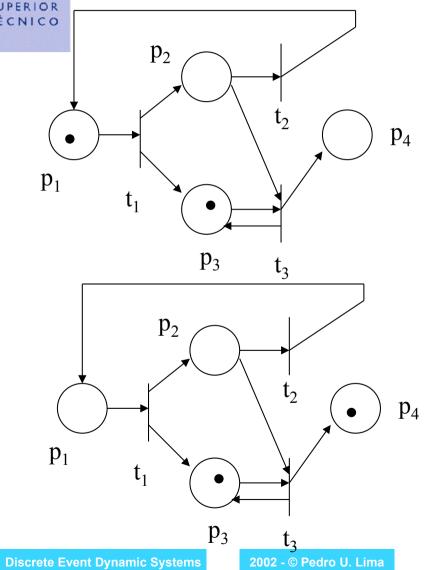
Step 2.2.3: Otherwise, set $\mathbf{x}'(p_i) = f(\mathbf{x}, t_j)$.

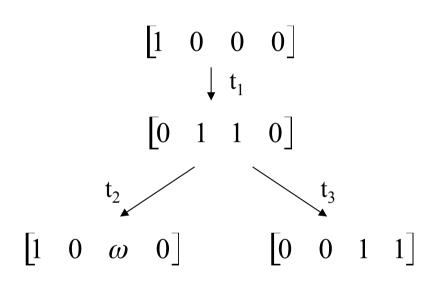
Step 3: If all new nodes are either *terminal* or *duplicate nodes*, stop. Otherwise go back to Step 2.



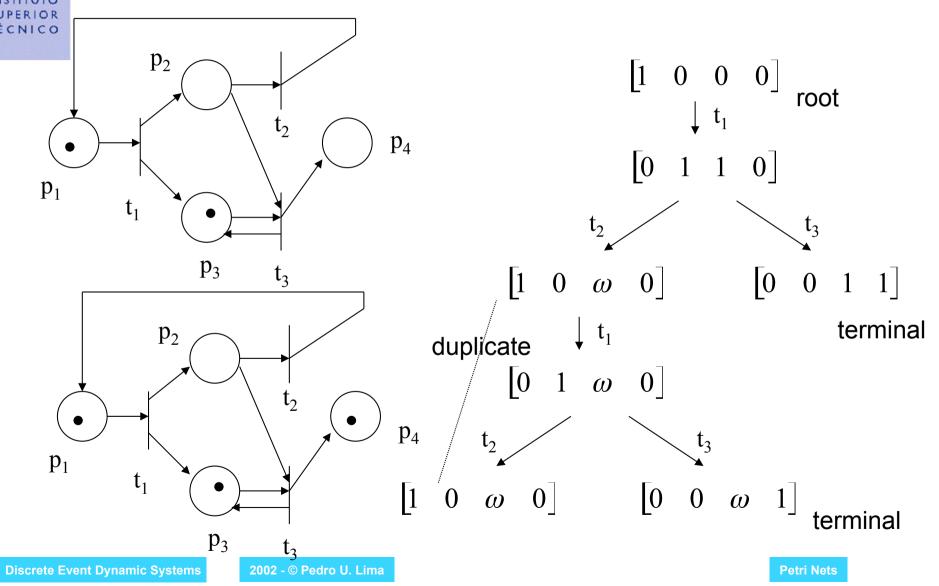








INSTITUTO SUPERIOR TÉCNICO



Applications and Limitations of the Coverability Tree

- The coverability tree is always finite.
- A PN is **bounded** iff the symbol ω never appears in the coverability tree. If ω does not appear, the state space of the PN is finite.
- Coverability can be determined using the coverability tree.
- **Conservation** is checked by solving *r* equations of the form

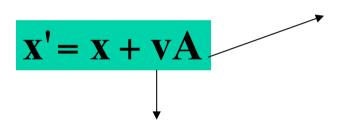
$$\sum_{i=1}^{n} \gamma_i x(p_i) = C$$

with n+1 unknowns (the n weights plus C), where r is the number of nodes of the coverability tree. If ω appears in the coverability tree for some place, the corresponding γ must be zero.

- **Reachability** of a specific state can not be checked, when the ω symbol appears in the coverability tree, because it may represent different integer values.
- **Liveness** of transitions can not, in the general case, be determined by this technique as well

State Equation

For the extended version of the transition function



mxn matrix whose (j,i) entry is

$$a_{ji} = w(t_j, p_i) - w(p_i, t_j)$$

m-dimensional *firing counting vector*

$$(n_{t_1} \quad (n_{t_2} \quad \dots \quad n_{t_m})$$

Number of times transition t2 fires in the sequence

A necessary condition for state \mathbf{x} to be reachable from initial state $\mathbf{x_0}$ is for the equation

firing count vector
$$\mathbf{v}\mathbf{A} = \mathbf{x} - \mathbf{x}_0$$

to have a solution \mathbf{v} where all the entries of \mathbf{v} are non-negative integers.

The existence of a non-negative integer solution **v** does **not** guarantee that the entries in **v** can be mapped to an actual feasible ordering of transition firings.

$$\mathbf{v}\mathbf{A} = \mathbf{x} - \mathbf{x}_0 \quad (*)$$

Particular cases:

- if (*) has no solution OR
 has a solution with negative v elements OR
 has a solution with non-integer v elements
 Then x is not reachable from x₀
- if (*) has a solution \mathbf{v} with non-negative elements Then there may exist a transition sequence leading from \mathbf{x}_0 to \mathbf{x} , but that is not guaranteed.

Multiple solutions of (*) are possible

Whenever there may exist a solution, at least the number of alternatives to be checked is significantly reduced.

Conservation can be checked by solving

$$\mathbf{A}\boldsymbol{\gamma}^{\mathsf{T}} = 0 \quad (**)$$

NOTE: compare with the coverability tree technique. **There** x_0 **matters**! Here, all possible x_0 are implicitly checked. If there exists a single one that violates conservation, there is no solution for (**).

 More powerful results can be obtained based on this technique for sub-classes of PNs, such as marked graphs.

INSTITUTO SUPERIOR TÉCNICO

PETRI NET Sub-Classes

Petri net sub-classes, with smaller modeling capability, but larger decision power:

 State Machines: Each transition must have exactly one input place and one output place

$$(\forall t_{j} \in T, |I(t_j)| = 1 \land |O(t_j)| = 1).$$

• Marked Graphs: Each place is the input of exactly *one* transition and the output of exactly *one* transition

$$(\forall p_i \in P, |I(p_i)| = 1 \land |O(p_i)| = 1).$$

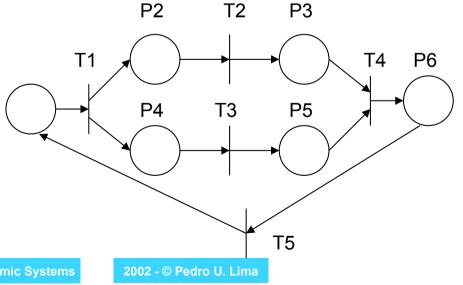
• Free-Choice PNs: If a place is input of more than one transition (potential conflict), then it is the *single* input place of each of those transitions

$$\forall_{t_j \in T} \forall_{p_i \in I(t_j)}$$
, either $I(t_j) = \{p_i\}$ or $O(p_i) = \{t_j\}$.

ANALYSIS PROBLEMS Linear-Algebraic Techniques

Place Invariants correspond to sets of places whose weighted token count remains constant for all possible markings, i.e., every integer vector which satisfies

$$\mathbf{A}\boldsymbol{\gamma}^{\mathrm{T}} = \mathbf{0}$$



Example

$$\gamma = \begin{bmatrix} 2 & 1 & 1 & 1 & 2 \end{bmatrix} \rightarrow P_1, P_2, P_3, P_4, P_5, P_6$$

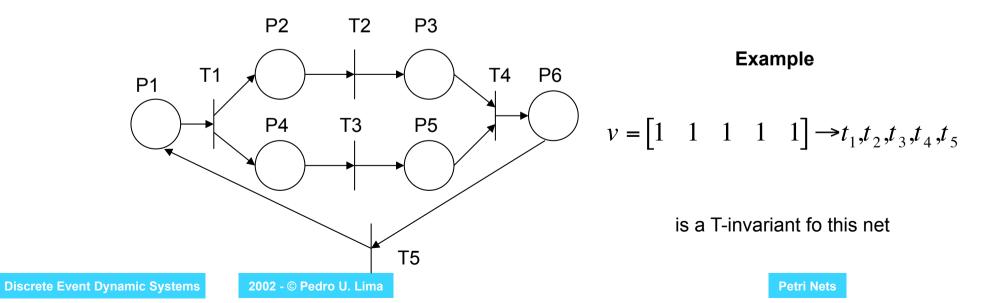
is aP-invariant fo this net

Petri Nets

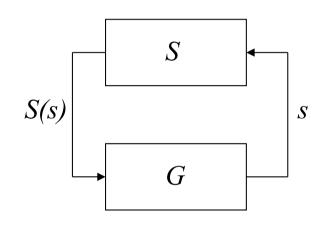
ANALYSIS PROBLEMS Linear-Algebraic Techniques

Transition Invariants correspond to sets of *transition* firings that cause the marking of a net to cycle, i.e., $\mathbf{x} = \mathbf{x_0}$ after some N firings

$$vA = 0$$



CONTROL OF PETRI NETS



•
$$L_r \subseteq L(S/G) \subseteq L_a$$

• If we wish to restrict the behavior of G, but not more than necessary:

$$L(S/G) = L_a^{\uparrow C}$$
 largest sublanguage of L_a which is controllable

• If we wish to restrict the behavior of G as much as possible:

$$L(S/G) = L_r^{\downarrow C}$$
 smallest superlanguage of L_r which is controllable

• Regular languages are closed under most supervisor synthesis operations, i.e., if L_a and L_r are regular, so will be . $L_a^{\uparrow C}$ and $L_r^{\downarrow C}$

CONTROL OF PETRI NETS

- If $L_m(G)$ is not regular (e.g., G is an unbounded PN) but L_{am} is regular and controllable, S can be realized by a finite-state deterministic automaton (FSA).
- If $L_m(G)$ is regular but L_{am} is controllable but not regular, S can not be realized by an FSA, but one may be able to realize it by a PN see next example

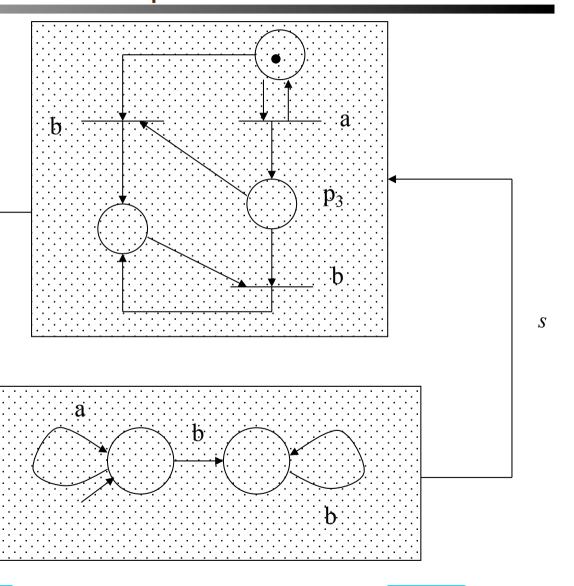
CONTROL OF PETRI NETS An Example

Example:

$$L(G) = a^*b^*$$

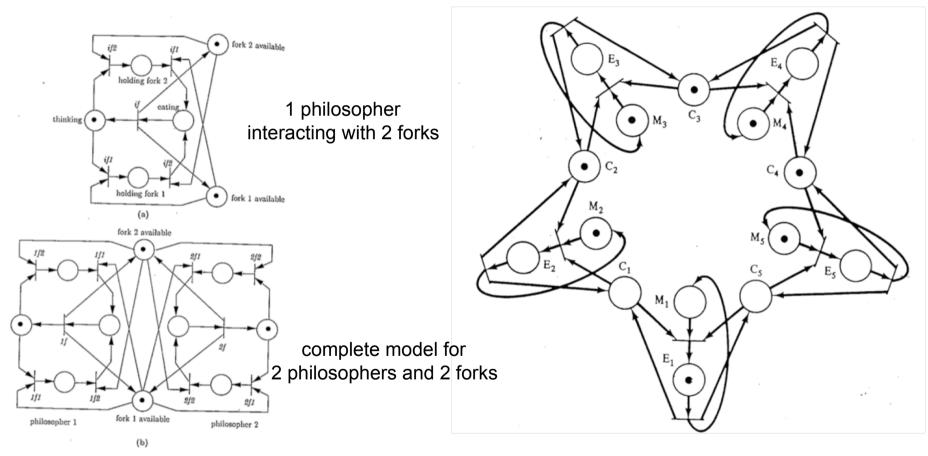
$$L_a = \overline{\left\{a^n b^m : n \ge m \ge 0\right\}}$$

$$S(s) = \begin{cases} \{a, b\} \text{ if } x(p_3) > 0 \\ \{a\} \text{ if } x(p_3) = 0 \end{cases}$$



CONTROL OF PETRI NETS An Example

Dining Philosophers revisited



2 philosophers / possible deadlock

5 philosophers / no deadlock

Discrete Event Dynamic Systems

2002 - © Pedro U. Lima

Petri Nets

- If both $L_m(G)$ and L_{am} are not regular, but we wish them to be PN languages, several problems may occur, including non-closure under the $\uparrow C$ and $\downarrow C$ operations solvable using inhibitor arcs (at the expense of reduced analysis capabilities).
 - If both $L_m(G)$ and L_{am} are regular, using PN models may lead to more compact representations than FSA.
 - If specifications are made in terms of forbidden states, rather than admissible languages, several results exist for supervisor synthesis, mostly based on linear-algebraic techniques.

Building PN Supervisor for a PN Model from Linear Predicates on the State Vectors

(Moody, Antsaklis, 1998)

Specification: restrict the reachable states \mathbf{x}_p of a PN model, such that

$$\mathbf{L}\mathbf{x}_{p} \leq \mathbf{b}, \ \mathbf{L}_{[\mathsf{n}_{\mathsf{c}} \times n]}, \mathbf{b}_{[n_{c}]}$$
 n_{c} is the number of constraints

The inequality can be seen as the logical conjunction of n_c separate inequalities

The plant (e.g., robotic task, communication system) is modeled by a PN with incidence matrix $\mathbf{D}_p = \mathbf{A}_p$

The *controller net* is a PN with incidence matrix \mathbf{D}_c made up of the plant transitions and a separate set of places

(Moody, Antsaklis, 1998)

Introducing n_c slack variables to turn the inequality into an equality

The slack variables represent η_c new places that hold the extra tokens required to meet the equality, and are part of the separate controller net.

$$\mathbf{X}_{1\times n}\gamma_{1\times n}^{\mathrm{T}} = \mathbf{X}_{0_{1\times n}}\gamma_{1\times n}^{\mathrm{T}} \longrightarrow \gamma_{n\times 1}^{\mathrm{T}}\mathbf{X}_{n\times 1} = \gamma_{n\times 1}^{\mathrm{T}}\mathbf{X}_{0_{n\times 1}}$$

$$\mathbf{A}_{m\times n}\gamma_{1\times n}^{\mathrm{T}} = \mathbf{0} \longrightarrow \gamma_{n\times 1}^{\mathrm{T}}\mathbf{A}_{m\times n}^{\mathrm{T}} = \gamma_{n\times 1}^{\mathrm{T}}\mathbf{D}_{m\times n} = \mathbf{0}$$

Lx_p + x_c = b is in the form

$$\begin{matrix}
\mathbf{L}\mathbf{x}_p + \mathbf{x}_c = \mathbf{b} \text{ is in the form} \\
\mathbf{n}_c \text{ place invariants} & \Gamma^T \mathbf{X} = \Gamma^T \mathbf{X}_0, & \Gamma^T = [\mathbf{L} \mathbf{I}] \\
\text{provided that } \mathbf{L}\mathbf{x}_{p_0} + \mathbf{x}_{c_0} = \mathbf{b}
\end{matrix}$$

$$\Gamma^T \mathbf{D} = \begin{bmatrix} \mathbf{L} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{D}_{\mathbf{p}} \\ \mathbf{D}_{\mathbf{c}} \end{bmatrix} = \mathbf{0}$$

$$\Gamma^T \mathbf{D} = \begin{bmatrix} \mathbf{L} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{D}_{\mathbf{p}} \\ \mathbf{D}_{\mathbf{c}} \end{bmatrix} = \mathbf{0}$$

Controlled (closed loop) PN with incidence matrix **D** and state $\mathbf{x} = \begin{bmatrix} \mathbf{x}_p \\ \mathbf{x} \end{bmatrix}$, $\mathbf{x}_0 = \begin{bmatrix} \mathbf{x}_{p_0} \\ \mathbf{x}_{p_0} \end{bmatrix}$

 $\therefore \Gamma^{T} \mathbf{D} = 0$

if
$$\mathbf{b} - \mathbf{L} \mathbf{x}_{p_0} \ge 0$$

then a PN controller with incidence matrix \mathbf{D}_c and initial state \mathbf{x}_{co}

$$\mathbf{D}_c = -\mathbf{L}\mathbf{D}_p$$

$$\mathbf{x}_{c_0} = \mathbf{b} - \mathbf{L}\mathbf{x}_{p_0}$$

enforces the constraint $Lx_p \le b$ when included in the closed loop system

(Moody, Antsaklis, 1998)

THEOREM – Invariant-Based Controller Synthesis

if
$$\mathbf{b} - \mathbf{L} \mathbf{x}_{p_0} \ge 0$$

then a PN controller with incidence matrix $\mathbf{D}_c = \mathbf{A}_c^T$ and initial state \mathbf{x}_{c_0}

$$\mathbf{D}_c = -\mathbf{L}\mathbf{D}_p$$

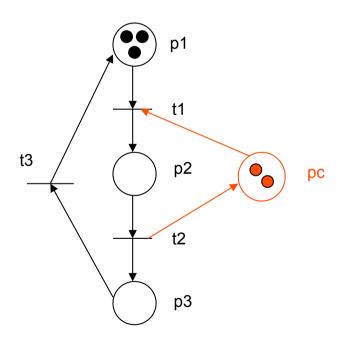
$$\mathbf{x}_{c_0} = \mathbf{b} - \mathbf{L}\mathbf{x}_{p_0}$$

enforces the constraint $Lx_p \le b$ when included in the closed loop

system with incidence matrix
$$\mathbf{D} = \mathbf{A}^T$$
 and state $\mathbf{X} = \begin{bmatrix} \mathbf{X}_p \\ \mathbf{X}_c \end{bmatrix}$, $\mathbf{X}_0 = \begin{bmatrix} \mathbf{X}_{p_0} \\ \mathbf{X}_{c_0} \end{bmatrix}$

assuming that the transitions with input arcs from \mathbf{D}_c are controllable. If the inequality $\mathbf{b} - \mathbf{L} \mathbf{x}_{p_0} \ge 0$ is not true, the constraints can not be enforced, since the initial conditions of the plant lie outside the range defined by the constraints.

Example



spec.:
$$\mathbf{x}_{2} \le 2$$
 $\mathbf{L} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \mathbf{b} = \mathbf{2}$

$$\mathbf{D}_{p} = \begin{bmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{bmatrix}, \quad \mathbf{x}_{p_{0}} = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$$

$$\mathbf{D}_{c} = -\mathbf{L}\mathbf{D}_{p} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}$$

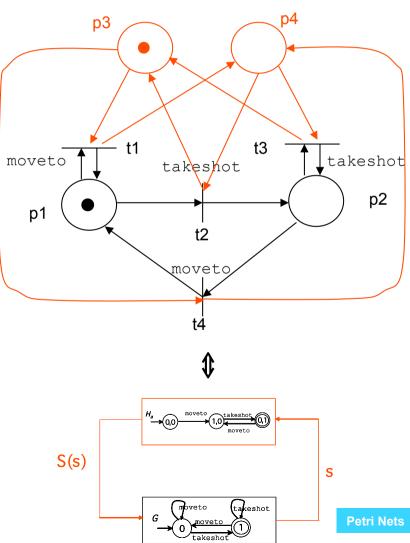
$$\mathbf{x}_{c_{0}} = \mathbf{b} - \mathbf{L}\mathbf{x}_{p_{0}} = 2$$

Limitations

Specification: alternance of events moveto and takeshot (with a being the first event to

occur) required

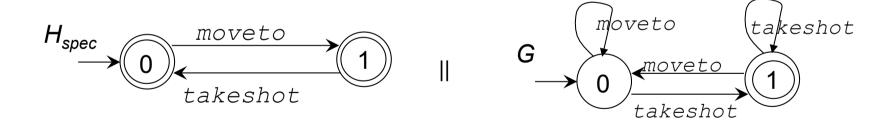
This controlled PN satisfies the specification, but the PN controller could not be synthesized using the Invariant-Based Controller method (the controller places form their own invariant, separate from the plant PN places – controller is not maximally permissive)

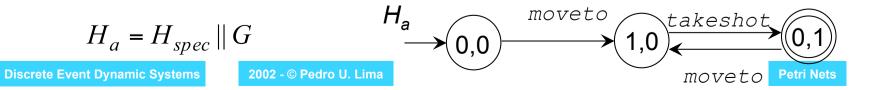


EVENT-BASED FSA SUPERVISION

Building an FSA Supervisor for a FSA Model from Language Specifications (Ramadge, Wonham, 1989)

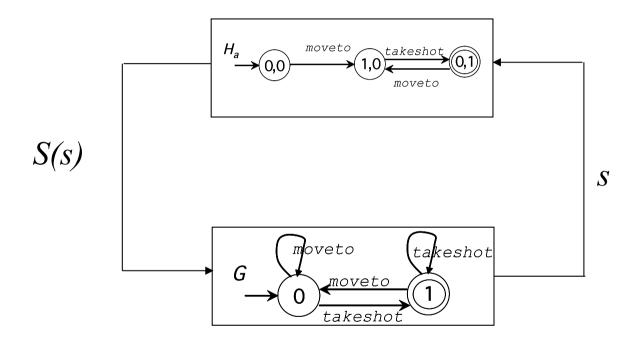
Specification: alternance of events moveto and takeshot (with moveto being the first event to occur) required





EVENT-BASED FSA SUPERVISION

Building an FSA Supervisor for a FSA Model from Language Specifications



Ex.: mt mt mt ts ts mt ts $\in L(G)$ mt ts mt ts mt ts mt ts mt ts $\in L(S/G)$

FURTHER READINGS

- J. Peterson, *Petri Net Theory and the Modeling of Systems*, Prentice-Hall, 1981 - more on modeling, languages, decidability and complexity issues
- N. Viswanadham, Y. Narahari, *Performance Modeling of Automated Manufacturing Systems*, Prentice-Hall, 1992 more on modeling of manufacturing systems
- J. O. Moody, P. J. Antsaklis, Supervisory Control of Discrete Event Systems Using Petri Nets, Kluwer Academic Publ., 1998 more on control of PNs