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INTRODUCTION 

MC model of a DES 

Controller 

Action u(i) State i 

Goal: attain the “best” possible performance for the system. 
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•! Our analysis of Markov chains 
so far considered transition 
probabilities to be fixed; 

•! We are going to explore the 
possibility of taking action to 
control these probabilities; 

•! What is meant by controlling a 
Markov chain? 

•! Example 

Suppose you are a player on a 
gambling process. At any given 

point in time you have i USD. If 
you bet 1 unit you either lose it 

with probability 11/12 or gain 2 
units more with probability 1/12. 

How much should you bet in 
order to 

•! stay in game? 

•! achieve some amount? 

•! etc.? 

THE NATURE OF “CONTROL” 
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Policy #1 - One dollar a turn 

Policy #2 - Two dollars a turn when above 2 in hand 
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THE NATURE OF “CONTROL” 
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•! Let a Discrete Event System have state space X and 
assume we can observe all state transitions. 

•! To introduce the MDP related with this DES we need to 

specify three ingredients: 

•! Control actions taken when a state transition takes place; 

•! Cost  associated with such actions; 

•! Transition probabilities which may depend on the control 
actions. 

MARKOV DECISION PROCESSES 
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Control Actions 

•! When a new state is entered, a control action u is selected from 
a known set of possible control actions denoted by U. 

•! There is a cost associated with the selection of a control action 
u at state i, denoted by C(i, u). 

C(i, u) will be assumed as bounded, that is, 

   0 !C(i, u) ! K 

•! The rule based on which control actions are chosen is called a 
policy denoted as !. 

•! Can be quite arbitrary 

MARKOV DECISION PROCESSES 
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Control Actions (continued) 

•! We will limit our analysis to a class of policies where 

•! a control action is not chosen at random; 

•! the control action chosen when the state is i depends only on i. 

•! Under a stationary policy, a control action is a mapping from the 
state set X to the set U. 

•! That is, it is a function of the form u(i), i " X. 

•! Sometimes, not all control actions in U may be allowable when the 
state is i. 

•! Ui denotes the subset of U containing all admissible actions at state i. 

MARKOV DECISION PROCESSES 

stationary policies 
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Control Actions (continued) 

•! Given that u(i) has been chosen at state i, the next state is 
selected according to transition probabilities pij[u(i)], which 
depend on the value of i alone. 

•! We assume that, for any state i, the holding time is 
exponentially distributed with rate parameter "(i). 

•! Once we know pij[u(i)] and "(i) we have completely specified a 
Markov Chain model. 

The only novelty here is the fact that the transition probabilities 
depend on the particular policy we wish to adopt. 

MARKOV DECISION PROCESSES 
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Cost Criteria 

•! Total Expected Cost over a Finite Horizon 

•! Total Expected Discounted Cost over an Infinite Horizon 

•! Total Expected (Undiscounted) Cost over an Infinite Horizon 

•! Expected Average Cost 

MARKOV DECISION PROCESSES 
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Problem of interest 

Determine a policy ! to minimize  

MARKOV DECISION PROCESSES 

Total Expected Discounted Cost over an Infinite Horizon 
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Uniformization 

•! Let a continuous time Markov Chain be described by 

the matrix Q – Transition Rate Matrix. 

•! qij designates the instantaneous rate at which the chain jumps 
to state j when at state i. 

•! It is known that qii = -"(i) and qij = #ij  

•! We can define the probability of jumping to state j when at 
state i  by Pij = - qij /qii for j$i. 

There are no transitions from i  to i  in a continuous time chain. 

MARKOV DECISION PROCESSES 
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Uniformization (continued) 
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MARKOV DECISION PROCESSES 

CTMC # DTMC 
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•! Uniformization (continued) 

Q.: What is the effect of uniformization on the cost functions? 

•! Let’s see what happens with the total expected discounted cost 
over an infinite horizon... 

•! Let T0, T1, ..., Tk, ... be the time instants when state transitions 
occur (including the fictitious ones). T0 = 0 by convention. 

MARKOV DECISION PROCESSES 

Given that cost is incurred when a control action is decided and this is done at time Tk, 

it turns out that 
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Uniformization (continued) 
After some trivial manipulation and taking into account that Tk+1 = Tk + Vk+1 and that 

Vk+1 is exponentially distributed with parameter %, it can be shown that 

MARKOV DECISION PROCESSES 

Where 

•! & = %/('+%) is the new discount factor – for a DTMC.  
•! C(i,u)/('+%) is the single stage cost whenever we enter state i and 

choose control action u (dictated by policy ( ) 
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The Basic Markov Decision Problem 

•! Limit ourselves to discrete-time Markov chains. 

•! If a continuous-time model with discount factor ' is of interest, 
then it is uniformized with rate %. 

•! In the resulting discrete-time model we use a new discount factor, 
& = %/('+%), and replace the original costs C(i, u) by C(i,  u)/('+%). 

" ! We assume that at every state transition a cost C(i, u) is 
incurred, where i is the state entered and u a control action 
selected from a set of admissible actions Ui. 

•! Under a stationary policy (, the control u depends only on the 
state i. 

MARKOV DECISION PROCESSES 
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The Basic Markov Decision Problem (continued) 

•! The next state is determined according to transition probabilities 
pij(u). 

•! We assume that a discount factor &, 0 < & < 1, is given, as well 
as the initial state is specified. 

•! We then define the cost criterion 

 which is the total expected discounted cost accumulated over an 
infinite horizon, given the initial state i. 

Note: strictly speaking,                                           (not used to 
simplify notation) 

MARKOV DECISION PROCESSES 
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Discrete-time deterministic setting 
•! At time k = 0, the state is x0. 

•! Our time horizon consists of N steps, and when we reach 
state xN at time k = N, we will incur a terminal cost C(xN). 

•! At each time step k = 0, 1, ..., N-1, we can select a control 
action u(xk), where xk is the state at that time. 

•! Assume that u(xk) is chosen from a given set of admissible 
control actions U(xk) for that state. 

•! Depending on the state xk and the control action selected 
u(xk), we incur a cost C[xk, u(xk)]. 

•! Then, a state transition occurs according to a state equation 
of the form 

   xk+1 = fk(xk, uk) 

SOLVING MDPs 

The Basics of Dynamic Programming 
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•! A policy ( is a sequence {u0, u1, ..., uN-1} of control actions over 
the time horizon N. 

•! The optimization problem of interest is to determine a policy 

    ! = {u0, u1, ..., uN-1} that minimizes the total cost 

•! We denote such an optimal policy by !*= {u*
0, u

*
1, ..., u

*
N-1}  

SOLVING MDPs 

The Basics of Dynamic Programming 
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•! Denote the optimizing policy for this subproblem as  

    !0= {u0
n, u

0
n+1, ..., u

0
N-1}. 

•! What is the optimal policy for this subproblem? 

•! The answer is based on Bellman’s principle of optimality: 

i.e., u0
n = u*

n, u
0
n+1 = u*

n+1, ..., u
0
N-1 = u*

N-1. 

SOLVING MDPs 

The Basics of Dynamic Programming 

•! Suppose we apply policy !* and have reached state xn, and define 
the cost-to-go 

if the policy function is optimal for the finite summation, then it must be the case that whatever 

the initial state and decision are, the remaining decisions must constitute an optimal policy with 

regard to the state resulting from that first decision (as expressed by the Bellman equation).  
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SOLVING MDPs 

The Basics of Dynamic Programming 
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SOLVING MDPs 

The Basics of Dynamic Programming 
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SOLVING MDPs 

The Basics of Dynamic Programming 
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SOLVING MDPs 

The Basics of Dynamic Programming 
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SOLVING MDPs 

The Basics of Dynamic Programming 
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SOLVING MDPs 

The Basics of Dynamic Programming 
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SOLVING MDPs 

The Basics of Dynamic Programming 
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SOLVING MDPs 

The Basics of Dynamic Programming 

In the previous simple example, each state at one stage 

only has connections (with a given cost) to states at an 

upper stage. 

Iteration is on the number of stages. 

In Markov Chains, each state can be connected by 

transition probabilities to other states, which in turn can 
even connect back to it as in a graph. 

Therefore, the update of each state value must be done 

for all states at a time, and the iteration is on the time 

steps. 
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•! Let V*
((x0) denote the optimal cost, attained when the optimal 

policy is used 

•! Note that 

SOLVING MDPs 

The Basics of Dynamic Programming 
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In general, we can set the following recursive set of optimization 
problems 

 with the following boundary condition 

•! The quantity Vk(xk) is termed the optimal cost-to-go from state xk in 
the following sense 

•! The controller sees a single-step problem with step cost C(xk, uk) and 
terminal cost Vk+1(xk+1) and selects the control action that solves that 

problem. 

•! Vk+1(xk+1) has to be known before solving Vk(xk) 

•! The equations are solved backward and ultimately V*(x0)=V0(x0)  

SOLVING MDPs 

The Basics of Dynamic Programming 
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For a discrete-time Markov chain (non-deterministic setting)  we have 

 which originates the following recursion 

Dividing both terms by &k and defining V ’’k = &-kV ’k, we get 

SOLVING MDPs 

Dynamic Programming and the Optimality Equation 
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Finally, defining Vk = V ’’N-k we get 

! 

Vk+1( j) = min
u"U j

C( j,u) +# p jr (u)Vk (r)
all r

$
% 

& ' 
( 

) * 
, k = 0,...,N +1

•! The above establishes an interesting framework for the DP 
algorithm. 

It clearly defines an operator structure. 

Recursion is now in the 

forward direction 

! 

Vk ( j) = T
k
[V

0
( j)]

SOLVING MDPs 

Dynamic Programming and the Optimality Equation 
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•! Property 

If f(j) = g(j) + ), T[f(j)] = T[g(j)] + &) 

•! Consequence 

Tk[f(j)] = Tk[g(j)] + &k), for k = 1,2,… 

With the operator structure above defined, the recursion assumes 
the following format 

SOLVING MDPs 

Dynamic Programming and the Optimality Equation 
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Lemma 1 

Under the assumption 0 $ C(j, u) $ K for all states j and control actions u " Uj, 
the solution VN(i) of the DP algorithm is such that 

Lemma 2 

Under the assumption 0 $ C(j, u) $ K for all states j and control actions u " Uj, 
for any bounded function f(i), f: X*+, we have 

SOLVING MDPs 

Dynamic Programming and the Optimality Equation 



2002 - © Carlos F. G. Bispo, Pedro Lima Discrete Event Dynamic Systems Controlled Markov Chains 

SOLVING MDPs 

The Basics of Dynamic Programming 

Theorem 1 

Under the assumption 0 $ C(j, u) $ K for all states j and control 
actions u " Uj, the optimal cost V*(i) which minimizes (1) satisfies 

the optimality equation 
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Extensions to Unbounded and Undiscounted Costs 
Theorem 2 

   Under the assumption C(j, u) % 0 [or C(j, u) $ 0] for all states j and 
control actions u " Uj, the optimal cost V*(i) which minimizes (1) 
satisfies the optimality equation 

 where & is no longer constrained to be in the interval (0, 1), but is 

allowed to take values greater than or equal to 1. 

SOLVING MDPs 

The Unbounded and Undiscounted Cases 

Unlike Theorem 1, we can no longer assert here that V*(i) is the only solution of 
the optimality equation, although in most cases of practical interest this does not 
turn out to pose a serious limitation. 
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Theorem 3 

   Assume that the set of control actions U is finite. Then, under the 
assumption C(j, u) % 0 for all states j and control actions u " Uj, we 

have 

 where VN(i) is the solution of the DP algorithm (2). 

SOLVING MDPs 

The Unbounded and Undiscounted Cases 
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Theorem 4 

  Suppose there exists a constant & and a bounded function h(i) 
which satisfy the following equation 

 Then, & is the optimal cost in (3), that is, 

 and a stationary policy (* is optimal if it gives the minimum value in 

(4) for all states i. 

SOLVING MDPs 

Optimization of the Average Cost Criterion 

The Average Cost Criterion is rewritten for the equivalent DTMC as follows 
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CONTROL OF QUEUEING SYSTEMS 

client immediately routed to a queue with prob 1/2 
committing as late as possible to one of the servers 
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Admission 

Control 
µ ' 

reject 

accept 

Routing 

Control ' 
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Scheduling 
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Threshold type 
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CONTROL OF QUEUEING SYSTEMS 

u1 

u2 
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CONTROLLED MARKOV CHAINS 

Further reading  

•! Queuing systems and its control 

•! Bertsekas, D. P., Dynamic Programming: Deterministic and 

Stochastic Models, Prentice-Hall, Englewood Cliffs, NJ, 1987 

•! Bertsekas, D. P., Dynamic Programming and Optimal Control, 

Vols 1 and 2, Athena Scientific, Belmont, MA, 1995  


