Vizzy Denavit–Hartenberg parameters: Difference between revisions

From ISRWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 143: Line 143:
</math>
</math>
-->
-->
   //H0 (1.0 0.0 0.0 0.0  0.0 0.0 -1.0 0.0  0.0 1.0 0.0 0.0  0.0 0.0 0.0 1.0)    // given per rows (Very precise MATLAB Matrix)\\
   //H0 (1.0 0.0 0.0 0.0  0.0 0.0 -1.0 0.0  0.0 1.0 0.0 0.0  0.0 0.0 0.0 1.0)    // given per rows (Very precise MATLAB Matrix)
   Matrix H0(4,4);\\
   Matrix H0(4,4);
   H0.zero();\\
   H0.zero();
   H0(0,0)=1.0;\\
   H0(0,0)=1.0;
   H0(1,2)=-1.0;\\
   H0(1,2)=-1.0;
   H0(2,1)=1.0;\\
   H0(2,1)=1.0;
   H0(3,3)=1.0;\\
   H0(3,3)=1.0;




''Parameters by Nuno Conraria.''
''Parameters by Nuno Conraria.''

Revision as of 16:48, 27 December 2011


Head center
Link alpha R theta D
0 Pi/2 0 0 0 virtual link
1 Pi/2 0 0 0 M0 → M1
2 Pi/2 0 0 -370 M1 → M2
3 Pi 132.21 0 0 M2 → M3
Right eye
Link alpha R theta D
0 Pi/2 0 0 0 virtual link
1 Pi/2 0 0 0 M0 → M1
2 Pi/2 0 0 -370 M1 → M2
3 Pi 132.21 0 0 M2 → M3
4 -Pi/2 0 0 -111 M3 → M4
Left eye
Link alpha R theta D
1 Pi/2 0 0 0 virtual link
1 Pi/2 0 0 0 M0 → M1
2 Pi/2 0 0 -370 M1 → M2
3 Pi 132.21 0 0 M2 → M3
4 -Pi/2 0 0 111 M3 → M5
Right arm
Link alpha R theta D
0 Pi/2 0 0 0 virtual link
1 -Pi/2 0 0 -0.0805 M0 → M0R
2 -Pi/2 0 0 0.212 M0R → M1R
3 Pi/2 0 0 0.10256 M1R → M2R
4 -Pi/2 0 0 0 M2R → M3R
5 -Pi/2 0 0 0.16296 M3R → M4R
6 Pi/2 0 0 0 M4R → M5R
7 Pi/2 0 0 0.18925 M5R → M6R
8 Pi/2 0 0 0 M6R → M7R
9 -Pi/2 -0.1 0 0 M7R → End-effector
Left arm
Link alpha R theta D
0 Pi/2 0 0 0 virtual link
1 Pi/2 0 0 0.0805 M0 → M0L
2 -Pi/2 0 0 -0.212 M0L → M1L
3 Pi/2 0 0 0.10256 M1L → M2L
4 -Pi/2 0 0 0 M2L → M3L
5 -Pi/2 0 0 -0.16296 M3L → M4L
6 Pi/2 0 0 0 M4L → M5L
7 Pi/2 0 0 -0.18925 M5L → M6L
8 Pi/2 0 0 0 M6L → M7L
9 -Pi/2 -0.1 0 0 M7L → End-effector

Virtual link corresponds to:

 //H0 (1.0 0.0 0.0 0.0   0.0 0.0 -1.0 0.0  0.0 1.0 0.0 0.0   0.0 0.0 0.0 1.0)     // given per rows (Very precise MATLAB Matrix)
 Matrix H0(4,4);
 H0.zero();
 H0(0,0)=1.0;
 H0(1,2)=-1.0;
 H0(2,1)=1.0;
 H0(3,3)=1.0;


Parameters by Nuno Conraria.