Vizzy Denavit–Hartenberg parameters: Difference between revisions

From ISRWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 70: Line 70:


<table><tr><td>
<table><tr><td>
{| class="wikitable"
{| class="wikitable" style="text-align: center"
| align="center" style="background:#d0d0d0;" colspan="6" | Right arm
| style="background:#d0d0d0;" colspan="6" | Right arm
|-
|-
| align="center" style="background:#f0f0f0;"|'''Link'''
| style="background:#f0f0f0;"|'''Link'''
| align="center" style="background:#f0f0f0;"|'''alpha'''
| style="background:#f0f0f0;"|'''alpha'''
| align="center" style="background:#f0f0f0;"|'''R'''
| style="background:#f0f0f0;"|'''R'''
| align="center" style="background:#f0f0f0;"|'''theta'''
| style="background:#f0f0f0;"|'''theta'''
| align="center" style="background:#f0f0f0;"|'''D'''
| style="background:#f0f0f0;"|'''D'''
| align="center" style="background:#f0f0f0;"|''' '''
| style="background:#f0f0f0;"|''' ''''
|-
|-
| 0||align="center"|Pi/2||align="center"|0||align="center"|0||align="center"|0||align="center"|virtual link
| 0||Pi/2||0||0||0||virtual link
|-
|-
| 1||align="center"|-Pi/2||align="center"|0||align="center"|0||align="center"|-0.0805||align="center"|M0 → M0R
| 1||-Pi/2||0||0||-0.0805||M0 → M0R
|-
|-
| 2||align="center"|-Pi/2||align="center"|0||align="center"|0||align="center"|0.212||align="center"|M0R → M1R
| 2||-Pi/2||0||0||0.212||M0R → M1R
|-
|-
| 3||align="center"|Pi/2||align="center"|0||align="center"|0||align="center"|0.10256||align="center"|M1R → M2R
| 3||Pi/2||0||Pi/2||0.10256||M1R → M2R
|-
|-
| 4||align="center"|-Pi/2||align="center"|0||align="center"|0||align="center"|0||align="center"|M2R → M3R
| 4||-Pi/2||0||-7*Pi/18||0||M2R → M3R
|-
|-
| 5||align="center"|-Pi/2||align="center"|0||align="center"|0||align="center"|0.16296||align="center"|M3R → M4R
| 5||-Pi/2||0||Pi/2||0.16296||M3R → M4R
|-
|-
| 6||align="center"|Pi/2||align="center"|0||align="center"|0||align="center"|0||align="center"|M4R → M5R
| 6||Pi/2||0||0||0||M4R → M5R
|-
|-
| 7||align="center"|Pi/2||align="center"|0||align="center"|0||align="center"|0.18925||align="center"|M5R → M6R
| 7||Pi/2||0||0||0.18925||M5R → M6R
|-
|-
| 8||align="center"|Pi/2||align="center"|0||align="center"|0||align="center"|0||align="center"|M6R → M7R
| 8||Pi/2||0||-Pi/2||0||M6R → M7R
|-
|-
| 9||align="center"|-Pi/2||align="center"|-0.1||align="center"|0||align="center"|0||align="center"|M7R → End-effector
| 9||-Pi/2||-0.1||0||0||M7R → End-effector
|}
|}
</td><td>
</td><td>

Revision as of 11:38, 3 January 2012


Head center
Link alpha R theta D
0 Pi/2 0 0 0 virtual link
1 Pi/2 0 0 0 M0 → M1
2 Pi/2 0 0 -0.37 M1 → M2
3 Pi 0.13221 19*Pi/17 0 M2 → M3
Right eye
Link alpha R theta D
0 Pi/2 0 0 0 virtual link
1 Pi/2 0 0 0 M0 → M1
2 Pi/2 0 0 -0.37 M1 → M2
3 Pi 0.13221 19*Pi/17 0 M2 → M3
4 -Pi/2 0 2*Pi/17 -0.111 M3 → M4
5 0 0.05 0 0 M5 → End-effector
Left eye
Link alpha R theta D
0 Pi/2 0 0 0 virtual link
1 Pi/2 0 0 0 M0 → M1
2 Pi/2 0 0 -0.37 M1 → M2
3 Pi 0.13221 19*Pi/17 0 M2 → M3
4 -Pi/2 0 2*Pi/17 0.111 M3 → M5
5 0 0.05 0 0 M5 → End-effector
Right arm
Link alpha R theta D '
0 Pi/2 0 0 0 virtual link
1 -Pi/2 0 0 -0.0805 M0 → M0R
2 -Pi/2 0 0 0.212 M0R → M1R
3 Pi/2 0 Pi/2 0.10256 M1R → M2R
4 -Pi/2 0 -7*Pi/18 0 M2R → M3R
5 -Pi/2 0 Pi/2 0.16296 M3R → M4R
6 Pi/2 0 0 0 M4R → M5R
7 Pi/2 0 0 0.18925 M5R → M6R
8 Pi/2 0 -Pi/2 0 M6R → M7R
9 -Pi/2 -0.1 0 0 M7R → End-effector
Left arm
Link alpha R theta D
0 Pi/2 0 0 0 virtual link
1 Pi/2 0 0 0.0805 M0 → M0L
2 -Pi/2 0 0 -0.212 M0L → M1L
3 Pi/2 0 0 0.10256 M1L → M2L
4 -Pi/2 0 0 0 M2L → M3L
5 -Pi/2 0 0 -0.16296 M3L → M4L
6 Pi/2 0 0 0 M4L → M5L
7 Pi/2 0 0 -0.18925 M5L → M6L
8 Pi/2 0 0 0 M6L → M7L
9 -Pi/2 -0.1 0 0 M7L → End-effector

Virtual link corresponds to:

<math> H_0= \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0\\ 0.0 & 0.0 & -1.0 & 0.0\\ 0.0 & 1.0 & 0.0 & 0.0\\ 0.0 & 0.0 & 0.0 & 1.0 \end{bmatrix} </math>

or if you prefer code:

 //H0 (1.0 0.0 0.0 0.0   0.0 0.0 -1.0 0.0  0.0 1.0 0.0 0.0   0.0 0.0 0.0 1.0)     // given per rows (Very precise MATLAB Matrix)
 Matrix H0(4,4);
 H0.zero();
 H0(0,0)=1.0;
 H0(1,2)=-1.0;
 H0(2,1)=1.0;
 H0(3,3)=1.0;


Parameters by Nuno Conraria.