ICub machines configuration: Difference between revisions
(→Manual compilation: clean up) |
m (→Possible problems with manual compilation: more clean up) |
||
Line 115: | Line 115: | ||
* on CUDA machines, in order to compile CUDA-enabled modules: create a build-cuda directory, CMake, compile, set OpenCV_DIR to the path of OpenCV-x.y.z/build-cuda | * on CUDA machines, in order to compile CUDA-enabled modules: create a build-cuda directory, CMake, compile, set OpenCV_DIR to the path of OpenCV-x.y.z/build-cuda | ||
== YARP and iCub == | == YARP and iCub == |
Revision as of 18:03, 11 February 2015
In this page we will list configurations that are commonplace to Linux machines used at Vislab to work with the iCub robot.
See VisLab machines configuration/Archive for obsolete information.
Operating system installation
Follow Ubuntu defaults and partitioning. For servers and critical machines, use LTS releases. Machines involved in demos must have a user named icub, to make the distributed setup possible (this is required by the graphical 'yarpmanager' program). Furthermore, to use the NFS network mount, this user has to have the uid 1000 and guid 1000.
In order to add a user:
- either use the Ubuntu graphical frontends
- or use a Terminal:
sudo adduser icub
followed bysudo usermod -aG admin icub
to give it sudo privileges
Other operations
Network configuration
See also: VisLab network, ISR computing resources.
Manually configure your internet connection as detailed in one of the following subsections, depending if the machine is a desktop or a server one.
Optionally, you may also customize the /etc/hosts
file; this would allow us to quickly access other machines, as in: ping icbubrain1
. Alternatively, we can do nothing and just use ping icubbrain1.visnet
(i.e., attach the .visnet
part after a machine name, see VisLab network for details).
Desktop machines
With the graphical Network Manager (https://help.ubuntu.com/14.04/ubuntu-help/net-fixed-ip-address.html), configure the connection "Auto eth0" IPv4 as follows:
Address | Netmask | Gateway | DNS Servers | notes |
---|---|---|---|---|
10.10.1.x | 255.255.255.0 | 10.10.1.254 | 10.0.0.1, 10.0.0.2 | visnet (iCub machines) |
10.0.x.y | 255.255.0.0 | 10.0.0.254 | 10.0.0.1, 10.0.0.2 | isrnet (rest of ISR) |
Servers
Edit /etc/network/interfaces
like this:
auto lo iface lo inet loopback auto eth0 iface eth0 inet static address 10.x.y.z # put your IP here, see above table netmask 255.255.x.y # see above table network 10.10.1.0 broadcast 10.10.1.255 gateway 10.10.1.254 dns-nameservers 10.0.0.1 10.0.0.2
In some versions of Ubuntu, to configure DNS you also need to edit /etc/resolvconf/resolv.conf.d/head
like this:
nameserver 10.0.0.1 nameserver 10.0.0.2
then run:
sudo resolvconf -u
Dependencies
sudo apt-get install build-essential libace-dev libgsl0-dev libncurses5-dev gfortran libtinyxml-dev sudo apt-get install git-core subversion ssh gcc g++ make cmake-curses-gui sudo apt-get install qttools5-dev qtdeclarative5-dev qtdeclarative5-controls-plugin qtmultimedia5-dev qtdeclarative5-qtmultimedia-plugin qtquick1-5-dev
iCub Simulator dependencies: SDL and ODE.
The GTK versions of graphical YARP programs will be discontinued in 2015 (replaced by Qt equivalents). If you still want to obtain the old programs during compilation, do:
sudo apt-get install libgtkmm-2.4-dev
Environment variables
- Create a file called ~/.bashrc_iCub like this one:
# /usr/local/src/robot directory can be mounted from NFS, or created manually with permissions: sudo chown icub.icub /usr/local/src/robot -R export ROBOT_CODE=/usr/local/src/robot export YARP_ROOT=$code/yarp export YARP_DIR=$YARP_ROOT/build export ICUB_ROOT=$code/icub-main export ICUB_DIR=$ICUB_ROOT/build export PATH=$PATH:$YARP_DIR/bin:$ICUB_DIR/bin source $YARP_ROOT/scripts/yarp_completion export YARP_DATA_DIRS=$YARP_DIR/share/yarp:$ICUB_DIR/share/iCub export YARP_ROBOT_NAME=iCubLisboa01 # only for machines that connect to the real robot export IPOPT_DIR=/home/icub/Ipopt-3.10.2/build # Inverse Kinematics solver - see http://wiki.icub.org/wiki/Installing_IPOPT export OpenCV_DIR=$code/OpenCV-2.4.8/build # manually installed, with TBB support - see below
If you need icub-contrib type packages, some lines need to be added or changed:
export ICUBcontrib_DIR=$code/icub-contrib-common/build export PATH=$PATH:$YARP_DIR/bin:$ICUB_DIR/bin:$ICUBcontrib_DIR/bin export YARP_DATA_DIRS=$YARP_DIR/share/yarp:$ICUB_DIR/share/iCub:$ICUBcontrib_DIR/share/ICUBcontrib
- Then, before the following line of /etc/bash.bashrc
[ -z "$PS1" ] && return
add this:
# per-user environment variables (non-interactive and interactive mode) source $HOME/.bashrc_iCub
The reason why we use the above custom file (as opposed to the standard ~/.bashrc) is that we want to enforce the variables both during interactive and non-interactive sessions, such as commands launched via yarprun
from another machine.
Additional software
OpenCV
Ubuntu packages
sudo apt-get install libcv-dev libhighgui-dev libcvaux-dev libopencv-gpu-dev
This is the easiest way to install OpenCV, however some machines may require a custom manual compilation instead (see below).
Manual compilation
- on most machines: download OpenCV 2.4.3 or higher, create a build directory, CMake, set WITH_CUDA=OFF, compile, set OpenCV_DIR to the path of OpenCV-x.y.z/build, for example:
export OpenCV_DIR=$code/OpenCV-2.4.3/build
- on CUDA machines, in order to compile CUDA-enabled modules: create a build-cuda directory, CMake, compile, set OpenCV_DIR to the path of OpenCV-x.y.z/build-cuda
YARP and iCub
If you work with the robot, use the volume shares exported from the NFS server.
In other cases:
Follow the instructions on the iCub software article. When compiling, do not use sudo make install
but simply make
(we have configured the PATH variable to find the latest compiled binaries, and we do not want two copies of the same thing on the system).
- yarp CMake configuration
CMAKE_BUILD_TYPE Release CREATE_GUIS CREATE_LIB_MATH
// to enable 640x480@30Hz images with Bayer encoding // install libraw1394-dev libdc1394-22-dev then enable CREATE_OPTIONAL_CARRIERS ENABLE_yarpcar_bayer_carrier
- icub-main CMake configuration
CMAKE_BUILD_TYPE Release // on servers, do http://wiki.icub.org/wiki/Installing_IPOPT then enable ENABLE_icubmod_cartesiancontrollerclient ON ENABLE_icubmod_cartesiancontrollerserver ON ENABLE_icubmod_gazecontrollerclient ON
- final configuration
yarp namespace /icub
- in order to find the yarpserver running on iCub laptop, write
10.10.1.53 10000
into the file specified byyarp conf
- special machines such as pc104 need different flags
CUDA
- install dependencies:
sudo apt-get install freeglut3-dev libdevil-dev libglew-dev
- download and install NVIDIA CUDA Toolkit from http://docs.nvidia.com/cuda
- SiftGPU:
- download it from http://cs.unc.edu/~ccwu/siftgpu/
- unzip it - typically in your home directory, not in the NFS shared folder
- add
export SIFTGPU_DIR=~/SiftGPU
or similar to your iCub bashrc file - compile it with
make
- if you obtain the error "/usr/local/cuda/bin/nvcc: Command not found", this can help:
sudo ln -s /usr/lib/nvidia-cuda-toolkit /usr/local/cuda
. See also http://askubuntu.com/questions/231503/nvcc-compiler-setup-ubuntu-12-04
IOL
sudo apt-get install lua5.1 liblua5.1-dev
- clone rFSM
See also https://github.com/robotology/iol