RAPOSA robot: Difference between revisions
m (RAPOSA moved to RAPOSA robot) |
No edit summary |
||
Line 12: | Line 12: | ||
The robot is semi-autonomous, i.e., it is tele-operated via a wireless link from a remote console using a conventional GUI and a gamepad, but can simultaneously display the capacity to carry out short tasks autonomously. The robot can execute commands sent by a team of SAR experts, located in a safe place. During task execution, the robot is able to process the information from different sensors to the remote command station, so as to provide the human team with relevant information on its surrounding environment (terrain conditions, temperature, dangerous gases, water or heat sources, either from human victims or not). The robot has small dimensions and weight. It is tolerant to impact, dust and humidity and its all terrain capable, namely it can climb stairs. Moreover, it can be lifted by a cable, to facilitate deployment from a height (e.g., into a pipeline). | The robot is semi-autonomous, i.e., it is tele-operated via a wireless link from a remote console using a conventional GUI and a gamepad, but can simultaneously display the capacity to carry out short tasks autonomously. The robot can execute commands sent by a team of SAR experts, located in a safe place. During task execution, the robot is able to process the information from different sensors to the remote command station, so as to provide the human team with relevant information on its surrounding environment (terrain conditions, temperature, dangerous gases, water or heat sources, either from human victims or not). The robot has small dimensions and weight. It is tolerant to impact, dust and humidity and its all terrain capable, namely it can climb stairs. Moreover, it can be lifted by a cable, to facilitate deployment from a height (e.g., into a pipeline). | ||
Research is currently being carried out with the aim of endowing RAPOSA with a higher degree of autonomy, meaning that certain operations requiring manual operation can be done autonomously by the robot. These include: autonomous stair climbing, autonomous docking, and preventive stop after hole detection. Moreover, human-robot interaction issues are also being tackled by improving the operator interface, namely exploring augmented reality techniques. | |||
== Videos == | |||
<html><object width="425" height="355"><param name="movie" value="http://www.youtube.com/v/79MF6N3WvJw&hl=en"></param><param name="wmode" value="transparent"></param><embed src="http://www.youtube.com/v/79MF6N3WvJw&hl=en" type="application/x-shockwave-flash" wmode="transparent" width="425" height="355"></embed></object></html> | <html><object width="425" height="355"><param name="movie" value="http://www.youtube.com/v/79MF6N3WvJw&hl=en"></param><param name="wmode" value="transparent"></param><embed src="http://www.youtube.com/v/79MF6N3WvJw&hl=en" type="application/x-shockwave-flash" wmode="transparent" width="425" height="355"></embed></object></html> | ||
Line 17: | Line 21: | ||
== Research team == | == Research team == | ||
* [http://www.isr.ist.utl.pt/people/yoda Rodrigo Ventura] (head) | |||
* [http://users.isr.ist.utl.pt/~pal Pedro Lima] | * [http://users.isr.ist.utl.pt/~pal Pedro Lima] | ||
* Fausto Ferreira (alumni) | |||
* Fausto Ferreira | |||
* Henrique Martins | * Henrique Martins | ||
* Jorge Ferraz | * Jorge Ferraz |
Revision as of 17:07, 4 December 2008
News and events
- (March 2008) RAPOSA was present in the VIII Jornadas de Engenharia Electrotécnica e Computadores.
- (August 2007) A joint team of ISR/IST and IDMind members participated in Civilian European Land-Robot Trial (C-ELROB 2007) event, having achieved the 6th place (in 12 teams) of the Urban Trial.
- (July 2007) RAPOSA was present in the Portugal Electronics and ITs (PorTI 2007) fair, collocated with the Portuguese Presidency of the European Union.
Robot description
RAPOSA is a robot for Search and Rescue (SAR) operations, designed to operate in outdoors hazardous environments, such as debris resulting from structure collapses. At this stage, the robot is equipped for search operations only, defined as the tele-operated detection of victims, using specific sensors, whose information is transmitted to the remote operator. The robot equipment (sensors) may be adapted to the specific needs. At the moment it includes 3 conventional cameras, one thermal camera, several explosive and toxic gas sensors, temperature and humidity sensors, inclinometers, artificial lights, microphone and speakers. The robot dimensions are length: 75cm, width: 37cm, height: 17,5cm and weight: 27Kg.
The robot is semi-autonomous, i.e., it is tele-operated via a wireless link from a remote console using a conventional GUI and a gamepad, but can simultaneously display the capacity to carry out short tasks autonomously. The robot can execute commands sent by a team of SAR experts, located in a safe place. During task execution, the robot is able to process the information from different sensors to the remote command station, so as to provide the human team with relevant information on its surrounding environment (terrain conditions, temperature, dangerous gases, water or heat sources, either from human victims or not). The robot has small dimensions and weight. It is tolerant to impact, dust and humidity and its all terrain capable, namely it can climb stairs. Moreover, it can be lifted by a cable, to facilitate deployment from a height (e.g., into a pipeline).
Research is currently being carried out with the aim of endowing RAPOSA with a higher degree of autonomy, meaning that certain operations requiring manual operation can be done autonomously by the robot. These include: autonomous stair climbing, autonomous docking, and preventive stop after hole detection. Moreover, human-robot interaction issues are also being tackled by improving the operator interface, namely exploring augmented reality techniques.
Videos
Research team
- Rodrigo Ventura (head)
- Pedro Lima
- Fausto Ferreira (alumni)
- Henrique Martins
- Jorge Ferraz
Project background
The RAPOSA robot was developed by a consortium lead by the company IDMind, together with ISR/IST, the Lisbon firefighters brigade, and the University of South California. It was financed by AdI and POSI.
Please check the IDMInd's RAPOSA webpage for further information.
Operational issues
The following information is for internal use, and of interest of project members only.